Shoucun Zhang, Shengyan Wang, Wenli Wu, Jinlong Wu, Jianghua Du
Liquid carbon dioxide (LCO2) or supercritical carbon dioxide (ScCO2) can be used as an important solvent medium for preparing polymer particles through dispersion polymerization. However, based on the weak solvent characteristics of CO2, the development of stabilizers used in dispersion polymerization has always been an important challenge. These stabilizers are progressing toward the low-cost, pollution-free, and simple synthesis routes, et al. In this research, pentaerythritol tetra (3-mercaptopropionate) (PTMP) is used to control the homopolymerization or copolymerization of vinyl acetate (VAc)/vinyl propionate (VPr), the homopolymers or copolymers with thiol group are synthesized by the one-pot method. These homopolymers or copolymers are used as the stabilizers to stabilize the dispersion polymerization of N-vinyl-2-pyrrolidone (NVP) in ScCO2. The results show that the structural unit proportion of the stabilizers, the concentration of stabilizers or 2, 2´-azobis(isobutyronitrile) (AIBN), and the time interval for dispersion polymerization have significant impacts on the conversion percentage of NVP and the molecular weight of polymers. The maximum conversion percentage of NVP can get to 95%, and the molecular weight of poly(N-vinyl-2-pyrrolidone)(PNVP) can reach 22.3 kPa. SEM analysis indicates that the PNVP obtained has regular spherical characteristics.
{"title":"Dispersion Polymerization of N-Vinyl-2-Pyrrolidone in Supercritical Carbon Dioxide in the Presence of Thiol-Terminated Poly(vinyl acetate-co-vinyl propionate)","authors":"Shoucun Zhang, Shengyan Wang, Wenli Wu, Jinlong Wu, Jianghua Du","doi":"10.1002/mren.202300063","DOIUrl":"10.1002/mren.202300063","url":null,"abstract":"<p>Liquid carbon dioxide (LCO<sub>2</sub>) or supercritical carbon dioxide (ScCO<sub>2</sub>) can be used as an important solvent medium for preparing polymer particles through dispersion polymerization. However, based on the weak solvent characteristics of CO<sub>2</sub>, the development of stabilizers used in dispersion polymerization has always been an important challenge. These stabilizers are progressing toward the low-cost, pollution-free, and simple synthesis routes, et al. In this research, pentaerythritol tetra (3-mercaptopropionate) (PTMP) is used to control the homopolymerization or copolymerization of vinyl acetate (VAc)/vinyl propionate (VPr), the homopolymers or copolymers with thiol group are synthesized by the one-pot method. These homopolymers or copolymers are used as the stabilizers to stabilize the dispersion polymerization of <i>N</i>-vinyl-2-pyrrolidone (NVP) in ScCO<sub>2</sub>. The results show that the structural unit proportion of the stabilizers, the concentration of stabilizers or 2, 2´-azobis(isobutyronitrile) (AIBN), and the time interval for dispersion polymerization have significant impacts on the conversion percentage of NVP and the molecular weight of polymers. The maximum conversion percentage of NVP can get to 95%, and the molecular weight of poly(<i>N</i>-vinyl-2-pyrrolidone)(PNVP) can reach 22.3 kPa. SEM analysis indicates that the PNVP obtained has regular spherical characteristics.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariana Guadalupe Torres Aladro, Estela Kamile Gelinski, Nida Sheibat-Othman, Timothy F. L. McKenna
The impact of different agitator configurations used during the emulsion polymerization of vinylidene fluoride (VDF) was studied with the goal of achieving a solids content of 55 wt % while minimizing particle coagulation and maintaining low levels of surfactant. The design and number of impellers, their spacing and the agitation speed were shown to have a strong influence on the transfer of gaseous monomer to the aqueous phase, and thus the rate of polymerization. Increasing the number of impellers on the central shaft, and decreasing the spacing of the impellers close to the latex surface had a strong influence on the ability to incorporate gaseous monomer, so the solids content and the latex level in the reactor increased. Furthermore, it was found that changes in the agitation rate during the reaction was necessary at high solids content to avoid destabilizing the particles in view of the low surfactant concentrations used.
{"title":"Mass Transfer in Emulsion Polymerization: High Solids Content Latex and Mixing Effects","authors":"Mariana Guadalupe Torres Aladro, Estela Kamile Gelinski, Nida Sheibat-Othman, Timothy F. L. McKenna","doi":"10.1002/mren.202300064","DOIUrl":"https://doi.org/10.1002/mren.202300064","url":null,"abstract":"The impact of different agitator configurations used during the emulsion polymerization of vinylidene fluoride (VDF) was studied with the goal of achieving a solids content of 55 wt % while minimizing particle coagulation and maintaining low levels of surfactant. The design and number of impellers, their spacing and the agitation speed were shown to have a strong influence on the transfer of gaseous monomer to the aqueous phase, and thus the rate of polymerization. Increasing the number of impellers on the central shaft, and decreasing the spacing of the impellers close to the latex surface had a strong influence on the ability to incorporate gaseous monomer, so the solids content and the latex level in the reactor increased. Furthermore, it was found that changes in the agitation rate during the reaction was necessary at high solids content to avoid destabilizing the particles in view of the low surfactant concentrations used.","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}