首页 > 最新文献

Linear Algebra and its Applications最新文献

英文 中文
Schur analysis over the unit spectral ball 单位谱球上的舒尔分析
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-06-11 DOI: 10.1016/j.laa.2024.05.023
Daniel Alpay , Ilwoo Cho

We begin a study of Schur analysis when the variable is now a matrix rather than a complex number. We define the corresponding Hardy space, Schur multipliers and their realizations, and interpolation. Possible applications of the present work include matrices of quaternions, matrices of split quaternions, and other algebras of hypercomplex numbers.

当变量是矩阵而非复数时,我们开始研究舒尔分析。我们定义了相应的哈代空间、舒尔乘数及其实现以及插值。本研究的可能应用包括四元数矩阵、分裂四元数矩阵和其他超复数代数代数。
{"title":"Schur analysis over the unit spectral ball","authors":"Daniel Alpay ,&nbsp;Ilwoo Cho","doi":"10.1016/j.laa.2024.05.023","DOIUrl":"https://doi.org/10.1016/j.laa.2024.05.023","url":null,"abstract":"<div><p>We begin a study of Schur analysis when the variable is now a matrix rather than a complex number. We define the corresponding Hardy space, Schur multipliers and their realizations, and interpolation. Possible applications of the present work include matrices of quaternions, matrices of split quaternions, and other algebras of hypercomplex numbers.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002404/pdfft?md5=9529e352d8959347637d407a0894bd80&pid=1-s2.0-S0024379524002404-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum dimensions of subalgebras of Mn(K) satisfying two related identities 关于满足两个相关等式的 Mn(K) 子代数的最大维数
IF 1.1 3区 数学 Q1 Mathematics Pub Date : 2024-06-07 DOI: 10.1016/j.laa.2024.06.006
Paweł Matraś , Leon van Wyk , Michał Ziembowski

For an arbitrary q2, we find an upper bound for the dimension of a subalgebra of the full matrix algebra Mn(K) over an arbitrary field K satisfying the identity[[x1,y1],z1][[x2,y2],z2][[xq,yq],zq]=0, and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of Mn(K) with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity [[x1,y1],[x2,y2]]=0. To be precise, for n4, we find the sharp upper bound for the dimension of a Lie solvable subalgebra of Mn(K) of index 2, and for n>4, we obtain the relatively tight (at least for small values of n>4) interval[2+3n28,2+5n212] for the maximum dimension of a Lie solvable subalgebra of Mn<

对于任意 q≥2,我们找到了任意域 K 上全矩阵代数 Mn(K) 子代数的维数上限,该代数满足同一性[[x1,y1],z1]⋅[[x2,y2]、z2]⋅⋯⋅[[xq,yq],zq]=0,我们通过举例说明 Mn(K) 子代数的维数等于所得到的上界的块三角形形式,证明这个上界是尖锐的。我们将这一结果应用于指数为 2 的可解李代数,即即满足特性 [[x1,y1],[x2,y2]]=0 的代数。准确地说,对于 n≤4,我们找到了索引为 2 的 Mn(K) 的列可解子代数维数的尖锐上限;对于 n>4,我们得到了相对严密的(至少对于 n>;4)的区间[2+⌊3n28⌋,2+⌊5n212⌋],即索引为 2 的 Mn(K) 的列可解子代数的最大维数,其精确值尚且未知。
{"title":"On the maximum dimensions of subalgebras of Mn(K) satisfying two related identities","authors":"Paweł Matraś ,&nbsp;Leon van Wyk ,&nbsp;Michał Ziembowski","doi":"10.1016/j.laa.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.laa.2024.06.006","url":null,"abstract":"<div><p>For an arbitrary <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, we find an upper bound for the dimension of a subalgebra of the full matrix algebra M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> over an arbitrary field <em>K</em> satisfying the identity<span><span><span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>⋅</mo><mspace></mspace><mo>⋯</mo><mspace></mspace><mo>⋅</mo><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> and we show that this upper bound is sharp by presenting an example in block triangular form of a subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> with dimension equal to the obtained upper bound. We apply this result to Lie solvable algebras of index 2, i.e., algebras satisfying the identity <span><math><mo>[</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mo>,</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>]</mo><mo>=</mo><mn>0</mn></math></span>. To be precise, for <span><math><mi>n</mi><mo>≤</mo><mn>4</mn></math></span>, we find the sharp upper bound for the dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of index 2, and for <span><math><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span>, we obtain the relatively tight (at least for small values of <span><math><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span>) interval<span><span><span><math><mo>[</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>8</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mspace></mspace><mn>2</mn><mo>+</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>5</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>12</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>]</mo></math></span></span></span> for the maximum dimension of a Lie solvable subalgebra of M<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub><","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002507/pdfft?md5=628621e04a0dfb73bb141d7e51b27ed7&pid=1-s2.0-S0024379524002507-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric relative entropies and barycentric Rényi divergences 几何相对熵和重心雷尼发散
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-06-07 DOI: 10.1016/j.laa.2024.06.005
Milán Mosonyi , Gergely Bunth , Péter Vrana

