Pub Date : 2024-12-01Epub Date: 2024-08-10DOI: 10.1007/s10334-024-01190-7
Soo Hyun Shin, Dina Moazamian, Qingbo Tang, Saeed Jerban, Yajun Ma, Jiang Du, Eric Y Chang
Objective: To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone.
Materials and methods: Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans.
Results: The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR.
Discussion: The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.
{"title":"Towards assessing and improving the reliability of ultrashort echo time quantitative magnetization transfer (UTE-qMT) MRI of cortical bone: In silico and ex vivo study.","authors":"Soo Hyun Shin, Dina Moazamian, Qingbo Tang, Saeed Jerban, Yajun Ma, Jiang Du, Eric Y Chang","doi":"10.1007/s10334-024-01190-7","DOIUrl":"10.1007/s10334-024-01190-7","url":null,"abstract":"<p><strong>Objective: </strong>To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone.</p><p><strong>Materials and methods: </strong>Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans.</p><p><strong>Results: </strong>The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR.</p><p><strong>Discussion: </strong>The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"983-992"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-08DOI: 10.1007/s10334-024-01189-0
Ouri Cohen, Soudabeh Kargar, Sungmin Woo, Alberto Vargas, Ricardo Otazo
Introduction: Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.
Methods: A 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.
Results: The DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%.
Conclusion: The proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.
{"title":"DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI.","authors":"Ouri Cohen, Soudabeh Kargar, Sungmin Woo, Alberto Vargas, Ricardo Otazo","doi":"10.1007/s10334-024-01189-0","DOIUrl":"10.1007/s10334-024-01189-0","url":null,"abstract":"<p><strong>Introduction: </strong>Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.</p><p><strong>Methods: </strong>A 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B<sub>1</sub> inhomogeneities to estimate perfusion (K<sup>trans</sup>, v<sub>p</sub>, v<sub>e</sub>), tissue T<sub>1</sub> relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.</p><p><strong>Results: </strong>The DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%.</p><p><strong>Conclusion: </strong>The proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T<sub>1</sub> scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1077-1090"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-29DOI: 10.1007/s10334-024-01193-4
Frank Zijlstra, Peter Thomas While
Object: Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality.
Materials and methods: An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data.
Results: Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%.
Discussion: Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
{"title":"Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning.","authors":"Frank Zijlstra, Peter Thomas While","doi":"10.1007/s10334-024-01193-4","DOIUrl":"10.1007/s10334-024-01193-4","url":null,"abstract":"<p><strong>Object: </strong>Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality.</p><p><strong>Materials and methods: </strong>An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data.</p><p><strong>Results: </strong>Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%.</p><p><strong>Discussion: </strong>Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1059-1076"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-25DOI: 10.1007/s10334-024-01172-9
Hideki Ota, Yoshiaki Morita, Diana Vucevic, Satoshi Higuchi, Hidenobu Takagi, Hideaki Kutsuna, Yuichi Yamashita, Paul Kim, Mitsue Miyazaki
Purpose: To develop a new MR coronary angiography (MRCA) technique by employing a zigzag fan-shaped centric ky-kz k-space trajectory combined with high-resolution deep learning reconstruction (HR-DLR).
Methods: All imaging data were acquired from 12 healthy subjects and 2 patients using two clinical 3-T MR imagers, with institutional review board approval. Ten healthy subjects underwent both standard 3D fast gradient echo (sFGE) and centric ky-kz k-space trajectory FGE (cFGE) acquisitions to compare the scan time and image quality. Quantitative measures were also performed for signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as sharpness of the vessel. Furthermore, the feasibility of the proposed cFGE sequence was assessed in two patients. For assessing the feasibility of the centric ky-kz trajectory, the navigator-echo window of a 30-mm threshold was applied in cFGE, whereas sFGE was applied using a standard 5-mm threshold. Image quality of MRCA using cFGE with HR-DLR and sFGE without HR-DLR was scored in a 5-point scale (non-diagnostic = 1, fair = 2, moderate = 3, good = 4, and excellent = 5). Image evaluation of cFGE, applying HR-DLR, was compared with sFGE without HR-DLR. Friedman test, Wilcoxon signed-rank test, or paired t tests were performed for the comparison of related variables.
