首页 > 最新文献

Limnology and Oceanography Letters最新文献

英文 中文
Biologically driven isotope fractionation in ultrastructurally different shell portions of freshwater pearl mussels (Margaritifera margaritifera): Implications for stream water δ18O reconstructions 淡水珍珠贻贝(Margaritifera margaritifera)超微结构不同贝壳部分的生物驱动同位素分馏:对溪水δ18O 重建的影响
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-08-01 DOI: 10.1002/lol2.10426
Christoph J. Gey, Laurent Pfister, Guilhem Türk, Frankie Thielen, Loic Leonard, Katharina E. Schmitt, Bernd R. Schöne

Oxygen isotopes in stream water can serve as natural tracers of watershed dynamics. Freshwater pearl mussels provide δ18Owater estimates that overcome temporal and spatial limitations of instrumental records. The reliability of shell-based δ18Owater reconstructions depends on understanding which shell layer biomineralizes closer to oxygen isotopic equilibrium with ambient water. To determine this, both the (outer) prismatic and (inner) nacreous sublayers of the outer shell layer were sampled. Over 2500 isotope values were obtained from shells collected from the Our River (Luxembourg) and from mussels cultured in tanks at constant temperature and monitored δ18Owater. Calculated δ18Owater from the prismatic portion was in excellent agreement with monitored δ18Owater, while δ18Oshell of the nacreous portion was systematically offset by +0.43‰, overestimating δ18Owater by +0.53‰. Although shell portions were formed simultaneously from the same extrapallial fluid, they underwent different fractionation mechanisms, presumably due to differences in carbonic anhydrase activity catalyzing mineralization processes.

溪水中的氧同位素可以作为流域动态的天然示踪剂。淡水珍珠贝提供的δ18O 水估计值克服了仪器记录在时间和空间上的局限性。基于贝壳的δ18O 水重建的可靠性取决于了解哪一层贝壳的生物矿化更接近与环境水的氧同位素平衡。为了确定这一点,对外壳层的(外)棱柱状亚层和(内)珍珠质亚层都进行了取样。从渭河(卢森堡)采集的贝壳和在恒温池中养殖的贻贝中获得了 2500 多个同位素值,并对 δ18O 水进行了监测。棱柱部分的δ18O水计算值与监测到的δ18O水非常一致,而珍珠质部分的δ18Oshell则系统地偏移了+0.43‰,高估了δ18O水+0.53‰。虽然贝壳部分是由相同的藻外液同时形成的,但它们经历了不同的分馏机制,这可能是由于催化矿化过程的碳酸酐酶活性不同造成的。
{"title":"Biologically driven isotope fractionation in ultrastructurally different shell portions of freshwater pearl mussels (Margaritifera margaritifera): Implications for stream water δ18O reconstructions","authors":"Christoph J. Gey,&nbsp;Laurent Pfister,&nbsp;Guilhem Türk,&nbsp;Frankie Thielen,&nbsp;Loic Leonard,&nbsp;Katharina E. Schmitt,&nbsp;Bernd R. Schöne","doi":"10.1002/lol2.10426","DOIUrl":"10.1002/lol2.10426","url":null,"abstract":"<p>Oxygen isotopes in stream water can serve as natural tracers of watershed dynamics. Freshwater pearl mussels provide δ<sup>18</sup>O<sub>water</sub> estimates that overcome temporal and spatial limitations of instrumental records. The reliability of shell-based δ<sup>18</sup>O<sub>water</sub> reconstructions depends on understanding which shell layer biomineralizes closer to oxygen isotopic equilibrium with ambient water. To determine this, both the (outer) prismatic and (inner) nacreous sublayers of the outer shell layer were sampled. Over 2500 isotope values were obtained from shells collected from the Our River (Luxembourg) and from mussels cultured in tanks at constant temperature and monitored δ<sup>18</sup>O<sub>water</sub>. Calculated δ<sup>18</sup>O<sub>water</sub> from the prismatic portion was in excellent agreement with monitored δ<sup>18</sup>O<sub>water</sub>, while δ<sup>18</sup>O<sub>shell</sub> of the nacreous portion was systematically offset by +0.43‰, overestimating δ<sup>18</sup>O<sub>water</sub> by +0.53‰. Although shell portions were formed simultaneously from the same extrapallial fluid, they underwent different fractionation mechanisms, presumably due to differences in carbonic anhydrase activity catalyzing mineralization processes.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"827-836"},"PeriodicalIF":5.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What's hot and what's not in the aquatic sciences—Understanding and improving news coverage 水产科学中的热点和非热点--了解和改进新闻报道
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-25 DOI: 10.1002/lol2.10425
John A. Downing