We give systematic ways of defining monotone quantum relative entropies and (multi-variate) quantum Rényi divergences starting from a set of monotone quantum relative entropies.

Interestingly, despite its central importance in information theory, only two additive and monotone quantum extensions of the classical relative entropy have been known so far, the Umegaki and the Belavkin-Staszewski relative entropies, which are the minimal and the maximal ones, respectively, with these properties. Using the Kubo-Ando weighted geometric means, we give a general procedure to construct monotone and additive quantum relative entropies from a given one with the same properties; in particular, when starting from the Umegaki relative entropy, this gives a new one-parameter family of monotone (even under positive trace-preserving (PTP) maps) and additive quantum relative entropies interpolating between the Umegaki and the Belavkin-Staszewski ones on full-rank states.

In a different direction, we use a generalization of a classical variational formula to define multi-variate quantum Rényi quantities corresponding to any finite set of quantum relative entropies (Dqx)xX and real weights (P(x))xX summing to 1, asQPb,q((ϱx)xX):=supτ0{TrτxP(x)Dqx(τϱx)}. We analyze in detail the properties of the resulting quantity inherited from the generating set of quantum relative entropies; in particular, we show that monotone quantum relative entropies define monotone Rényi quantities whenever P is a probability measure. With the proper normalization, the negative logarithm of the above quantity gives a quantum extension of the classical Rényi α-divergence in the 2-variable case (X={0,1}, P(<

