Pub Date : 2025-03-28DOI: 10.1016/j.lssr.2025.03.012
Chaoxian Jia , Xianyuan Zhang , Haoyuan Sun , Peifan Gu , Yongchun Yuan , Wenting Gao , Weibo Zheng , Jin Yu , Tao Zhang , Gaohong Wang
With the continuous advancement of space exploration activities, the development of Biological Life Support Systems (BLSS) has become crucial for supporting long-duration space missions. This paper focuses on preparation process for the multifunctional closed aquatic ecosystem (CAES) experiment based on Ceratophyllum, zebrafish, and microorganisms, conducted in the Life and Ecological Science Experiment Cabinet of the Chinese Space Station. Given the complexity and high difficulty of the experimental objectives, the selection of zebrafish individuals is critical. Prior to the experiment, the selection process considered factors such as the adaptability of zebrafish in confined spaces, social compatibility, and physiological status. A set of screening criteria was established based on preliminary experiments with 120 zebrafish, analyzing aspects like anxiety behavior, response speed, swimming posture, and shoaling behavior. Finally, based on these screening criteria, four zebrafish were selected from the pre-screened pool before the space experiment. These four zebrafish successfully survived for 43 days in the space environment and completed the predetermined scientific objectives.
{"title":"Zebrafish selection strategy for the first zebrafish cultivation experiment on the Chinese space station","authors":"Chaoxian Jia , Xianyuan Zhang , Haoyuan Sun , Peifan Gu , Yongchun Yuan , Wenting Gao , Weibo Zheng , Jin Yu , Tao Zhang , Gaohong Wang","doi":"10.1016/j.lssr.2025.03.012","DOIUrl":"10.1016/j.lssr.2025.03.012","url":null,"abstract":"<div><div>With the continuous advancement of space exploration activities, the development of Biological Life Support Systems (BLSS) has become crucial for supporting long-duration space missions. This paper focuses on preparation process for the multifunctional closed aquatic ecosystem (CAES) experiment based on Ceratophyllum, zebrafish, and microorganisms, conducted in the Life and Ecological Science Experiment Cabinet of the Chinese Space Station. Given the complexity and high difficulty of the experimental objectives, the selection of zebrafish individuals is critical. Prior to the experiment, the selection process considered factors such as the adaptability of zebrafish in confined spaces, social compatibility, and physiological status. A set of screening criteria was established based on preliminary experiments with 120 zebrafish, analyzing aspects like anxiety behavior, response speed, swimming posture, and shoaling behavior. Finally, based on these screening criteria, four zebrafish were selected from the pre-screened pool before the space experiment. These four zebrafish successfully survived for 43 days in the space environment and completed the predetermined scientific objectives.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 43-52"},"PeriodicalIF":2.9,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.lssr.2025.03.010
Ning Jiang , Yiwen Zhang , Caihong Yao , Fang Chen , Yupei Liu , Yuzhen Chen , Yan Wang , Muhammad Iqbal Choudhary , Xinmin Liu
{"title":"Corrigendum to ‘Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice’ [Life Sciences in Space Research, Volume 40, February 2024, Pages 35-43]","authors":"Ning Jiang , Yiwen Zhang , Caihong Yao , Fang Chen , Yupei Liu , Yuzhen Chen , Yan Wang , Muhammad Iqbal Choudhary , Xinmin Liu","doi":"10.1016/j.lssr.2025.03.010","DOIUrl":"10.1016/j.lssr.2025.03.010","url":null,"abstract":"","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 202-203"},"PeriodicalIF":2.9,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1016/j.lssr.2025.03.007
Yasumasa Ikeda , Masafumi Funamoto , Mizuho Yamamoto , Hai Du Ly-Nguyen , Masaki Imanishi , Koichiro Tsuchiya
Background
With the advancement of the space age, research on physiological changes during long-term space missions has become increasingly important. Spaceflight-induced anemia, along with muscle and bone loss, is a significant concern for astronaut health, potentially disrupting iron metabolism and absorption. However, the mechanisms underlying intestinal iron absorption in space remain unclear.