The frequency of news reporting about scientific topics is positively related to public interest as well as to public support for science funding and public policy change. This correlation can also have positive impacts on individual scientific careers depending on the chosen subject area of research. Analysis of a public news database shows the frequency and trends in news reporting of several popular research areas in the aquatic sciences. The frequency of appearance of topics in the news varies over more than three orders of magnitude. Temporal trends in reporting vary from steeply increasing (+25% per year) to declining (−4% per year). Suggestions are offered concerning the framing of research topics and overall better communication of research findings to journalists and the general public. This understanding may increase news prominence, public interest, science funding, and policy change in aquatic research areas.

有关科学主题的新闻报道频率与公众兴趣以及公众对科学资助和公共政策变革的支持呈正相关。根据所选研究领域的不同,这种相关性也会对个人的科学生涯产生积极影响。对公共新闻数据库的分析显示了水产科学中几个热门研究领域的新闻报道频率和趋势。这些主题在新闻中出现的频率相差超过三个数量级。报道的时间趋势从急剧增加(每年+25%)到减少(每年-4%)不等。我们就研究课题的框架以及更好地向记者和公众传播研究成果提出了建议。这种理解可能会提高水产研究领域的新闻显著性、公众兴趣、科学资助和政策变化。
{"title":"What's hot and what's not in the aquatic sciences—Understanding and improving news coverage","authors":"John A. Downing","doi":"10.1002/lol2.10425","DOIUrl":"10.1002/lol2.10425","url":null,"abstract":"<p>The frequency of news reporting about scientific topics is positively related to public interest as well as to public support for science funding and public policy change. This correlation can also have positive impacts on individual scientific careers depending on the chosen subject area of research. Analysis of a public news database shows the frequency and trends in news reporting of several popular research areas in the aquatic sciences. The frequency of appearance of topics in the news varies over more than three orders of magnitude. Temporal trends in reporting vary from steeply increasing (+25% per year) to declining (−4% per year). Suggestions are offered concerning the framing of research topics and overall better communication of research findings to journalists and the general public. This understanding may increase news prominence, public interest, science funding, and policy change in aquatic research areas.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"674-682"},"PeriodicalIF":5.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal patterns of microbial diversity across the world oceans 全球海洋微生物多样性的季节模式
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-17 DOI: 10.1002/lol2.10422
Eric J. Raes, Shannon Myles, Liam MacNeil, Matthias Wietz, Christina Bienhold, Karen Tait, Paul J. Somerfield, Andrew Bissett, Jodie van de Kamp, Josep M. Gasol, Ramon Massana, Yi-Chun Yeh, Jed A. Fuhrman, Julie LaRoche

Understanding the patterns of marine microbial diversity (Bacteria + Archaea) is essential, as variations in their alpha- and beta-diversities can affect ecological processes. Investigations of microbial diversity from global oceanographic expeditions and basin-wide transects show positive correlations between microbial diversity and either temperature or productivity, but these studies rarely captured seasonality, especially in polar regions. Here, using multiannual alpha-diversity data from eight time series in the northern and southern hemispheres, we show that marine microbial community richness and evenness generally correlate more strongly with daylength than with temperature or chlorophyll a (a proxy for photosynthetic biomass). This pattern is observable across time series found in the northern and southern hemispheres regardless of collection method, DNA extraction protocols, targeted 16S rRNA hypervariable region, sequencing technology, or bioinformatics pipeline.