我们从一组单调量子相对熵出发,给出了定义单调量子相对熵和(多变量)量子雷尼发散的系统方法。
{"title":"Geometric relative entropies and barycentric Rényi divergences","authors":"Milán Mosonyi ,&nbsp;Gergely Bunth ,&nbsp;Péter Vrana","doi":"10.1016/j.laa.2024.06.005","DOIUrl":"10.1016/j.laa.2024.06.005","url":null,"abstract":"<div><p>We give systematic ways of defining monotone quantum relative entropies and (multi-variate) quantum Rényi divergences starting from a set of monotone quantum relative entropies.</p><p>Interestingly, despite its central importance in information theory, only two additive and monotone quantum extensions of the classical relative entropy have been known so far, the Umegaki and the Belavkin-Staszewski relative entropies, which are the minimal and the maximal ones, respectively, with these properties. Using the Kubo-Ando weighted geometric means, we give a general procedure to construct monotone and additive quantum relative entropies from a given one with the same properties; in particular, when starting from the Umegaki relative entropy, this gives a new one-parameter family of monotone (even under positive trace-preserving (PTP) maps) and additive quantum relative entropies interpolating between the Umegaki and the Belavkin-Staszewski ones on full-rank states.</p><p>In a different direction, we use a generalization of a classical variational formula to define multi-variate quantum Rényi quantities corresponding to any finite set of quantum relative entropies <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub></math></span> and real weights <span><math><msub><mrow><mo>(</mo><mi>P</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub></math></span> summing to 1, as<span><span><span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>P</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msub><mrow><mo>(</mo><msub><mrow><mi>ϱ</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>τ</mi><mo>≥</mo><mn>0</mn></mrow></munder><mo>⁡</mo><mrow><mo>{</mo><mi>Tr</mi><mspace></mspace><mi>τ</mi><mo>−</mo><munder><mo>∑</mo><mrow><mi>x</mi></mrow></munder><mi>P</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>D</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msup><mo>(</mo><mi>τ</mi><mo>‖</mo><msub><mrow><mi>ϱ</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span> We analyze in detail the properties of the resulting quantity inherited from the generating set of quantum relative entropies; in particular, we show that monotone quantum relative entropies define monotone Rényi quantities whenever <em>P</em> is a probability measure. With the proper normalization, the negative logarithm of the above quantity gives a quantum extension of the classical Rényi <em>α</em>-divergence in the 2-variable case (<span><math><mi>X</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, <span><math><mi>P</mi><mo>(</mo><","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates and higher-order spectral shift measures in several variables 多个变量的估计值和高阶谱移测量法
IF 1.1 3区 数学 Q1 Mathematics Pub Date : 2024-06-07 DOI: 10.1016/j.laa.2024.06.004
Arup Chattopadhyay , Saikat Giri , Chandan Pradhan

In recent years, higher-order trace formulas of operator functions have attracted considerable attention to a large part of the perturbation theory community. In this direction, we prove estimates for traces of higher-order derivatives of multivariate operator functions with associated scalar functions arising from multivariate analytic function space and, as a consequence, derive higher-order spectral shift measures for pairs of tuples of commuting contractions under Hilbert-Schmidt perturbations. These results substantially extend the main results of [26], where the estimates were proved for traces of first and second-order derivatives of multivariate operator functions. In the context of the existence of higher-order spectral shift measures, our results extend the relative results of [6], [20] from a single-variable to a multivariate case under Hilbert-Schmidt perturbations. Our results rely crucially on heavy uses of explicit expressions of higher-order derivatives of operator functions and estimates of the divided difference of multivariate analytic functions, which are developed in this paper, along with the spectral theorem of tuple of commuting normal operators. In conclusion, we explore the significance of our results and provide relevant examples.

近年来,算子函数的高阶迹公式引起了扰动理论界的广泛关注。在这个方向上,我们证明了多变量算子函数的高阶导数迹的估计值,以及产生于多变量解析函数空间的相关标量函数,并由此推导出在希尔伯特-施密特扰动下换向收缩元组对的高阶谱移动量。这些结果大大扩展了 [26] 的主要结果,而 [26] 的估计值是针对多元算子函数的一阶和二阶导数迹证明的。在高阶谱移动量存在的背景下,我们的结果将 [6] 和 [20] 的相对结果从单变量扩展到了希尔伯特-施密特扰动下的多变量情形。我们的结果主要依赖于大量使用算子函数高阶导数的明确表达式和多变量解析函数分差的估计值,这些都是本文开发的,同时还依赖于交换正算子元组的谱定理。最后,我们探讨了我们结果的意义,并提供了相关示例。
{"title":"Estimates and higher-order spectral shift measures in several variables","authors":"Arup Chattopadhyay ,&nbsp;Saikat Giri ,&nbsp;Chandan Pradhan","doi":"10.1016/j.laa.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.laa.2024.06.004","url":null,"abstract":"<div><p>In recent years, higher-order trace formulas of operator functions have attracted considerable attention to a large part of the perturbation theory community. In this direction, we prove estimates for traces of higher-order derivatives of multivariate operator functions with associated scalar functions arising from multivariate analytic function space and, as a consequence, derive higher-order spectral shift measures for pairs of tuples of commuting contractions under Hilbert-Schmidt perturbations. These results substantially extend the main results of <span>[26]</span>, where the estimates were proved for traces of first and second-order derivatives of multivariate operator functions. In the context of the existence of higher-order spectral shift measures, our results extend the relative results of <span>[6]</span>, <span>[20]</span> from a single-variable to a multivariate case under Hilbert-Schmidt perturbations. Our results rely crucially on heavy uses of explicit expressions of higher-order derivatives of operator functions and estimates of the divided difference of multivariate analytic functions, which are developed in this paper, along with the spectral theorem of tuple of commuting normal operators. In conclusion, we explore the significance of our results and provide relevant examples.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Smith normal form of the walk matrix of the Dynkin graph An Dynkin图的漫步矩阵的斯密正则形式 An
IF 1.1 3区 数学 Q1 Mathematics Pub Date : 2024-06-07 DOI: 10.1016/j.laa.2024.06.003
Liangwei Huang, Yan Xu, Haicheng Zhang