Aim
This study investigated iron dynamics in the duodenum and bone marrow of mice exposed to partial gravity (PG) to assess potential alterations in iron absorption and storage.
Methods
Using samples provided by the Japan Aerospace Exploration Agency (Kibo mouse sample share), we analyzed duodenal and bone marrow tissues from mice reared in PG (1/6G) and compared them to those of mice reared in ground gravity (control gravity (CG): 1G). We conducted Perls staining to visualize iron distribution, measured iron concentrations, and analyzed iron regulatory proteins (ferritin heavy chain, divalent metal transporter 1, and ferroportin) using qRT-PCR, immunohistochemistry, and western blotting.
Results
Iron staining, concentration, and ferritin heavy chain expression in the duodenum were reduced in the PG group compared with those in the CG group. The expression of iron transporters (divalent metal protein 1 and ferroportin) was also attenuated. Furthermore, the PG group showed fewer macrophages and more goblet cells in duodenal villi. Stainability of iron and ferritin heavy chain expression in the sternal bone marrow similarly decreased in the PG group.
Conclusion
These findings indicate reduced iron retention in the duodenum under partial gravity, suggesting that the space environment may impair iron absorption.
{"title":"Changes of iron dynamics in the duodenum and bone marrow under partial gravity condition in mice","authors":"Yasumasa Ikeda , Masafumi Funamoto , Mizuho Yamamoto , Hai Du Ly-Nguyen , Masaki Imanishi , Koichiro Tsuchiya","doi":"10.1016/j.lssr.2025.03.007","DOIUrl":"10.1016/j.lssr.2025.03.007","url":null,"abstract":"<div><h3>Background</h3><div>With the advancement of the space age, research on physiological changes during long-term space missions has become increasingly important. Spaceflight-induced anemia, along with muscle and bone loss, is a significant concern for astronaut health, potentially disrupting iron metabolism and absorption. However, the mechanisms underlying intestinal iron absorption in space remain unclear.</div></div><div><h3>Aim</h3><div>This study investigated iron dynamics in the duodenum and bone marrow of mice exposed to partial gravity (PG) to assess potential alterations in iron absorption and storage.</div></div><div><h3>Methods</h3><div>Using samples provided by the Japan Aerospace Exploration Agency (Kibo mouse sample share), we analyzed duodenal and bone marrow tissues from mice reared in PG (1/6G) and compared them to those of mice reared in ground gravity (control gravity (CG): 1G). We conducted Perls staining to visualize iron distribution, measured iron concentrations, and analyzed iron regulatory proteins (ferritin heavy chain, divalent metal transporter 1, and ferroportin) using qRT-PCR, immunohistochemistry, and western blotting.</div></div><div><h3>Results</h3><div>Iron staining, concentration, and ferritin heavy chain expression in the duodenum were reduced in the PG group compared with those in the CG group. The expression of iron transporters (divalent metal protein 1 and ferroportin) was also attenuated. Furthermore, the PG group showed fewer macrophages and more goblet cells in duodenal villi. Stainability of iron and ferritin heavy chain expression in the sternal bone marrow similarly decreased in the PG group.</div></div><div><h3>Conclusion</h3><div>These findings indicate reduced iron retention in the duodenum under partial gravity, suggesting that the space environment may impair iron absorption.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 10-17"},"PeriodicalIF":2.9,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1016/j.lssr.2025.03.003
I. Borromeo , A. Mentana , G. Baiocco , S. Beninati , V. Boretti , G. Cappadozzi , L. Di Fino , A. Facoetti , L. Lunati , M. Paci , M. Pinto , M. Pullia , A. Rizzo , G. Santi Amantini , S. Toma , L. Narici
Space radiation interactions with the visual system have been the subject of many investigations, starting from astronauts reporting the perception of light flashes (visual illusions in absence of light stimuli). These perceptions have been attributed to single-ion hits, able to induce an electrophysiological response in the eye. Searching for a more general mechanism of radiation interaction with cortical neuronal networks and with sensory systems, a valuable hypothesis is that of the perturbation to calcium (Ca2+) homeostasis.