了解海洋微生物(细菌和古细菌)多样性的模式至关重要,因为其α-和β-多样性的变化会影响生态过程。全球海洋考察和全海盆横断面微生物多样性调查显示,微生物多样性与温度或生产力之间存在正相关关系,但这些研究很少捕捉到季节性,尤其是在极地地区。在这里,我们利用南北半球八个时间序列的多年度α-多样性数据表明,海洋微生物群落的丰富度和均匀度与昼长的相关性通常比与温度或叶绿素 a(光合生物量的代表)的相关性更强。无论采集方法、DNA 提取方案、目标 16S rRNA 超变区、测序技术或生物信息学管道如何,在南北半球发现的时间序列中都能观察到这种模式。
{"title":"Seasonal patterns of microbial diversity across the world oceans","authors":"Eric J. Raes,&nbsp;Shannon Myles,&nbsp;Liam MacNeil,&nbsp;Matthias Wietz,&nbsp;Christina Bienhold,&nbsp;Karen Tait,&nbsp;Paul J. Somerfield,&nbsp;Andrew Bissett,&nbsp;Jodie van de Kamp,&nbsp;Josep M. Gasol,&nbsp;Ramon Massana,&nbsp;Yi-Chun Yeh,&nbsp;Jed A. Fuhrman,&nbsp;Julie LaRoche","doi":"10.1002/lol2.10422","DOIUrl":"10.1002/lol2.10422","url":null,"abstract":"<p>Understanding the patterns of marine microbial diversity (Bacteria + Archaea) is essential, as variations in their alpha- and beta-diversities can affect ecological processes. Investigations of microbial diversity from global oceanographic expeditions and basin-wide transects show positive correlations between microbial diversity and either temperature or productivity, but these studies rarely captured seasonality, especially in polar regions. Here, using multiannual alpha-diversity data from eight time series in the northern and southern hemispheres, we show that marine microbial community richness and evenness generally correlate more strongly with daylength than with temperature or chlorophyll <i>a</i> (a proxy for photosynthetic biomass). This pattern is observable across time series found in the northern and southern hemispheres regardless of collection method, DNA extraction protocols, targeted <i>16S</i> rRNA hypervariable region, sequencing technology, or bioinformatics pipeline.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 5","pages":"512-523"},"PeriodicalIF":5.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking a large‐scale and highly toxic Arctic algal bloom: Rapid detection and risk communication 追踪大规模高毒性北极藻华:快速检测和风险交流
IF 7.8 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-10 DOI: 10.1002/lol2.10421
Evangeline Fachon, Robert S. Pickart, Gay Sheffield, Emma Pate, Mrunmayee Pathare, Michael L. Brosnahan, Eric Muhlbach, Kali Horn, Nathaniel N. Spada, Anushka Rajagopalan, Peigen Lin, Leah T. McRaven, Loreley S. Lago, Jie Huang, Frank Bahr, Dean A. Stockwell, Katherine A. Hubbard, Thomas J. Farrugia, Kathi A. Lefebvre, Donald M. Anderson