In this paper, we give the rank of the walk matrix of the Dynkin graph An, and prove that its Smith normal form isdiag(1,,1n2,0,,0).

本文给出了Dynkin图An的行走矩阵的秩,并证明其斯密正则表达式为diag(1,...,1︸⌈n2⌉,0,...,0)。
{"title":"The Smith normal form of the walk matrix of the Dynkin graph An","authors":"Liangwei Huang,&nbsp;Yan Xu,&nbsp;Haicheng Zhang","doi":"10.1016/j.laa.2024.06.003","DOIUrl":"https://doi.org/10.1016/j.laa.2024.06.003","url":null,"abstract":"<div><p>In this paper, we give the rank of the walk matrix of the Dynkin graph <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and prove that its Smith normal form is<span><span><span><math><mtext>diag</mtext><mspace></mspace><mo>(</mo><munder><munder><mrow><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn></mrow><mo>︸</mo></munder><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></munder><mo>,</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>.</mo></math></span></span></span></p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seidel matrices, Dilworth number and an eigenvalue-free interval for cographs 塞德尔矩阵、迪尔沃斯数和无特征值区间的 cographs
IF 1.1 3区 数学 Q1 Mathematics Pub Date : 2024-06-06 DOI: 10.1016/j.laa.2024.05.022
Lei Li , Jianfeng Wang , Maurizio Brunetti

A graph G=(VG,EG) is said to be a cograph if the path P4 does not appear among its induced subgraphs. The vicinal preorder ≺ on the vertex set VG is defined in terms of inclusions between neighborhoods. The minimum number (G) of ≺-chains required to cover G is called the Dilworth number of G. In this paper it is proved that for a cograph G, the multiplicity of every Seidel eigenvalue λ±1 does not exceed (G). This bound turns out to be tight and can be further improved for threshold graphs. Moreover, it is shown that cographs with at least two vertices have no Seidel eigenvalues in the interval (1,1).