Results: The actual MRCA scan time of cFGE with a 30-mm threshold was acquired in less than 5 min, achieving nearly 100% efficiency, showcasing its expeditious and robustness. In contrast, sFGE was acquired with a 5-mm threshold and had an average scan time of approximately 15 min. Overall image quality for MRCA was scored 3.3 for sFGE and 2.7 for cFGE without HR-DLR but increased to 3.6 for cFGE with HR-DLR and (p < 0.05). The clinical result of patients obtained within 5 min showed good quality images in both patients, even with a stent, without artifacts. Quantitative measures of SNR, CNR, and sharpness of vessel presented higher in cFGE with HR-DLR.
Conclusion: Our findings demonstrate a robust, time-efficient solution for high-quality MRCA, enhancing patient comfort and increasing clinical throughput.
{"title":"Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction.","authors":"Hideki Ota, Yoshiaki Morita, Diana Vucevic, Satoshi Higuchi, Hidenobu Takagi, Hideaki Kutsuna, Yuichi Yamashita, Paul Kim, Mitsue Miyazaki","doi":"10.1007/s10334-024-01172-9","DOIUrl":"10.1007/s10334-024-01172-9","url":null,"abstract":"<p><strong>Purpose: </strong>To develop a new MR coronary angiography (MRCA) technique by employing a zigzag fan-shaped centric k<sub>y</sub>-k<sub>z</sub> k-space trajectory combined with high-resolution deep learning reconstruction (HR-DLR).</p><p><strong>Methods: </strong>All imaging data were acquired from 12 healthy subjects and 2 patients using two clinical 3-T MR imagers, with institutional review board approval. Ten healthy subjects underwent both standard 3D fast gradient echo (sFGE) and centric ky-kz k-space trajectory FGE (cFGE) acquisitions to compare the scan time and image quality. Quantitative measures were also performed for signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as sharpness of the vessel. Furthermore, the feasibility of the proposed cFGE sequence was assessed in two patients. For assessing the feasibility of the centric k<sub>y</sub>-k<sub>z</sub> trajectory, the navigator-echo window of a 30-mm threshold was applied in cFGE, whereas sFGE was applied using a standard 5-mm threshold. Image quality of MRCA using cFGE with HR-DLR and sFGE without HR-DLR was scored in a 5-point scale (non-diagnostic = 1, fair = 2, moderate = 3, good = 4, and excellent = 5). Image evaluation of cFGE, applying HR-DLR, was compared with sFGE without HR-DLR. Friedman test, Wilcoxon signed-rank test, or paired t tests were performed for the comparison of related variables.</p><p><strong>Results: </strong>The actual MRCA scan time of cFGE with a 30-mm threshold was acquired in less than 5 min, achieving nearly 100% efficiency, showcasing its expeditious and robustness. In contrast, sFGE was acquired with a 5-mm threshold and had an average scan time of approximately 15 min. Overall image quality for MRCA was scored 3.3 for sFGE and 2.7 for cFGE without HR-DLR but increased to 3.6 for cFGE with HR-DLR and (p < 0.05). The clinical result of patients obtained within 5 min showed good quality images in both patients, even with a stent, without artifacts. Quantitative measures of SNR, CNR, and sharpness of vessel presented higher in cFGE with HR-DLR.</p><p><strong>Conclusion: </strong>Our findings demonstrate a robust, time-efficient solution for high-quality MRCA, enhancing patient comfort and increasing clinical throughput.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1105-1117"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-06DOI: 10.1007/s10334-024-01195-2
Katharina Tkotz, Paula Zeiger, Jannis Hanspach, Claudius S Mathy, Frederik B Laun, Michael Uder, Armin M Nagel, Lena V Gast
Objective: To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.