In recent years, blooms of the neurotoxic dinoflagellate Alexandrium catenella have been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom of A. catenella was detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending > 600 km latitudinally, reaching concentrations > 174,000 cells L−1, and producing high‐potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi‐faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs.
近年来,在北极太平洋水域发现了神经毒性甲藻亚历山大藻(Alexandrium catenella)的大量繁殖,而且在整个食物网中都检测到了该物种产生的麻痹性贝类毒素(PSTs)。这些观察结果引起了人们对有害藻华(HABs)在迅速变化的北极地区所扮演角色的极大关注。在 2022 年夏季的一次考察航行中,在白令海峡地区实时检测到了大规模的 A. catenella 藻华。藻华的空间规模和密度都非常大,纬度延伸了 600 公里,浓度达到 174,000 cells L-1,并产生了高浓度的 PST 同系物。在整个事件过程中,该地区的沿海利益相关者都参与其中,并动员了多方面的社区应对措施。这次史无前例的藻华突显了对应对能力的迫切需求,以确保在一个对有害藻华缺乏经验的地区安全利用重要的海洋资源。
{"title":"Tracking a large‐scale and highly toxic Arctic algal bloom: Rapid detection and risk communication","authors":"Evangeline Fachon, Robert S. Pickart, Gay Sheffield, Emma Pate, Mrunmayee Pathare, Michael L. Brosnahan, Eric Muhlbach, Kali Horn, Nathaniel N. Spada, Anushka Rajagopalan, Peigen Lin, Leah T. McRaven, Loreley S. Lago, Jie Huang, Frank Bahr, Dean A. Stockwell, Katherine A. Hubbard, Thomas J. Farrugia, Kathi A. Lefebvre, Donald M. Anderson","doi":"10.1002/lol2.10421","DOIUrl":"https://doi.org/10.1002/lol2.10421","url":null,"abstract":"In recent years, blooms of the neurotoxic dinoflagellate <jats:italic>Alexandrium catenella</jats:italic> have been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom of <jats:italic>A. catenella</jats:italic> was detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending &gt; 600 km latitudinally, reaching concentrations &gt; 174,000 cells L<jats:sup>−1</jats:sup>, and producing high‐potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi‐faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"33 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive traits of Planctomycetota bacteria to thrive in macroalgal habitats and establish mutually beneficial relationship with macroalgae Planctomycetota 细菌在大型藻类生境中生长并与大型藻类建立互利关系的适应性特征
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-10 DOI: 10.1002/lol2.10424
Xueyan Gao, Yihua Xiao, Ziwei Wang, Hanshuang Zhao, Yufei Yue, Shailesh Nair, Zenghu Zhang, Yongyu Zhang