如果路径 P4 不出现在诱导子图中,则称该图 G=(VG,EG) 为 cograph。顶点集 VG 上的邻域前序≺是根据邻域之间的夹杂定义的。覆盖 G 所需的≺链的最小数目∇(G) 称为 G 的 Dilworth 数。本文证明,对于一个 cograph G,每个 Seidel 特征值 λ≠±1 的多重性都不会超过∇(G)。事实证明,这一约束是严密的,对于阈值图还可以进一步改进。此外,研究还证明,至少有两个顶点的 cographs 在区间 (-1,1) 内没有 Seidel 特征值。
{"title":"Seidel matrices, Dilworth number and an eigenvalue-free interval for cographs","authors":"Lei Li ,&nbsp;Jianfeng Wang ,&nbsp;Maurizio Brunetti","doi":"10.1016/j.laa.2024.05.022","DOIUrl":"https://doi.org/10.1016/j.laa.2024.05.022","url":null,"abstract":"<div><p>A graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> is said to be a cograph if the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> does not appear among its induced subgraphs. The vicinal preorder ≺ on the vertex set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is defined in terms of inclusions between neighborhoods. The minimum number <span><math><mi>∇</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of ≺-chains required to cover <em>G</em> is called the Dilworth number of <em>G</em>. In this paper it is proved that for a cograph <em>G</em>, the multiplicity of every Seidel eigenvalue <span><math><mi>λ</mi><mo>≠</mo><mo>±</mo><mn>1</mn></math></span> does not exceed <span><math><mi>∇</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. This bound turns out to be tight and can be further improved for threshold graphs. Moreover, it is shown that cographs with at least two vertices have no Seidel eigenvalues in the interval <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Products of unipotent elements of index 2 in orthogonal and symplectic groups 正交群和交映群中指数为 2 的单能元乘积
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-06-06 DOI: 10.1016/j.laa.2024.05.026
Clément de Seguins Pazzis

An automorphism u of a vector space is called unipotent of index 2 whenever (uid)2=0. Let b be a non-degenerate symmetric or skewsymmetric bilinear form on a vector space V over a field F of characteristic different from 2.

Here, we characterize the elements of the isometry group of b that are the product of two unipotent isometries of index 2. In particular, if b is skewsymmetric and nondegenerate we prove that an element of the symplectic group of b is the product of two unipotent isometries of index 2 if and only if it has no Jordan cell of odd size for the eigenvalue −1. As an application, we prove that every element of a symplectic group is the product of three unipotent elements of index 2 (and no fewer in general).

For orthogonal groups, the classification closely matches the classification of sums of two square-zero skewselfadjoint operators that was obtained in a recent article [7].

当 (u-id)2=0 时,向量空间的自变量 u 称为指数为 2 的单势。 让 b 是一个向量空间 V 上的非退化对称或偏对称双线性方程组,其特征为特征值不同于 2 的域 F。特别是,如果 b 是偏对称和非enerate 的,我们将证明,当且仅当 b 的特征值-1 没有奇数大小的乔丹单元时,b 的交映组元素是两个索引为 2 的单能等元数的乘积。作为应用,我们证明交错群的每个元素都是索引为 2 的三个单能元素的乘积(一般不会更少)。对于正交群,这个分类与最近一篇文章[7]中得到的两个平方为零的斜自交算子之和的分类非常吻合。
{"title":"Products of unipotent elements of index 2 in orthogonal and symplectic groups","authors":"Clément de Seguins Pazzis","doi":"10.1016/j.laa.2024.05.026","DOIUrl":"https://doi.org/10.1016/j.laa.2024.05.026","url":null,"abstract":"<div><p>An automorphism <em>u</em> of a vector space is called unipotent of index 2 whenever <span><math><msup><mrow><mo>(</mo><mi>u</mi><mo>−</mo><mi>id</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>. Let <em>b</em> be a non-degenerate symmetric or skewsymmetric bilinear form on a vector space <em>V</em> over a field <span><math><mi>F</mi></math></span> of characteristic different from 2.</p><p>Here, we characterize the elements of the isometry group of <em>b</em> that are the product of two unipotent isometries of index 2. In particular, if <em>b</em> is skewsymmetric and nondegenerate we prove that an element of the symplectic group of <em>b</em> is the product of two unipotent isometries of index 2 if and only if it has no Jordan cell of odd size for the eigenvalue −1. As an application, we prove that every element of a symplectic group is the product of three unipotent elements of index 2 (and no fewer in general).</p><p>For orthogonal groups, the classification closely matches the classification of sums of two square-zero skewselfadjoint operators that was obtained in a recent article <span>[7]</span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apportionable matrices and gracefully labelled graphs 可分摊矩阵和优美标签图
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-06-06 DOI: 10.1016/j.laa.2024.06.001
Antwan Clark , Bryan A. Curtis , Edinah K. Gnang , Leslie Hogben