Materials and methods: Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results.
Results: Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B0 map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement.
Conclusion: PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.
目的建立在 7 T 下测定小腿肌肉组织质子密度脂肪分数 (PDFF) 的图像采集和后处理工作流程:根据对有效信号平均值(NSA*)的模拟,优化了供应商提供的多回波梯度回波序列的回波时间(TE)。在模型和健康小腿肌肉组织(n = 12)中的测量结果验证了优化后的参数。此外,还评估了减少 7 T 时产生的相位误差的方法。最后,将在 7 T 下测量的健康受试者(9 人)和肌肉组织脂肪替代患者(3 人)小腿肌肉组织的 PDFF 值与 3 T 结果进行了比较:模拟、模型和体内测量结果表明,在 7 T 下使用优化的 TE 对于脂肪-水分离非常重要。在 7 T 下测量的肌肉 PDFF 值与在 3 T 下测量的值相当,无论是健康人还是脂肪替代增加的患者:结论:采用基于化学位移的方法,并优化采集和后处理参数,在 7 T 下测定小腿肌肉组织的 PDFF 是可行的。
{"title":"Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T.","authors":"Katharina Tkotz, Paula Zeiger, Jannis Hanspach, Claudius S Mathy, Frederik B Laun, Michael Uder, Armin M Nagel, Lena V Gast","doi":"10.1007/s10334-024-01195-2","DOIUrl":"10.1007/s10334-024-01195-2","url":null,"abstract":"<p><strong>Objective: </strong>To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.</p><p><strong>Materials and methods: </strong>Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results.</p><p><strong>Results: </strong>Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B<sub>0</sub> map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement.</p><p><strong>Conclusion: </strong>PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"969-981"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-24DOI: 10.1007/s10334-024-01198-z
Fei Xu, Stefano Mandija, Jordi P D Kleinloog, Hongyan Liu, Oscar van der Heide, Anja G van der Kolk, Jan Willem Dankbaar, Cornelis A T van den Berg, Alessandro Sbrizzi
Objective: The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology.
Materials and methods: We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer.
Results: All performance metrics of the proposed hybrid FLAIR images on patient datasets were significantly higher than those of the physics-based FLAIR images (p < 0.005), and comparable to those of conventional FLAIR images. The small difference between prospective and retrospective analysis on a healthy volunteer demonstrated the validity of the retrospective analysis of the hybrid method as presented for the patient datasets.
Discussion: The proposed hybrid FLAIR achieved an improved lesion appearance in the clinical cases with neurological diseases compared to the physics-based FLAIR images, Future prospective work on patient data will address the validation of the method from a diagnostic perspective by radiological inspection of the new images over a larger patient cohort.
{"title":"Improving the lesion appearance on FLAIR images synthetized from quantitative MRI: a fast, hybrid approach.","authors":"Fei Xu, Stefano Mandija, Jordi P D Kleinloog, Hongyan Liu, Oscar van der Heide, Anja G van der Kolk, Jan Willem Dankbaar, Cornelis A T van den Berg, Alessandro Sbrizzi","doi":"10.1007/s10334-024-01198-z","DOIUrl":"10.1007/s10334-024-01198-z","url":null,"abstract":"<p><strong>Objective: </strong>The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology.</p><p><strong>Materials and methods: </strong>We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer.</p><p><strong>Results: </strong>All performance metrics of the proposed hybrid FLAIR images on patient datasets were significantly higher than those of the physics-based FLAIR images (p < 0.005), and comparable to those of conventional FLAIR images. The small difference between prospective and retrospective analysis on a healthy volunteer demonstrated the validity of the retrospective analysis of the hybrid method as presented for the patient datasets.</p><p><strong>Discussion: </strong>The proposed hybrid FLAIR achieved an improved lesion appearance in the clinical cases with neurological diseases compared to the physics-based FLAIR images, Future prospective work on patient data will address the validation of the method from a diagnostic perspective by radiological inspection of the new images over a larger patient cohort.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1021-1030"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-29DOI: 10.1007/s10334-024-01197-0
Tim Schmidt, Zoltán Nagy
Objective: Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method.