Bacteria and macroalgae share an inseparable relationship, jointly influencing coastal ecosystems. Within macroalgae habitats, Planctomycetota, a group of bacteria notoriously challenging to cultivate, often dominate. However, the mechanisms facilitating their persistence in this environment remain unclear. Here, we successfully isolated a novel Planctomycetota bacterium, Stieleria sp. HD01, from the surface of kelp. We demonstrated that HD01 possesses a robust ability to metabolize fucoidan, which constitutes half of the kelp-derived organic carbon and exhibits resistance to attack by most microorganisms. Moreover, HD01 can utilize a broad spectrum of other organics, indicating its metabolic versatility and competitive prowess within algal environments. Additionally, HD01 can secrete antagonistic substances against other bacteria, form biofilms, and employ superoxide dismutase and catalase to resist oxidative stress, further consolidating its ecological fitness. Comparative metagenomics analysis suggested that Planctomycetota may have a mutually beneficial relationship with kelp.

细菌与大型藻类有着密不可分的关系,共同影响着沿海生态系统。在大型藻类栖息地中,Planctomycetota(一种众所周知难以培养的细菌群)往往占据主导地位。然而,促进它们在这种环境中持续存在的机制仍不清楚。在这里,我们成功地从海带表面分离出了一种新型的 Planctomycetota 细菌--Stieleria sp.我们证明了 HD01 具有强大的代谢褐藻糖胶的能力,褐藻糖胶占海带有机碳的一半,并对大多数微生物的攻击具有抵抗力。此外,HD01 还能利用范围广泛的其他有机物,这表明它在藻类环境中具有多功能代谢能力和竞争能力。此外,HD01 还能分泌拮抗其他细菌的物质,形成生物膜,并利用超氧化物歧化酶和过氧化氢酶来抵抗氧化压力,从而进一步巩固其生态适应性。比较元基因组学分析表明,Planctomycetota 可能与海带存在互利关系。
{"title":"Adaptive traits of Planctomycetota bacteria to thrive in macroalgal habitats and establish mutually beneficial relationship with macroalgae","authors":"Xueyan Gao,&nbsp;Yihua Xiao,&nbsp;Ziwei Wang,&nbsp;Hanshuang Zhao,&nbsp;Yufei Yue,&nbsp;Shailesh Nair,&nbsp;Zenghu Zhang,&nbsp;Yongyu Zhang","doi":"10.1002/lol2.10424","DOIUrl":"10.1002/lol2.10424","url":null,"abstract":"<p>Bacteria and macroalgae share an inseparable relationship, jointly influencing coastal ecosystems. Within macroalgae habitats, <i>Planctomycetota</i>, a group of bacteria notoriously challenging to cultivate, often dominate. However, the mechanisms facilitating their persistence in this environment remain unclear. Here, we successfully isolated a novel <i>Planctomycetota</i> bacterium, <i>Stieleria</i> sp. HD01, from the surface of kelp. We demonstrated that HD01 possesses a robust ability to metabolize fucoidan, which constitutes half of the kelp-derived organic carbon and exhibits resistance to attack by most microorganisms. Moreover, HD01 can utilize a broad spectrum of other organics, indicating its metabolic versatility and competitive prowess within algal environments. Additionally, HD01 can secrete antagonistic substances against other bacteria, form biofilms, and employ superoxide dismutase and catalase to resist oxidative stress, further consolidating its ecological fitness. Comparative metagenomics analysis suggested that <i>Planctomycetota</i> may have a mutually beneficial relationship with kelp.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"745-753"},"PeriodicalIF":5.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf litter breakdown phenology in headwater stream networks is modulated by groundwater thermal regimes and litter type 上游溪流网络中的落叶层分解物候学受地下水热机制和落叶层类型的影响
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-04 DOI: 10.1002/lol2.10423
Danielle K. Hare, Ashley M. Helton, Carolyn S. Cummins, Phillip M. Bumpers, Nathan J. Tomczyk, Phoenix A. Rogers, Seth J. Wenger, Erin R. Hotchkiss, Amy D. Rosemond, Jonathan P. Benstead

Leaf litter dominates particulate organic carbon inputs to forest streams. Using data-informed simulations, we explored how litter type (slow- vs. fast-decomposing species), pulsed autumn litter inputs, groundwater-mediated temperature regimes, and climate warming affect litter breakdown in a 3rd-order stream network. We found that the time-dependent interactions of these variables govern network-scale litter breakdown phenology, with greater thermal sensitivity of slow-decomposing litter for both current and future scenarios. Groundwater thermal inputs modified litter breakdown phenology by reducing spring and summer and elevating winter litter breakdown fluxes. Under future warming scenarios, the source depth of contributing groundwater influenced summer detrital resources; shallow groundwater-fed streams had reduced summer resources compared to deep groundwater-fed streams. Our results demonstrate that predicting in-stream carbon cycling requires explicit consideration of the phenology of resource inputs and the seasonal timing of environmental factors, notably stream thermal regimes.