To apportion a complex matrix means to apply a similarity so that all entries of the resulting matrix have the same magnitude. We initiate the study of apportionment, both by unitary matrix similarity and general matrix similarity. There are connections between apportionment and classical graph decomposition problems, including graceful labellings of graphs, Hadamard matrices, and equiangular lines, and potential applications to instantaneous uniform mixing in quantum walks. The connection between apportionment and graceful labellings allows the construction of apportionable matrices from trees. A generalization of the well-known Eigenvalue Interlacing Inequalities using graceful labellings is also presented. It is shown that every rank one matrix can be apportioned by a unitary similarity, but there are 2×2 matrices that cannot be apportioned. A necessary condition for a matrix to be apportioned by unitary matrix is established. This condition is used to construct a set of matrices with nonzero Lebesgue measure that are not apportionable by a unitary matrix.

对复数矩阵进行分摊意味着应用一种相似性,使所得矩阵的所有条目具有相同的大小。我们通过单元矩阵相似性和一般矩阵相似性开始了对分摊的研究。分摊与经典图分解问题之间存在联系,包括图的优美标注、哈达玛矩阵和等边线,以及量子行走中瞬时均匀混合的潜在应用。通过分摊与优美标注之间的联系,可以从树中构建可分摊矩阵。此外,还介绍了利用优美标注对著名的特征值交错不等式的推广。研究表明,每个秩为 1 的矩阵都可以通过单元相似性进行分摊,但有一些 2×2 矩阵无法分摊。建立了矩阵通过单元矩阵分摊的必要条件。利用这个条件,可以构造出一组具有非零 Lebesgue 度量且不能被单元矩阵分摊的矩阵。
{"title":"Apportionable matrices and gracefully labelled graphs","authors":"Antwan Clark ,&nbsp;Bryan A. Curtis ,&nbsp;Edinah K. Gnang ,&nbsp;Leslie Hogben","doi":"10.1016/j.laa.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.laa.2024.06.001","url":null,"abstract":"<div><p>To apportion a complex matrix means to apply a similarity so that all entries of the resulting matrix have the same magnitude. We initiate the study of apportionment, both by unitary matrix similarity and general matrix similarity. There are connections between apportionment and classical graph decomposition problems, including graceful labellings of graphs, Hadamard matrices, and equiangular lines, and potential applications to instantaneous uniform mixing in quantum walks. The connection between apportionment and graceful labellings allows the construction of apportionable matrices from trees. A generalization of the well-known Eigenvalue Interlacing Inequalities using graceful labellings is also presented. It is shown that every rank one matrix can be apportioned by a unitary similarity, but there are <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices that cannot be apportioned. A necessary condition for a matrix to be apportioned by unitary matrix is established. This condition is used to construct a set of matrices with nonzero Lebesgue measure that are not apportionable by a unitary matrix.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polynomial decompositions with invariance and positivity inspired by tensors 受张量启发的具有不变性和实在性的多项式分解
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2024-06-06 DOI: 10.1016/j.laa.2024.05.025
Gemma De las Cuevas , Andreas Klingler , Tim Netzer

We present a framework to decompose real multivariate polynomials while preserving invariance and positivity. This framework has been recently introduced for tensor decompositions, in particular for quantum many-body systems. Here we transfer results about decomposition structures, invariance under permutations of variables, positivity, rank inequalities and separations, approximations, and undecidability to real polynomials. Specifically, we define invariant decompositions of polynomials, and characterize which polynomials admit such decompositions. We then include positivity: We define invariant separable and sum-of-squares decompositions, and characterize the polynomials similarly. We provide inequalities and separations between the ranks of the decompositions, and show that the separations are not robust with respect to approximations. For cyclically invariant decompositions, we show that it is undecidable whether the polynomial is nonnegative or sum-of-squares for all system sizes. Our framework is different from existing approaches for polynomial decompositions, since it covers symmetry and positivity combined, in a clean and uniform way. Also, our work sheds new light on polynomials by putting them on an equal footing with tensors, and opens the door to extending this framework to other tensor product structures.