Materials and methods: The proposed SAD method employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperative effectiveness of the SAD method.
Results: The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution.
Conclusion: SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.
{"title":"SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.","authors":"Tim Schmidt, Zoltán Nagy","doi":"10.1007/s10334-024-01197-0","DOIUrl":"10.1007/s10334-024-01197-0","url":null,"abstract":"<p><strong>Objective: </strong>Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method.</p><p><strong>Materials and methods: </strong>The proposed SAD method employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperative effectiveness of the SAD method.</p><p><strong>Results: </strong>The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution.</p><p><strong>Conclusion: </strong>SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1031-1046"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-21DOI: 10.1007/s10334-024-01170-x
Stanislaw Mitew, Ling Yun Yeow, Chi Long Ho, Prakash K N Bhanu, Oliver James Nickalls
Rationale and objectives: Defacing research MRI brain scans is often a mandatory step. With current defacing software, there are issues with Windows compatibility and researcher doubt regarding the adequacy of preservation of brain voxels in non-T1w scans. To address this, we developed PyFaceWipe, a multiplatform software for multiple MRI contrasts, which was evaluated based on its anonymisation ability and effect on downstream processing.
Materials and methods: Multiple MRI brain scan contrasts from the OASIS-3 dataset were defaced with PyFaceWipe and PyDeface and manually assessed for brain voxel preservation, remnant facial features and effect on automated face detection. Original and PyFaceWipe-defaced data from locally acquired T1w structural scans underwent volumetry with FastSurfer and brain atlas generation with ANTS.
Results: 214 MRI scans of several contrasts from OASIS-3 were successfully processed with both PyFaceWipe and PyDeface. PyFaceWipe maintained complete brain voxel preservation in all tested contrasts except ASL (45%) and DWI (90%), and PyDeface in all tested contrasts except ASL (95%), BOLD (25%), DWI (40%) and T2* (25%). Manual review of PyFaceWipe showed no failures of facial feature removal. Pinna removal was less successful (6% of T1 scans showed residual complete pinna). PyDeface achieved 5.1% failure rate. Automated detection found no faces in PyFaceWipe-defaced scans, 19 faces in PyDeface scans compared with 78 from the 224 original scans. Brain atlas generation showed no significant difference between atlases created from original and defaced data in both young adulthood and late elderly cohorts. Structural volumetry dice scores were ≥ 0.98 for all structures except for grey matter which had 0.93. PyFaceWipe output was identical across the tested operating systems.
Conclusion: PyFaceWipe is a promising multiplatform defacing tool, demonstrating excellent brain voxel preservation and competitive defacing in multiple MRI contrasts, performing favourably against PyDeface. ASL, BOLD, DWI and T2* scans did not produce recognisable 3D renders and hence should not require defacing. Structural volumetry dice scores (≥ 0.98) were higher than previously published FreeSurfer results, except for grey matter which were comparable. The effect is measurable and care should be exercised during studies. ANTS atlas creation showed no significant effect from PyFaceWipe defacing.