森林溪流的颗粒有机碳输入主要来自落叶。利用数据信息模拟,我们探讨了枯落物类型(慢分解与快分解物种)、秋季脉冲式枯落物输入、地下水介导的温度机制以及气候变暖如何影响三阶溪流网络中的枯落物分解。我们发现,这些变量之间随时间变化的相互作用影响着网络尺度的垃圾分解物候学,在当前和未来的情景下,慢分解垃圾的热敏感性更高。地下水热输入通过降低春季和夏季垃圾分解通量、提高冬季垃圾分解通量,改变了垃圾分解物候学。在未来气候变暖的情况下,地下水的来源深度会影响夏季的碎屑资源;浅层地下水注入的溪流与深层地下水注入的溪流相比,夏季的碎屑资源会减少。我们的研究结果表明,预测溪流中的碳循环需要明确考虑资源输入的物候和环境因素的季节性时间,特别是溪流的热制度。
{"title":"Leaf litter breakdown phenology in headwater stream networks is modulated by groundwater thermal regimes and litter type","authors":"Danielle K. Hare,&nbsp;Ashley M. Helton,&nbsp;Carolyn S. Cummins,&nbsp;Phillip M. Bumpers,&nbsp;Nathan J. Tomczyk,&nbsp;Phoenix A. Rogers,&nbsp;Seth J. Wenger,&nbsp;Erin R. Hotchkiss,&nbsp;Amy D. Rosemond,&nbsp;Jonathan P. Benstead","doi":"10.1002/lol2.10423","DOIUrl":"10.1002/lol2.10423","url":null,"abstract":"<p>Leaf litter dominates particulate organic carbon inputs to forest streams. Using data-informed simulations, we explored how litter type (slow- vs. fast-decomposing species), pulsed autumn litter inputs, groundwater-mediated temperature regimes, and climate warming affect litter breakdown in a 3<sup>rd</sup>-order stream network. We found that the time-dependent interactions of these variables govern network-scale litter breakdown phenology, with greater thermal sensitivity of slow-decomposing litter for both current and future scenarios. Groundwater thermal inputs modified litter breakdown phenology by reducing spring and summer and elevating winter litter breakdown fluxes. Under future warming scenarios, the source depth of contributing groundwater influenced summer detrital resources; shallow groundwater-fed streams had reduced summer resources compared to deep groundwater-fed streams. Our results demonstrate that predicting in-stream carbon cycling requires explicit consideration of the phenology of resource inputs and the seasonal timing of environmental factors, notably stream thermal regimes.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 5","pages":"532-542"},"PeriodicalIF":5.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10423","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon emissions from inland waters may be underestimated: Evidence from European river networks fragmented by drying 内陆水域的碳排放量可能被低估了:因干旱而支离破碎的欧洲河网提供的证据
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-04 DOI: 10.1002/lol2.10408
Naiara López-Rojo, Thibault Datry, Francisco J. Peñas, Gabriel Singer, Nicolas Lamouroux, José Barquín, Amaia A. Rodeles, Teresa Silverthorn, Romain Sarremejane, Rubén del Campo, Edurne Estévez, Louise Mimeau, Frédéric Boyer, Annika Künne, Martin Dalvai Ragnoli, Arnaud Foulquier

River networks contribute disproportionately to the global carbon cycle. However, global estimates of carbon emissions from inland waters are based on perennial rivers, even though more than half of the world's river length is prone to drying. We quantified CO2 and CH4 emissions from flowing water and dry riverbeds across six European drying river networks (DRNs, 120 reaches) and three seasons and identified drivers of emissions using local and regional variables. Drivers of emissions from flowing water differed between perennial and non-perennial reaches, both CO2 and CH4 emissions were controlled partly by the annual drying severity, reflecting a drying legacy effect. Upscaled CO2 emissions for the six DRNs at the annual scale revealed that dry riverbeds contributed up to 77% of the annual emissions, calling for an urgent need to include non-perennial rivers in global estimates of greenhouse gas emissions.