We here report results on radiation-induced perturbation of Ca2+ signalling obtained with an ex-vivo whole rabbit eye model. Surgically enucleated eyes (from animals intended for human consumption) were kept in viable conditions and exposed to visible light (varying the duration of the exposure), to kilovoltage X-rays (reference radiation, dose range 10–200 mGy) and to 230 MeV protons (representative of the main component of space radiation, dose range 10–20 mGy). After extraction of the vitreous humor, sample stability and homogeneity in the animal population and organ conditions were verified by measuring the concentration of biogenic polyamines, while eye integrity was tested by measuring the lactate dehydrogenase (LDH) enzymatic activity. The activation of the visual response is attributed to a change in the Ca2+ concentration (expressed μg calcium/μg amines) comparing, for each animal, the left eye used as a control and the right eye exposed to light or ionizing radiation. The vitrectomy was conducted immediately after the exposure.
A significant increase in Ca2+ concentration was measured after white light exposure with a duration longer than 1 min, with a saturation to a ∼150 % relative change for exposure durations of 3 and 5 min. The model was therefore validated for the visual system activation by light, but no increase in Ca2+ concentration was found for ionizing radiation exposures in the investigated dose ranges. Only at the highest X-ray dose of 200 mGy, eyes were severely damaged, as demonstrated by the drastic increase in LDH activity. Based on these findings, the limitations of the study are critically discussed, and improvement strategies are suggested, also considering the rapid kinetics of the perturbation that might hinder the measurement of small ionizing radiation-induced transient Ca2+ changes.
{"title":"Activation of the visual system by space radiation: A novel study on Ca2+ signalling in ex-vivo rabbit eyes exposed to visible light, X-rays and high-energy protons","authors":"I. Borromeo , A. Mentana , G. Baiocco , S. Beninati , V. Boretti , G. Cappadozzi , L. Di Fino , A. Facoetti , L. Lunati , M. Paci , M. Pinto , M. Pullia , A. Rizzo , G. Santi Amantini , S. Toma , L. Narici","doi":"10.1016/j.lssr.2025.03.003","DOIUrl":"10.1016/j.lssr.2025.03.003","url":null,"abstract":"<div><div>Space radiation interactions with the visual system have been the subject of many investigations, starting from astronauts reporting the perception of light flashes (visual illusions in absence of light stimuli). These perceptions have been attributed to single-ion hits, able to induce an electrophysiological response in the eye. Searching for a more general mechanism of radiation interaction with cortical neuronal networks and with sensory systems, a valuable hypothesis is that of the perturbation to calcium (Ca<sup>2+</sup>) homeostasis.</div><div>We here report results on radiation-induced perturbation of Ca<sup>2+</sup> signalling obtained with an <em>ex-vivo</em> whole rabbit eye model. Surgically enucleated eyes (from animals intended for human consumption) were kept in viable conditions and exposed to visible light (varying the duration of the exposure), to kilovoltage X-rays (reference radiation, dose range 10–200 mGy) and to 230 MeV protons (representative of the main component of space radiation, dose range 10–20 mGy). After extraction of the vitreous humor, sample stability and homogeneity in the animal population and organ conditions were verified by measuring the concentration of biogenic polyamines, while eye integrity was tested by measuring the lactate dehydrogenase (LDH) enzymatic activity. The activation of the visual response is attributed to a change in the Ca<sup>2+</sup> concentration (expressed μg calcium/μg amines) comparing, for each animal, the left eye used as a control and the right eye exposed to light or ionizing radiation. The vitrectomy was conducted immediately after the exposure.</div><div>A significant increase in Ca<sup>2+</sup> concentration was measured after white light exposure with a duration longer than 1 min, with a saturation to a ∼150 % relative change for exposure durations of 3 and 5 min. The model was therefore validated for the visual system activation by light, but no increase in Ca<sup>2+</sup> concentration was found for ionizing radiation exposures in the investigated dose ranges. Only at the highest X-ray dose of 200 mGy, eyes were severely damaged, as demonstrated by the drastic increase in LDH activity. Based on these findings, the limitations of the study are critically discussed, and improvement strategies are suggested, also considering the rapid kinetics of the perturbation that might hinder the measurement of small ionizing radiation-induced transient Ca<sup>2+</sup> changes.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 1-9"},"PeriodicalIF":2.9,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-16DOI: 10.1016/j.lssr.2025.03.004