我们提出了一个在保持不变性和正性的前提下分解实多变量多项式的框架。这一框架最近被引入张量分解,特别是量子多体系统。在此,我们将有关分解结构、变量排列下的不变性、实在性、秩不等式和分离、近似和不可判定性的结果转移到实数多项式上。具体地说,我们定义了多项式的不变分解,并描述了哪些多项式可以进行这样的分解。然后,我们将正定性包括在内:我们定义了不变的可分离分解和平方和分解,并对多项式进行了类似的描述。我们提供了分解秩之间的不等式和分离,并证明了分离对于近似并不稳健。对于循环不变分解,我们证明,在所有系统规模下,多项式是非负的还是平方和的,都是无法判定的。我们的框架有别于现有的多项式分解方法,因为它以一种简洁统一的方式将对称性和实在性结合在一起。此外,我们的工作将多项式与张量置于同等地位,从而为多项式带来了新的启示,并为将这一框架扩展到其他张量乘积结构打开了大门。
{"title":"Polynomial decompositions with invariance and positivity inspired by tensors","authors":"Gemma De las Cuevas ,&nbsp;Andreas Klingler ,&nbsp;Tim Netzer","doi":"10.1016/j.laa.2024.05.025","DOIUrl":"https://doi.org/10.1016/j.laa.2024.05.025","url":null,"abstract":"<div><p>We present a framework to decompose real multivariate polynomials while preserving invariance and positivity. This framework has been recently introduced for tensor decompositions, in particular for quantum many-body systems. Here we transfer results about decomposition structures, invariance under permutations of variables, positivity, rank inequalities and separations, approximations, and undecidability to real polynomials. Specifically, we define invariant decompositions of polynomials, and characterize which polynomials admit such decompositions. We then include positivity: We define invariant separable and sum-of-squares decompositions, and characterize the polynomials similarly. We provide inequalities and separations between the ranks of the decompositions, and show that the separations are not robust with respect to approximations. For cyclically invariant decompositions, we show that it is undecidable whether the polynomial is nonnegative or sum-of-squares for all system sizes. Our framework is different from existing approaches for polynomial decompositions, since it covers symmetry and positivity combined, in a clean and uniform way. Also, our work sheds new light on polynomials by putting them on an equal footing with tensors, and opens the door to extending this framework to other tensor product structures.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002437952400243X/pdfft?md5=3cb13be179680e43a38bbbe61692e189&pid=1-s2.0-S002437952400243X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permanents of block matrices 分块矩阵的永久性
IF 1.1 3区 数学 Q1 Mathematics Pub Date : 2024-06-05 DOI: 10.1016/j.laa.2024.05.024
Kijti Rodtes , Muhammad Fazeel Anwar

In this paper, we provide a formula to compute the permanent of block matrices depending on entries of each block. As a consequence, a generalized Lieb permanent inequality on positive semi-definite block matrices is given.

在本文中,我们提供了一个计算块矩阵永久性的公式,它取决于每个块的条目。因此,本文给出了正半有限块矩阵的广义李布永久不等式。
{"title":"Permanents of block matrices","authors":"Kijti Rodtes ,&nbsp;Muhammad Fazeel Anwar","doi":"10.1016/j.laa.2024.05.024","DOIUrl":"https://doi.org/10.1016/j.laa.2024.05.024","url":null,"abstract":"<div><p>In this paper, we provide a formula to compute the permanent of block matrices depending on entries of each block. As a consequence, a generalized Lieb permanent inequality on positive semi-definite block matrices is given.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Linear Algebra and its Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1