{"title":"PyFaceWipe: a new defacing tool for almost any MRI contrast.","authors":"Stanislaw Mitew, Ling Yun Yeow, Chi Long Ho, Prakash K N Bhanu, Oliver James Nickalls","doi":"10.1007/s10334-024-01170-x","DOIUrl":"10.1007/s10334-024-01170-x","url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Defacing research MRI brain scans is often a mandatory step. With current defacing software, there are issues with Windows compatibility and researcher doubt regarding the adequacy of preservation of brain voxels in non-T1w scans. To address this, we developed PyFaceWipe, a multiplatform software for multiple MRI contrasts, which was evaluated based on its anonymisation ability and effect on downstream processing.</p><p><strong>Materials and methods: </strong>Multiple MRI brain scan contrasts from the OASIS-3 dataset were defaced with PyFaceWipe and PyDeface and manually assessed for brain voxel preservation, remnant facial features and effect on automated face detection. Original and PyFaceWipe-defaced data from locally acquired T1w structural scans underwent volumetry with FastSurfer and brain atlas generation with ANTS.</p><p><strong>Results: </strong>214 MRI scans of several contrasts from OASIS-3 were successfully processed with both PyFaceWipe and PyDeface. PyFaceWipe maintained complete brain voxel preservation in all tested contrasts except ASL (45%) and DWI (90%), and PyDeface in all tested contrasts except ASL (95%), BOLD (25%), DWI (40%) and T2* (25%). Manual review of PyFaceWipe showed no failures of facial feature removal. Pinna removal was less successful (6% of T1 scans showed residual complete pinna). PyDeface achieved 5.1% failure rate. Automated detection found no faces in PyFaceWipe-defaced scans, 19 faces in PyDeface scans compared with 78 from the 224 original scans. Brain atlas generation showed no significant difference between atlases created from original and defaced data in both young adulthood and late elderly cohorts. Structural volumetry dice scores were ≥ 0.98 for all structures except for grey matter which had 0.93. PyFaceWipe output was identical across the tested operating systems.</p><p><strong>Conclusion: </strong>PyFaceWipe is a promising multiplatform defacing tool, demonstrating excellent brain voxel preservation and competitive defacing in multiple MRI contrasts, performing favourably against PyDeface. ASL, BOLD, DWI and T2* scans did not produce recognisable 3D renders and hence should not require defacing. Structural volumetry dice scores (≥ 0.98) were higher than previously published FreeSurfer results, except for grey matter which were comparable. The effect is measurable and care should be exercised during studies. ANTS atlas creation showed no significant effect from PyFaceWipe defacing.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"993-1003"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-13DOI: 10.1007/s10334-024-01183-6
Oscar Jalnefjord, Louise Rosenqvist, Amina Warsame, Isabella M Björkman-Burtscher
Objectives: Signal drift has been put forward as one of the fundamental confounding factors in diffusion MRI (dMRI) of the brain. This study characterizes signal drift in dMRI of the brain, evaluates correction methods, and exemplifies its impact on parameter estimation for three intravoxel incoherent motion (IVIM) protocols.
Materials and methods: dMRI of the brain was acquired in ten healthy subjects using protocols designed to enable retrospective characterization and correction of signal drift. All scans were acquired twice for repeatability analysis. Three temporal polynomial correction methods were evaluated: (1) global, (2) voxelwise, and (3) spatiotemporal. Effects of acquisition order were simulated using estimated drift fields.
Results: Signal drift was around 2% per 5 min in the brain as a whole, but reached above 5% per 5 min in the frontal regions. Only correction methods taking spatially varying signal drift into account could achieve effective corrections. Altered acquisition order introduced both systematic changes and differences in repeatability in the presence of signal drift.
Discussion: Signal drift in dMRI of the brain was found to be spatially varying, calling for correction methods taking this into account. Without proper corrections, choice of protocol can affect dMRI parameter estimates and their repeatability.