Yuxue Mu , Weihang Li , Dongyu Wei , Xinyi Zhang , Lilingxuan Yao , Xiaofeng Xu , Xiaocheng Wang , Zuoming Zhang , Tao Chen
Long-term spaceflight can lead to changes in eye structure and decreased visual function. At present, there are almost no effective methods to prevent and treat eye damage caused by microgravity environments. Oxidative stress has been identified as one of the contributing mechanisms of spaceflight-associated neuro-ocular syndrome (SANS), and hydrogen (H2) has demonstrated significant antioxidant and anti-inflammatory effects. The aim of this study was to determine whether hydrogen-rich water (HRW) has a protective effect against eye injury induced by tail-suspension simulated weightlessness in rats, and to elucidate the underlying mechanisms. In this experiment, we utilized an 8-week tail-suspension model to simulate weightlessness, and employed histopathology, visual electrophysiology, and biochemical indices to evaluate retinal structure, function, and related molecular mechanisms leading to retinal damage. We also assessed the therapeutic efficacy of HRW treatment. Results demonstrated that tail-suspension simulated weightlessness induced thinning of the retinal outer nuclear layer, decreased visual function, and promoted retinal inflammation, oxidative stress, and mitochondrial dysfunction in rats. HRW treatment effectively alleviated the degenerative changes in the retinal outer nuclear layer, improved retinal function, and reduced retinal inflammation in treated rats. Our findings revealed that HRW reduced the retinal oxidative stress response and enhanced mitochondrial function through the PI3K/Akt/Nrf2 signaling pathway. Overall, HRW may be a promising candidate for the treatment of eye injuries in simulated microgravity environments.
{"title":"The effect of Hydrogen-rich water on retinal degeneration in the outer nuclear layer of simulated weightlessness rats","authors":"Yuxue Mu , Weihang Li , Dongyu Wei , Xinyi Zhang , Lilingxuan Yao , Xiaofeng Xu , Xiaocheng Wang , Zuoming Zhang , Tao Chen","doi":"10.1016/j.lssr.2025.03.004","DOIUrl":"10.1016/j.lssr.2025.03.004","url":null,"abstract":"<div><div>Long-term spaceflight can lead to changes in eye structure and decreased visual function. At present, there are almost no effective methods to prevent and treat eye damage caused by microgravity environments. Oxidative stress has been identified as one of the contributing mechanisms of spaceflight-associated neuro-ocular syndrome (SANS), and hydrogen (H<sub>2</sub>) has demonstrated significant antioxidant and anti-inflammatory effects. The aim of this study was to determine whether hydrogen-rich water (HRW) has a protective effect against eye injury induced by tail-suspension simulated weightlessness in rats, and to elucidate the underlying mechanisms. In this experiment, we utilized an 8-week tail-suspension model to simulate weightlessness, and employed histopathology, visual electrophysiology, and biochemical indices to evaluate retinal structure, function, and related molecular mechanisms leading to retinal damage. We also assessed the therapeutic efficacy of HRW treatment. Results demonstrated that tail-suspension simulated weightlessness induced thinning of the retinal outer nuclear layer, decreased visual function, and promoted retinal inflammation, oxidative stress, and mitochondrial dysfunction in rats. HRW treatment effectively alleviated the degenerative changes in the retinal outer nuclear layer, improved retinal function, and reduced retinal inflammation in treated rats. Our findings revealed that HRW reduced the retinal oxidative stress response and enhanced mitochondrial function through the PI3K/Akt/Nrf2 signaling pathway. Overall, HRW may be a promising candidate for the treatment of eye injuries in simulated microgravity environments.