Extended periods of microgravity during orbital flights can impair astronauts' cognitive abilities, including learning and memory, posing a persistent health concern in the field of aerospace medicine. The study examined the pharmacological effects of agmatine and its influence on simulated neurobehavioral changes in rats under microgravity conditions. Rats were exposed to simulated microgravity (SMG) conditions using the hindlimb unloading (HU) model for 28 days and evaluated for behavioural alterations using the open field test, elevated plus maze, and forced swim test, and cognitive deficits using the novel object recognition test and Morris water maze. Further, brain agmatine levels, neurochemical and structural alterations in the hippocampus, and prefrontal cortex were examined. Chronic agmatine treatment dose-dependently (40 and 80mg/kg) and its endogenous modulation by l-arginine, and aminoguanidine prevented behavioral and cognitive deficits by improving exploratory behaviour, reducing anxiety-depressive-like symptoms, and enhancing cognitive performance. Our findings reported a significant reduction in agmatine levels in the hippocampus and prefrontal cortex in SMG conditions. Agmatine administration and its modulation normalized neurotransmitter imbalances, especially by restoring the reduced levels of gamma-aminobutyric acid, dopamine, and serotonin, along with a reduction of elevated levels of glutamate in SMG conditions. Moreover, agmatine decreased reactive oxygen species production, enhanced hippocampal antioxidant enzyme activities, suppressed pro-inflammatory cytokines (TNF-α, IL-6), and improved IL-10 and brain-derived neurotrophic factor levels in HU rats. Moreover, agmatine and its endogenous modulation preserved neuronal cells of the hippocampus and prefrontal cortex. In conclusion, the present study suggests that agmatine administration and modulation of endogenous agmatine levels effectively mitigate SMG-induced neurological dysregulation through neuroprotection and neuromodulation. Understanding the neurobiological mechanisms underlying these effects opens up new possibilities for creating novel interventions targeting agmatinergic signaling in spaceflight conditions and associated complications.
扫码关注我们
求助内容:
应助结果提醒方式:
