Long-term spatial missions will require sustainable methods for biomass production using locally available resources. This study investigates the feasibility of cultivating Chlorella vulgaris, a high value microalgal specie, using a leachate of Martian regolith and synthetic human urine as nutrient sources. The microalga was grown in a standard medium (BBM) mixed with 0, 20, 40, 60, or 100 % Martian medium (MM). MM did not significantly affect final biomass concentrations. Total carbohydrate and protein contents decreased with increasing MM fractions between 0 % and 60 %, but biomass in the 100% MM showed the highest levels of carbohydrates and proteins (25.2 ± 0.9 % and 37.1 ± 1.4 % of the dry weight, respectively, against 19.0 ± 1.7 % and 32.0 ± 2.7 % in the absence of MM). In all MM-containing media, the fraction of the biomass represented by total lipids was lower (by 3.2 to 4.5%) when compared to BBM. Conversely, total carotenoids increased, with the highest value (97.3 ± 1.5 mg/100 g) measured with 20% MM. In a three-dimensional principal component analysis of triacylglycerols, samples clustered according to growth media; a strong impact of growth media on triacylglycerol profiles was observed. Overall, our findings suggest that microalgal biomass produced using regolith and urine can be used as a valuable component of astronauts’ diet during missions to Mars.
Long-duration spaceflight (LDSF) is associated with unique hazards and linked with numerous human health risks including Spaceflight Associated Neuro-ocular Syndrome (SANS). The proposed mechanisms for SANS include microgravity induced cephalad fluid shift and increased Intracranial Pressure (ICP). SANS is a disorder seen only after LDSF and has no direct terrestrial pathologic counterpart as the zero G environment cannot be completely replicated on Earth. Head-down tilt, bed rest studies however have been used as a terrestrial analog and produce the cephalad fluid shift. Some proposed countermeasures for SANS include vasoconstrictive thigh cuffs and lower body negative pressure. Another potential researched countermeasure is the impedance threshold device (ITD) which can reduce ICP. We review the mechanisms of the ITD and its potential use as a countermeasure for SANS.
A Closed Aquatic Ecosystem (CAES) housed an aquatic plant Ceratophyllum demersum, zebrafish (Danio rerio), and microbes that were simultaneously obtained with the zebrafish, and it was used to study the operation of the ecosystem. The results indicated that the CAES can operate steadily for about 4 weeks. The dissolved oxygen (DO), pH, and conductivity values of the ecosystem regularly oscillated, while the total nitrogen of the water decreased and the total phosphate slightly increased. Additionally, the chemical oxygen demand (COD, a measure of organic compounds) of the water after the experiment increased to 39 times more than that of the water before the experiment. The meta-genomic data showed that the number of genera decreased by 38 % and the top 10 most abundant genera were almost completely different before and after the experiment, which demonstrated a great shift in the microbes during the operation process. These results suggested that although the CAES operated steadily during the 28-day experiment, there were more organic materials and less nitrogen in the water by the end of the experiment, which may have influenced the structure and operation of the ecosystem. Thus, it is necessary to remove superfluous plant biomass from the CAES and supply nitrogen to keep the ecosystem stable.
Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system. We propose that ultra-low-field MRI provides an optimal low Size Weight and Power (SwaP) solution for non-invasively monitoring muscle and bone changes on the planned Gateway lunar space station. Our proposed ultra-low-field Gateway MRI meets low SWaP design specifications mandated by limited room in the lunar space station. This review summarizes the current state of our knowledge on musculoskeletal consequences of spaceflight, especially with respect to radiation, and then elaborates how MRI can be used to monitor the deleterious effects of space travel and the efficacy of putative countermeasures. We argue that an ultra-low-field MRI in cis-lunar space on the Gateway can provide valuable research and medical insights into the effects of deep space radiation exposure on astronauts. Such an MRI would also allow the development of imaging protocols that would facilitate Earth-bound teams to monitor space personnel musculoskeletal changes during future interplanetary spaceflight. It will especially have a role in monitoring countermeasures, such as the use of melanin, in protecting space explorers.
In this study, we conducted polymerase chain reaction (PCR) experiments using Escherichia coli (E. coli) and a Mars sand simulant (Mars Global Simulant MGS-1, Exolith Lab) to detect and analyze potential extraterrestrial life. The targeted DNA sequence is common among the bacterial kingdom on Earth. PCR experiments conducted after alkaline heat extraction, wherein samples with varying amounts of Mars sand simulant were compared, revealed that the simulant interfered with DNA detection. We then conducted PCR experiments following treatment with a sand DNA extraction kit on samples with various E. coli densities. DNA bands for a minimum E. coli density of 900 cells/(g sand) were confirmed, while no DNA bands were visible in the 90 cells/(g sand) sample with and without the Mars sand simulant. The total DNA mass contained in 900 cells was calculated to be 15.3 pg (i.e., 1.53 pg in 0.1 g sand sample we evaluated). We tested and compared the influence of the eluate of Mars sand simulant and DNA adsorption onto Mars sand simulant based on optical absorbance measurements. Our findings suggest that the mechanism by which the Mars sand simulant prevents PCR is through the adsorption of DNA onto the Mars sand simulant.
Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.
Gravity has had a significant impact on the evolution of life on Earth with organisms developing necessary biological adaptations over billions of years to counter this ever-existing force. There has been an exponential increase in experiments using real and simulated gravity environments in the recent years. Although an understanding followed by discovery of counter measures to negate diminished gravity in space had been the driving force of research initially, there has since been a phenomenal leap wherein a force unearthly as microgravity is beginning to show promising potential. The current review summarizes pathophysiological changes that occur in multiple aspects of the cardiovascular system when exposed to an altered gravity environment leading to cardiovascular deconditioning and orthostatic intolerance. Gravity influences not just the complex multicellular systems but even the survival of organisms at the molecular level by intervening fundamental cellular processes, directly affecting those linked to actin and microtubule organization via mechano-transduction pathways. The reach of gravity ranges from cytoskeletal rearrangement that regulates cell adhesion and migration to intracellular dynamics that dictate cell fate commitment and differentiation. An understanding that microgravity itself is not present on Earth propels the scope of simulated gravity conditions to be a unique and useful environment that could be explored for enhancing the potential of stem cells for a wide range of applications as has been highlighted here.
As spaceflight becomes increasingly accessible and expansive to humanity, it is becoming ever more essential to consider the treatment of various eye diseases in these challenging environments. This paper delves into the increasing fascination with interplanetary travel and its implications for health management in varying environments. It specifically discusses the pharmacological management of ocular diseases, focusing on two key delivery methods: topical eye drops and intravitreal injections. The paper explores how microgravity impacts the administration of these treatments, a vital aspect in understanding drug delivery in space. An extensive analysis is presented on the pharmacokinetics of eye medications, examining the interaction between pharmaceuticals and ocular tissues in zero gravity. The goal of the paper is to bridge the understanding of fluid dynamics, microgravity and the human physiological systems to pave the way for innovative solutions faced by individuals in microgravity.