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 158-169"},"PeriodicalIF":2.9,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143697477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In deep space environments such as the Moon and Mars, secondary radiation generated by interactions between galactic cosmic rays and spacecraft walls or planetary surfaces presents a significant challenge. In particular, the effects of neutron radiation remain insufficiently understood. This study investigates the impact of neutron radiation on pharmaceuticals, specifically the general anesthetic propofol (2,6-Diisopropylphenol). Neutron irradiation experiments were conducted using the RIKEN Accelerator-driven compact Neutron Source (RANS), employing fast neutrons with energies of 1–5 MeV at doses up to 4 Gy. Analyses employing nuclear magnetic resonance (NMR), colorimetric assessment, micelle particle size measurement via optical microscopy, and high-performance liquid chromatography (HPLC) detected no discernible alterations in the molecular structure of propofol. Furthermore radiological activation analysis using Geiger-Müller (GM) counters and γ-ray spectral analysis with the germanium detector (Ge) indicated minimal radionuclide generation in the pharmaceutical itself, however significant activation was observed in glass vials. These findings highlight container activation as a critical risk factor in the storage and transportation of pharmaceuticals in space environments.
{"title":"Effects of neutron radiation on pharmaceuticals in deep space-like environments - general anesthesia in space","authors":"Machiko Hatsuda , Masashi Hasegawa , Kimiaki Nakamura , Fumiyuki Yamakura , Tomohiro Kobayashi , Takaoki Takanashi , Yasuo Wakabayashi , Yoshie Otake , Toshio Naito , Hiroyuki Daida","doi":"10.1016/j.lssr.2025.03.006","DOIUrl":"10.1016/j.lssr.2025.03.006","url":null,"abstract":"<div><div>In deep space environments such as the Moon and Mars, secondary radiation generated by interactions between galactic cosmic rays and spacecraft walls or planetary surfaces presents a significant challenge. In particular, the effects of neutron radiation remain insufficiently understood. This study investigates the impact of neutron radiation on pharmaceuticals, specifically the general anesthetic propofol (2,6-Diisopropylphenol). Neutron irradiation experiments were conducted using the RIKEN Accelerator-driven compact Neutron Source (RANS), employing fast neutrons with energies of 1–5 MeV at doses up to 4 Gy. Analyses employing nuclear magnetic resonance (NMR), colorimetric assessment, micelle particle size measurement via optical microscopy, and high-performance liquid chromatography (HPLC) detected no discernible alterations in the molecular structure of propofol. Furthermore radiological activation analysis using Geiger-Müller (GM) counters and γ-ray spectral analysis with the germanium detector (Ge) indicated minimal radionuclide generation in the pharmaceutical itself, however significant activation was observed in glass vials. These findings highlight container activation as a critical risk factor in the storage and transportation of pharmaceuticals in space environments.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 61-73"},"PeriodicalIF":2.9,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143791092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-15DOI: 10.1016/j.lssr.2025.03.005
Nicholas Panzo , Hamza Memon , Joshua Ong , Alex Suh , Ritu Sampige , Ryung Lee , Ethan Waisberg , Cihan M Kadipasaoglu , John Berdahl , Patricia Chévez-Barrios , Andrew G. Lee
{"title":"Molecular and biomechanical changes of the cornea and lens in spaceflight","authors":"Nicholas Panzo , Hamza Memon , Joshua Ong , Alex Suh , Ritu Sampige , Ryung Lee , Ethan Waisberg , Cihan M Kadipasaoglu , John Berdahl , Patricia Chévez-Barrios , Andrew G. Lee","doi":"10.1016/j.lssr.2025.03.005","DOIUrl":"10.1016/j.lssr.2025.03.005","url":null,"abstract":"","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 151-157"},"PeriodicalIF":2.9,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-13DOI: 10.1016/j.lssr.2025.03.002
Sufang Wang , Nu Zhang , Guolin Shi , Xiru Liu , Yidan Zhou , Hui Yang