{"title":"Signal drift in diffusion MRI of the brain: effects on intravoxel incoherent motion parameter estimates.","authors":"Oscar Jalnefjord, Louise Rosenqvist, Amina Warsame, Isabella M Björkman-Burtscher","doi":"10.1007/s10334-024-01183-6","DOIUrl":"10.1007/s10334-024-01183-6","url":null,"abstract":"<p><strong>Objectives: </strong>Signal drift has been put forward as one of the fundamental confounding factors in diffusion MRI (dMRI) of the brain. This study characterizes signal drift in dMRI of the brain, evaluates correction methods, and exemplifies its impact on parameter estimation for three intravoxel incoherent motion (IVIM) protocols.</p><p><strong>Materials and methods: </strong>dMRI of the brain was acquired in ten healthy subjects using protocols designed to enable retrospective characterization and correction of signal drift. All scans were acquired twice for repeatability analysis. Three temporal polynomial correction methods were evaluated: (1) global, (2) voxelwise, and (3) spatiotemporal. Effects of acquisition order were simulated using estimated drift fields.</p><p><strong>Results: </strong>Signal drift was around 2% per 5 min in the brain as a whole, but reached above 5% per 5 min in the frontal regions. Only correction methods taking spatially varying signal drift into account could achieve effective corrections. Altered acquisition order introduced both systematic changes and differences in repeatability in the presence of signal drift.</p><p><strong>Discussion: </strong>Signal drift in dMRI of the brain was found to be spatially varying, calling for correction methods taking this into account. Without proper corrections, choice of protocol can affect dMRI parameter estimates and their repeatability.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1005-1019"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-06DOI: 10.1007/s10334-024-01194-3
Santhosh Iyyakkunnel, Matthias Weigel, Oliver Bieri
Objective: To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate "full" homogeneous Helmholtz-based electrical properties tomography using a simultaneous magnitude and transceive phase measurement.
Methods: The combination of a spin and stimulated echo can be used to yield an estimate of both magnitude and transceive phase and thus provides the means for "full" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer.
Results: The magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the "full" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values.
Discussion: The method allows the use of the "full" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- mapping technique that could render EPT clinically relevant at 3 T.
目的:证明双角刺激回波(DA-STE)方法的潜力,该方法可通过同时测量 B 1 + 幅值和收发相位,快速、准确地进行基于亥姆霍兹的 "全 "同质电特性层析成像:方法:自旋回波和受激回波的组合可用于估算 B 1 + 幅值和收发相位,从而为 "全 "EPT 重建提供手段。采用交错二维采集方案进行快速采集。该方法在盐水模型中进行了验证,并与基于两次单梯度回波采集的双角度方法(GRE-DAM)进行了比较。该方法在一名健康志愿者的大脑中进行了评估:结果:使用 DA-STE 获得的 B 1 + 幅值与 GRE-DAM 方法显示出极佳的一致性。在生理盐水模型中,基于 "完整 "EPT 重建的电导率值也与预期值非常吻合。在大脑中,该方法得出的电导率值接近文献值:讨论:该方法允许使用基于 "完整 "亥姆霍兹的 EPT 重建,而无需额外的测量。因此,与基于相位的 EPT 重建相比,定量电导率值得到了改善。DA-STE 是一种快速的复合 B 1 + 绘图技术,可在 3 T 时将 EPT 应用于临床。
{"title":"Fast bias-corrected conductivity mapping using stimulated echoes.","authors":"Santhosh Iyyakkunnel, Matthias Weigel, Oliver Bieri","doi":"10.1007/s10334-024-01194-3","DOIUrl":"10.1007/s10334-024-01194-3","url":null,"abstract":"<p><strong>Objective: </strong>To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate \"full\" homogeneous Helmholtz-based electrical properties tomography using a simultaneous <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude and transceive phase measurement.</p><p><strong>Methods: </strong>The combination of a spin and stimulated echo can be used to yield an estimate of both <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude and transceive phase and thus provides the means for \"full\" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer.</p><p><strong>Results: </strong>The <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the \"full\" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values.</p><p><strong>Discussion: </strong>The method allows the use of the \"full\" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- <math><msubsup><mi>B</mi> <mrow><mn>1</mn></mrow> <mo>+</mo></msubsup> </math> mapping technique that could render EPT clinically relevant at 3 T.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1047-1057"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}