河网对全球碳循环的贡献不成比例。然而,全球对内陆水域碳排放量的估算是基于常年河流,尽管全球一半以上的河流长度都容易干涸。我们量化了欧洲六个干涸河网(DRNs,120 个河段)和三个季节中流水和干涸河床的二氧化碳和甲烷排放量,并利用当地和区域变量确定了排放的驱动因素。流水排放的驱动因素在多年生和非多年生河段之间存在差异,二氧化碳和甲烷排放在一定程度上受年度干旱严重程度的控制,反映了干旱遗留效应。对六个干旱区域网的二氧化碳排放量进行年度放大后发现,干涸河床的排放量占年度排放量的 77%,因此迫切需要将非多年生河流纳入全球温室气体排放量估算中。
{"title":"Carbon emissions from inland waters may be underestimated: Evidence from European river networks fragmented by drying","authors":"Naiara López-Rojo,&nbsp;Thibault Datry,&nbsp;Francisco J. Peñas,&nbsp;Gabriel Singer,&nbsp;Nicolas Lamouroux,&nbsp;José Barquín,&nbsp;Amaia A. Rodeles,&nbsp;Teresa Silverthorn,&nbsp;Romain Sarremejane,&nbsp;Rubén del Campo,&nbsp;Edurne Estévez,&nbsp;Louise Mimeau,&nbsp;Frédéric Boyer,&nbsp;Annika Künne,&nbsp;Martin Dalvai Ragnoli,&nbsp;Arnaud Foulquier","doi":"10.1002/lol2.10408","DOIUrl":"10.1002/lol2.10408","url":null,"abstract":"<p>River networks contribute disproportionately to the global carbon cycle. However, global estimates of carbon emissions from inland waters are based on perennial rivers, even though more than half of the world's river length is prone to drying. We quantified CO<sub>2</sub> and CH<sub>4</sub> emissions from flowing water and dry riverbeds across six European drying river networks (DRNs, 120 reaches) and three seasons and identified drivers of emissions using local and regional variables. Drivers of emissions from flowing water differed between perennial and non-perennial reaches, both CO<sub>2</sub> and CH<sub>4</sub> emissions were controlled partly by the annual drying severity, reflecting a drying legacy effect. Upscaled CO<sub>2</sub> emissions for the six DRNs at the annual scale revealed that dry riverbeds contributed up to 77% of the annual emissions, calling for an urgent need to include non-perennial rivers in global estimates of greenhouse gas emissions.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 5","pages":"553-562"},"PeriodicalIF":5.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10408","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consistency in marine heatwave experiments for ecological relevance and application: Key problems and solutions 海洋热浪实验的一致性与生态相关性及应用:关键问题与解决方案
IF 7.8 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-02 DOI: 10.1002/lol2.10418
Deevesh A. Hemraj, Bayden D. Russell
{"title":"Consistency in marine heatwave experiments for ecological relevance and application: Key problems and solutions","authors":"Deevesh A. Hemraj, Bayden D. Russell","doi":"10.1002/lol2.10418","DOIUrl":"https://doi.org/10.1002/lol2.10418","url":null,"abstract":"","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"51 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grazer-induced changes on mechanical properties of diatoms frustule: A new proof for a watery arms race 噬菌体诱发的硅藻嵴椎机械特性变化:水中军备竞赛的新证据
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-01 DOI: 10.1002/lol2.10419
Huo Xu, Fengyuan Chen, Xiaodong Zhang, Zhen Zhang, Ke Pan, Hongbin Liu

We investigated changes in physiology and mechanical properties of diatoms exposed to chemical cues released by copepods Pseudodiaptomus annandalei. Our results showed that the diatoms Phaeodactylum tricornutum, Cylindrotheca closterium, Thalassiosira weissflogii, and Amphora coffeaeformis exhibited elevated growth rates and a substantial 2- to 50-fold increase in biogenic silica (BSi) content increase when exposed to the chemical cues except for Cyclotella sp. Atomic force microscopy and X-ray photoelectron spectroscopy analyses revealed that diatom frustules exhibited a remarkable 3- to 10-fold increase in modulus and a substantial 2- to 5-fold increase in hardness when they received grazing signals. The increase in the proportion of condensed silicon in the frustules could be the major reason for the more mechanically robust cells. Our results indicate that diatoms simultaneously increase their growth rate and robustness when exposed to copepod chemical cues. This study at the nanoscale enhanced our understanding of how diatoms respond to zooplankton predation in marine ecosystems.