Long-term space missions are of growing research interest because of the space exploration. However, plenty of works focused on the impaired immune response, less attention has been paid to the activation of immunosuppressive or anti-inflammatory function. The molecular mechanism of immune disorder induced by microgravity still needs investigation. Here, we used a random positioning machine to generate a simulated microgravity environment and evaluated its effects on mouse RAW 264.7 macrophage cell line. We used ATAC-seq and RNA-seq for revealing the mechanism at chromatin level and gene level. From ATAC-seq, we obtained an average of 75,700,675 paired-end clean reads for each library and the mapping rates averaged at 96.8 %. The number of differential accessible regions were 510 for increased peaks, 638 for decreased peaks. From RNA-seq, we obtained 278 differentially expressed genes, of which 104 were down-regulated and 174 were up-regulated genes. Through ATAC-seq and RNA-seq multi-omics analysis, we identified a group of 17 genes. Then we chose 6 up-regulated genes (CD83, CEBPD, CXCR5, DUSP6, SEMA4B, TNFRSF22) that related to immunosuppressive function for further confirmation. The qRT-PCR results were consistent with sequencing results, which indicated that simulated microgravity leads to the up-regulated expression of immunosuppressive genes of macrophages. Taken together, our results offered novel insights for understanding the brief principles and mechanisms of simulated microgravity induced immune dysfunction to macrophage.
{"title":"Genome-wide chromatin accessibility and transcriptome analysis reveal the up-regulation of immunosuppressive genes in macrophages under simulated microgravity","authors":"Sufang Wang , Nu Zhang , Guolin Shi , Xiru Liu , Yidan Zhou , Hui Yang","doi":"10.1016/j.lssr.2025.03.002","DOIUrl":"10.1016/j.lssr.2025.03.002","url":null,"abstract":"<div><div>Long-term space missions are of growing research interest because of the space exploration. However, plenty of works focused on the impaired immune response, less attention has been paid to the activation of immunosuppressive or anti-inflammatory function. The molecular mechanism of immune disorder induced by microgravity still needs investigation. Here, we used a random positioning machine to generate a simulated microgravity environment and evaluated its effects on mouse RAW 264.7 macrophage cell line. We used ATAC-seq and RNA-seq for revealing the mechanism at chromatin level and gene level. From ATAC-seq, we obtained an average of 75,700,675 paired-end clean reads for each library and the mapping rates averaged at 96.8 %. The number of differential accessible regions were 510 for increased peaks, 638 for decreased peaks. From RNA-seq, we obtained 278 differentially expressed genes, of which 104 were down-regulated and 174 were up-regulated genes. Through ATAC-seq and RNA-seq multi-omics analysis, we identified a group of 17 genes. Then we chose 6 up-regulated genes (CD83, CEBPD, CXCR5, DUSP6, SEMA4B, TNFRSF22) that related to immunosuppressive function for further confirmation. The qRT-PCR results were consistent with sequencing results, which indicated that simulated microgravity leads to the up-regulated expression of immunosuppressive genes of macrophages. Taken together, our results offered novel insights for understanding the brief principles and mechanisms of simulated microgravity induced immune dysfunction to macrophage.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 143-150"},"PeriodicalIF":2.9,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-05DOI: 10.1016/j.lssr.2025.03.001
Tuan Nguyen , Joshua Ong , Sarah Aman , Alex Weaver , Ana Garcia , Amy Song , Fatma Shakarchi , Ethan Waisberg , Andrew G. Lee
Parabolic flight serves as an important terrestrial analog to study acute physiological changes in microgravity without the need for space travel. During a parabolic flight, alternating hypergravity and microgravity phases, lasting up to 40 seconds, enable research into ophthalmic changes. In this review, we discuss the application of parabolic flight as a platform to study microgravity-related changes that might impact ophthalmology including intraocular pressure, intracranial pressure, choroidal blood flow, and modified eye movement patterns. We further highlight how these insights could aid our understanding of vestibulo-ocular reflexes and conditions such as Spaceflight Associated Neuro-ocular Syndrome (SANS). While the brief duration of microgravity exposure limits some applications, parabolic flight continues to provide a controlled environment for examining acute gravitational effects on eye health and evaluating many space medicine interventions.
