首页 > 最新文献

Limnology and Oceanography Letters最新文献

英文 中文
Disaster avoided: current state of the Baltic Sea without human intervention to reduce nutrient loads 避免灾难:在没有人为干预减少营养负荷的情况下波罗的海的现状
IF 7.8 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-10-03 DOI: 10.1002/lol2.10443
Eva Ehrnsten, Christoph Humborg, Erik Gustafsson, Bo G. Gustafsson
Excessive nutrient inputs have caused eutrophication of coastal ecosystems worldwide, triggering extensive algal blooms, oxygen‐depletion, and collapse of local fisheries. In the Baltic Sea, inputs of nitrogen (N) and phosphorus (P) have been significantly reduced since the 1980s, but the environmental state shows little to no signs of recovery. However, a simulation with continued high loads from the mid‐1980s demonstrates that while the state has not improved yet, it would be considerably worse today without the load reductions (e.g., 82% larger oxygen‐free bottom areas and 104% and 58% higher wintertime concentrations of inorganic N and P, respectively, in the Baltic Proper). Additional simulations with current nutrient loads continuing into the future indicate that conditions will likely improve in the coming decades. This study underscores the significance of acting on early warning signs of eutrophication, and furthermore how sustained efforts to decrease nutrient loads can mitigate the severity of eutrophication.
过量的营养物质输入造成了全球沿海生态系统的富营养化,引发了大面积的藻类大量繁殖、氧气耗尽以及当地渔业的崩溃。在波罗的海,自 20 世纪 80 年代以来,氮(N)和磷(P)的输入量已大幅减少,但环境状况几乎没有恢复的迹象。然而,对 20 世纪 80 年代中期以来持续高负荷的模拟表明,虽然环境状况尚未改善,但如果不减少负荷,今天的环境状况将大为恶化(例如,波罗的海本岛的无氧海底面积扩大了 82%,冬季无机氮和磷的浓度分别增加了 104% 和 58%)。在当前营养物质负荷持续到未来的情况下进行的其他模拟表明,未来几十年的情况可能会有所改善。这项研究强调了对富营养化早期预警信号采取行动的重要性,以及持续努力降低营养负荷如何能够减轻富营养化的严重程度。
{"title":"Disaster avoided: current state of the Baltic Sea without human intervention to reduce nutrient loads","authors":"Eva Ehrnsten, Christoph Humborg, Erik Gustafsson, Bo G. Gustafsson","doi":"10.1002/lol2.10443","DOIUrl":"https://doi.org/10.1002/lol2.10443","url":null,"abstract":"Excessive nutrient inputs have caused eutrophication of coastal ecosystems worldwide, triggering extensive algal blooms, oxygen‐depletion, and collapse of local fisheries. In the Baltic Sea, inputs of nitrogen (N) and phosphorus (P) have been significantly reduced since the 1980s, but the environmental state shows little to no signs of recovery. However, a simulation with continued high loads from the mid‐1980s demonstrates that while the state has not improved yet, it would be considerably worse today without the load reductions (e.g., 82% larger oxygen‐free bottom areas and 104% and 58% higher wintertime concentrations of inorganic N and P, respectively, in the Baltic Proper). Additional simulations with current nutrient loads continuing into the future indicate that conditions will likely improve in the coming decades. This study underscores the significance of acting on early warning signs of eutrophication, and furthermore how sustained efforts to decrease nutrient loads can mitigate the severity of eutrophication.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"223 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme plasticity in the photosystem composition of a low-light Prochlorococcus ecotype in response to iron and light 低光照 Prochlorococcus 生态型光系统结构对铁和光照的极端可塑性反应
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-28 DOI: 10.1002/lol2.10441
Xin Zhang, William G. Sunda, Haizheng Hong, Dalin Shi

Light affects the cellular iron (Fe) requirement of phytoplankton because of its presence in major photosynthetic proteins. Thus, interactions between variable Fe concentrations and light intensities could restrict photosynthetic carbon fixation in the ocean. Here we show a narrowing of the optimal light range for growth of a marine cyanobacterium, Prochlorococcus strain NATL1A, a member of LLI ecotype, under Fe limitation. The response of the cells to variations in Fe and light involved differential changes in the cellular content of low-Fe photosystem II (PSII) and Fe-rich photosystem I (PSI), and associated up to 23-fold changes in PSII : PSI ratios, showing an unprecedented extreme plasticity of the photosynthetic apparatus. Our study demonstrated the physiological effects of Fe and light interactions on this low-light-adapted Prochlorococcus strain, and increases our understanding of the reasons for the wide distribution of this and possibly other Prochlorococcus strains in the ocean.