我们研究了硅藻在桡足类黄腹假桡足类(Pseudodiaptomus annandalei)释放的化学线索作用下的生理和机械特性变化。结果表明,硅藻 Phaeodactylum tricornutum、Cylindrotheca closterium、Thalassiosira weissflogii 和 Amphora coffeaeformis 在暴露于化学线索时,生长速度加快,生物硅(BSi)含量大幅增加 2 到 50 倍,但 Cyclotella sp.原子力显微镜和 X 射线光电子能谱分析表明,硅藻在接受放牧信号时,其挫折模量显著增加 3 至 10 倍,硬度大幅增加 2 至 5 倍。硅藻块根中凝结硅比例的增加可能是细胞具有更强机械强度的主要原因。我们的研究结果表明,硅藻在受到桡足类化学线索的影响时,其生长速度和稳健性会同时提高。这项纳米尺度的研究加深了我们对海洋生态系统中硅藻如何应对浮游动物捕食的理解。
{"title":"Grazer-induced changes on mechanical properties of diatoms frustule: A new proof for a watery arms race","authors":"Huo Xu,&nbsp;Fengyuan Chen,&nbsp;Xiaodong Zhang,&nbsp;Zhen Zhang,&nbsp;Ke Pan,&nbsp;Hongbin Liu","doi":"10.1002/lol2.10419","DOIUrl":"10.1002/lol2.10419","url":null,"abstract":"<p>We investigated changes in physiology and mechanical properties of diatoms exposed to chemical cues released by copepods <i>Pseudodiaptomus annandalei</i>. Our results showed that the diatoms <i>Phaeodactylum tricornutum</i>, <i>Cylindrotheca closterium</i>, <i>Thalassiosira weissflogii</i>, and <i>Amphora coffeaeformis</i> exhibited elevated growth rates and a substantial 2- to 50-fold increase in biogenic silica (BSi) content increase when exposed to the chemical cues except for <i>Cyclotella</i> sp. Atomic force microscopy and X-ray photoelectron spectroscopy analyses revealed that diatom frustules exhibited a remarkable 3- to 10-fold increase in modulus and a substantial 2- to 5-fold increase in hardness when they received grazing signals. The increase in the proportion of condensed silicon in the frustules could be the major reason for the more mechanically robust cells. Our results indicate that diatoms simultaneously increase their growth rate and robustness when exposed to copepod chemical cues. This study at the nanoscale enhanced our understanding of how diatoms respond to zooplankton predation in marine ecosystems.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"754-763"},"PeriodicalIF":5.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowing your limits: Patterns and drivers of nutrient limitation and nutrient–chlorophyll relationships in US lakes 了解你的极限:美国湖泊养分限制和养分-叶绿素关系的模式和驱动因素
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-07-01 DOI: 10.1002/lol2.10420
Ian M. McCullough, Xinyu Sun, Patrick J. Hanly, Patricia A. Soranno

Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad-scale studies of the characteristics of phosphorus (P)-, nitrogen (N)-, and co-limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll a (Chl a) samples, we showed that US lakes are predominantly co-limited (43%) or P-limited (41%). Majorities of lakes were P-limited in the Northeast, Upper Midwest, and Southeast, and co-limitation was most prevalent in the interior and western United States. N-limitation (16%) was more prevalent than P-limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl a concentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.

尽管了解湖泊初级生产力的养分限制是湖泊学中最古老的研究重点之一,但对磷(P)-、氮(N)-和共限制湖泊的特征及其环境背景的大范围研究却很少。通过分析美国 3342 个同时采集磷、氮和叶绿素 a(Chl a)样本的湖泊,我们发现美国的湖泊主要是共限湖(43%)或磷限湖(41%)。东北部、上中西部和东南部的大多数湖泊都存在磷限制,而共同限制在美国内陆和西部最为普遍。在大盆地和中部平原,氮限制(16%)比磷限制更普遍。养分限制与湖泊、流域和区域变量有关,包括 Chl a 浓度、流域土壤和湿硝酸盐沉积。氮和磷的浓度相互作用,影响着养分与叶绿素的关系,这种关系因养分限制而异。我们的研究表明,在营养盐限制和营养盐-叶绿素关系中,考虑磷、氮和环境背景很有价值。
{"title":"Knowing your limits: Patterns and drivers of nutrient limitation and nutrient–chlorophyll relationships in US lakes","authors":"Ian M. McCullough,&nbsp;Xinyu Sun,&nbsp;Patrick J. Hanly,&nbsp;Patricia A. Soranno","doi":"10.1002/lol2.10420","DOIUrl":"10.1002/lol2.10420","url":null,"abstract":"<p>Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad-scale studies of the characteristics of phosphorus (P)-, nitrogen (N)-, and co-limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophyll <i>a</i> (Chl <i>a</i>) samples, we showed that US lakes are predominantly co-limited (43%) or P-limited (41%). Majorities of lakes were P-limited in the Northeast, Upper Midwest, and Southeast, and co-limitation was most prevalent in the interior and western United States. N-limitation (16%) was more prevalent than P-limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chl <i>a</i> concentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"725-734"},"PeriodicalIF":5.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Limnology and Oceanography Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1