{"title":"Parabolic flight as a research platform to investigate ophthalmic changes in microgravity","authors":"Tuan Nguyen , Joshua Ong , Sarah Aman , Alex Weaver , Ana Garcia , Amy Song , Fatma Shakarchi , Ethan Waisberg , Andrew G. Lee","doi":"10.1016/j.lssr.2025.03.001","DOIUrl":"10.1016/j.lssr.2025.03.001","url":null,"abstract":"<div><div>Parabolic flight serves as an important terrestrial analog to study acute physiological changes in microgravity without the need for space travel. During a parabolic flight, alternating hypergravity and microgravity phases, lasting up to 40 seconds, enable research into ophthalmic changes. In this review, we discuss the application of parabolic flight as a platform to study microgravity-related changes that might impact ophthalmology including intraocular pressure, intracranial pressure, choroidal blood flow, and modified eye movement patterns. We further highlight how these insights could aid our understanding of vestibulo-ocular reflexes and conditions such as Spaceflight Associated Neuro-ocular Syndrome (SANS). While the brief duration of microgravity exposure limits some applications, parabolic flight continues to provide a controlled environment for examining acute gravitational effects on eye health and evaluating many space medicine interventions.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"46 ","pages":"Pages 100-105"},"PeriodicalIF":2.9,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143816389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dosimeter Liulin-MO for measuring the radiation environment on board the ExoMars Trace Gas Orbiter (TGO) is a module in the Fine Resolution Epithermal Neutron Detector (FREND).
A number of solar energetic particle (SEP) events were observed in Mars orbit from July 2021 to 2024 during the increasing phase and close to the maximum of the 25th solar cycle activity. The results from the SEPs measurements obtained in 2021–2023 by Liulin-MO have been previously reported. Here we present the Liulin-MO results from the observation of the radiation parameters of the SEP events during January- October 2024. The most powerful SEP event registered up to now in TGO orbit started on 20 May 2024. The maximum dose rate during this SEP event has been 2800 ± 280 µGy h-1 and the maximum particle flux – 383 ± 19 cm-2 s-1. The total event lasted for about 64 hours up to 24 May with a long tail of increased dose rates and fluxes. The total dose from SEPs for the 64 hours of the main phase of the SEP event was 24.7 ± 2.5 mGy. The total dose from SEPs during this event is equal to the dose from the galactic cosmic rays (GCR) received for about 200 days at this phase of solar cycle 25. The total dose from all SEPs during January – September 2024 is 36.6 mGy (in Si), which is approximately equal to the dose received from GCR for the same period.
The observations of SEPs in Mars orbit are compared to the observations during the same periods of proton fluxes measured by the GOES satellite in Earth orbit. The results show that some of the SEPs observed in Mars orbit, excluding the biggest SEP events of 20-24 May and 05-07 September, are also seen in the GOES proton fluxes data. SEP events recorded both in Mars and Earth orbits are related to coronal mass ejections (CMEs) observed by the SOHO and STEREO A coronagraphs. The paper shows that responsible for most of the SEP events registered both in the Liulin-MO data and in the GOES proton fluxes data are halo CMEs. The paper also shows that the sources of the three most powerful SEP events in Mars orbit – those of 20 May, 23 July and 05 September – are halo CMEs from the far side of the Sun. Some of these CMEs are associated with major X class far-side flares.
Long-term investigations of the GCRs radiation parameters in Mars orbit show that in August 2024 (the last month of our data with no recorded SEP events) the dose rate was 6.5 ± 0.65 µGy h-1 and the particle flux – 1.4 ± 0.07 cm-2 s-1. These values are about 40 % of the corresponding maximal values measured by Liulin-MO during the solar cycle 24 minimum in March 2020.
The above results show the importance of long-term measurements (at least during a full solar cycle) of the radiation conditions in Mars vicinity. Such measurements will make it possible to obtain the data necessary for the planning of future manned and robotic missions, a
{"title":"Radiation environment on TGO Mars orbit during solar particle events in January–October 2024. Corresponding solar eruptions and GOES proton fluxes data","authors":"Jordanka Semkova , Rositza Koleva , Victor Benghin , Nat Gopalswamy , Yuri Matviichuk , Borislav Tomov , Krasimir Krastev , Stephan Maltchev , Tsvetan Dachev , Nikolay Bankov , Vyacheslav Shurshakov , Sergey Drobyshev , Igor Mitrofanov , Dmitry Golovin , Maxim Litvak , Anton Sanin , Maxim Mokrousov , Nikita Lukyanov , Artem Anikin","doi":"10.1016/j.lssr.2025.02.010","DOIUrl":"10.1016/j.lssr.2025.02.010","url":null,"abstract":"<div><div>The dosimeter Liulin-MO for measuring the radiation environment on board the ExoMars Trace Gas Orbiter (TGO) is a module in the Fine Resolution Epithermal Neutron Detector (FREND).</div><div>A number of solar energetic particle (SEP) events were observed in Mars orbit from July 2021 to 2024 during the increasing phase and close to the maximum of the 25th solar cycle activity. The results from the SEPs measurements obtained in 2021–2023 by Liulin-MO have been previously reported. Here we present the Liulin-MO results from the observation of the radiation parameters of the SEP events during January- October 2024. The most powerful SEP event registered up to now in TGO orbit started on 20 May 2024<strong>.</strong> The maximum dose rate during this SEP event has been 2800 ± 280 µGy h<sup>-1</sup> and the maximum particle flux – 383 ± 19 cm<sup>-2</sup> s<sup>-1</sup>. The total event lasted for about 64 hours up to 24 May with a long tail of increased dose rates and fluxes. The total dose from SEPs for the 64 hours of the main phase of the SEP event was 24.7 ± 2.5 mGy. The total dose from SEPs during this event is equal to the dose from the galactic cosmic rays (GCR) received for about 200 days at this phase of solar cycle 25. The total dose from all SEPs during January – September 2024 is 36.6 mGy (in Si), which is approximately equal to the dose received from GCR for the same period.</div><div>The observations of SEPs in Mars orbit are compared to the observations during the same periods of proton fluxes measured by the GOES satellite in Earth orbit. The results show that some of the SEPs observed in Mars orbit, excluding the biggest SEP events of 20-24 May and 05-07 September, are also seen in the GOES proton fluxes data. SEP events recorded both in Mars and Earth orbits are related to coronal mass ejections (CMEs) observed by the SOHO and STEREO A coronagraphs. The paper shows that responsible for most of the SEP events registered both in the Liulin-MO data and in the GOES proton fluxes data are halo CMEs. The paper also shows that the sources of the three most powerful SEP events in Mars orbit – those of 20 May, 23 July and 05 September – are halo CMEs from the far side of the Sun. Some of these CMEs are associated with major X class far-side flares.</div><div>Long-term investigations of the GCRs radiation parameters in Mars orbit show that in August 2024 (the last month of our data with no recorded SEP events) the dose rate was 6.5 ± 0.65 µGy h<sup>-1</sup> and the particle flux – 1.4 ± 0.07 cm<sup>-2</sup> s<sup>-1</sup>. These values are about 40 % of the corresponding maximal values measured by Liulin-MO during the solar cycle 24 minimum in March 2020.</div><div>The above results show the importance of long-term measurements (at least during a full solar cycle) of the radiation conditions in Mars vicinity. Such measurements will make it possible to obtain the data necessary for the planning of future manned and robotic missions, a","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 117-134"},"PeriodicalIF":2.9,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}