由于浮游植物的主要光合作用蛋白质中含有铁(Fe),因此光照会影响浮游植物细胞对铁(Fe)的需求。因此,不同的铁浓度和光照强度之间的相互作用可能会限制海洋中的光合碳固定。在此,我们展示了一种海洋蓝藻--LLI 生态型的 Prochlorococcus 菌株 NATL1A--在铁限制条件下生长的最佳光照范围的缩小。细胞对铁和光照变化的反应涉及低铁光合系统 II(PSII)和富铁光合系统 I(PSI)细胞含量的不同变化,以及相关的 PSII : PSI 比率高达 23 倍的变化,显示了光合装置前所未有的极端可塑性。我们的研究证明了铁与光相互作用对这种适应低光的原绿球藻菌株的生理影响,并加深了我们对这种菌株及其他可能的原绿球藻菌株在海洋中广泛分布的原因的了解。
{"title":"Extreme plasticity in the photosystem composition of a low-light Prochlorococcus ecotype in response to iron and light","authors":"Xin Zhang,&nbsp;William G. Sunda,&nbsp;Haizheng Hong,&nbsp;Dalin Shi","doi":"10.1002/lol2.10441","DOIUrl":"10.1002/lol2.10441","url":null,"abstract":"<p>Light affects the cellular iron (Fe) requirement of phytoplankton because of its presence in major photosynthetic proteins. Thus, interactions between variable Fe concentrations and light intensities could restrict photosynthetic carbon fixation in the ocean. Here we show a narrowing of the optimal light range for growth of a marine cyanobacterium, <i>Prochlorococcus</i> strain NATL1A, a member of LLI ecotype, under Fe limitation. The response of the cells to variations in Fe and light involved differential changes in the cellular content of low-Fe photosystem II (PSII) and Fe-rich photosystem I (PSI), and associated up to 23-fold changes in PSII : PSI ratios, showing an unprecedented extreme plasticity of the photosynthetic apparatus. Our study demonstrated the physiological effects of Fe and light interactions on this low-light-adapted <i>Prochlorococcus</i> strain, and increases our understanding of the reasons for the wide distribution of this and possibly other <i>Prochlorococcus</i> strains in the ocean.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"10 1","pages":"82-90"},"PeriodicalIF":5.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unexpected mismatches in population structure among marine mussel life-history stages reveal the true scales of planktonic larval dispersal 海洋贻贝生命史各阶段种群结构的意外错配揭示了浮游幼体扩散的真实规模
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-23 DOI: 10.1002/lol2.10439
Jody-Carynn Oliver, Francesca Porri, Arsalan Emami-Khoyi, Peter R. Teske

Studies investigating gene flow in sessile or sedentary marine species typically draw conclusions about larval dispersal by investigating genetic structure of adults. Here, we generated microsatellite data from adults, recruits, settlers and planktonic larvae of the brown mussel, Perna perna, from the southeast coast of South Africa, and identified a consistent mismatch in genetic structure between the adults and all earlier life stages. While adults could be assigned to two major geographical groups (western and eastern), most of the early-stage mussels were strongly affiliated with the eastern group. This suggests that few of the early-stage individuals present in the western portion of the sampling range will eventually establish themselves in the adult population, highlighting the importance of post-recruitment processes as drivers of population structure. Our findings caution against the exclusive use of genetic data generated from adults to assess population connectivity facilitated by the dispersal of planktonic propagules.

调查无梗或定居海洋物种基因流动的研究通常通过调查成体的遗传结构来得出幼体扩散的结论。在这里,我们从南非东南海岸的褐贻贝(Perna perna)的成体、新兵、定居者和浮游幼虫中获得了微卫星数据,发现成体和所有早期生命阶段的遗传结构存在一致的不匹配。虽然成体可归属于两个主要的地理群体(西部和东部),但大多数早期贻贝与东部群体有很强的关联性。这表明,采样范围西部的早期贻贝个体最终很少能在成体种群中立足,这突出了后招募过程作为种群结构驱动因素的重要性。我们的研究结果提醒我们,不要完全使用成体产生的遗传数据来评估浮游繁殖体扩散所促进的种群连通性。
{"title":"Unexpected mismatches in population structure among marine mussel life-history stages reveal the true scales of planktonic larval dispersal","authors":"Jody-Carynn Oliver,&nbsp;Francesca Porri,&nbsp;Arsalan Emami-Khoyi,&nbsp;Peter R. Teske","doi":"10.1002/lol2.10439","DOIUrl":"10.1002/lol2.10439","url":null,"abstract":"<p>Studies investigating gene flow in sessile or sedentary marine species typically draw conclusions about larval dispersal by investigating genetic structure of adults. Here, we generated microsatellite data from adults, recruits, settlers and planktonic larvae of the brown mussel, <i>Perna perna</i>, from the southeast coast of South Africa, and identified a consistent mismatch in genetic structure between the adults and all earlier life stages. While adults could be assigned to two major geographical groups (western and eastern), most of the early-stage mussels were strongly affiliated with the eastern group. This suggests that few of the early-stage individuals present in the western portion of the sampling range will eventually establish themselves in the adult population, highlighting the importance of post-recruitment processes as drivers of population structure. Our findings caution against the exclusive use of genetic data generated from adults to assess population connectivity facilitated by the dispersal of planktonic propagules.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"806-814"},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Global subterranean estuaries modify groundwater nutrient loading to the ocean” 对 "全球地下河口改变了地下水对海洋的营养负荷 "的更正
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-20 DOI: 10.1002/lol2.10433

Wilson, S. J., and others. 2024. Global subterranean estuaries modify groundwater nutrient loading to the ocean. Limnol. Oceanogr.: Lett. 9: 411–422. doi:10.1002/lol2.10390.

In the author affiliation section, the first and third affiliation for the co-author “Michael Ernst Böttcher” have been revised to “Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany” and “Interdisciplinary Faculty, University of Rostock, Rostock, Germany.” The second affiliation has no changes and it has been left as it was stated originally in this article when it was first published online.

We apologize for this error.

Wilson, S. J., and others.2024.Global subterranean estuaries modify groundwater nutrient loading to the ocean.Limnol.Oceanogr:Lett.9: 411-422. doi:10.1002/lol2.10390.In the author affiliation section, the first and third affiliation for the co-author "Michael Ernst Böttcher" have been revised to "Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany" and "Interdisciplinary Faculty, University of Rostock, Rostock, Germany."。第二个单位没有变化,保持了本文首次在线发表时的原样。
{"title":"Correction to “Global subterranean estuaries modify groundwater nutrient loading to the ocean”","authors":"","doi":"10.1002/lol2.10433","DOIUrl":"10.1002/lol2.10433","url":null,"abstract":"<p>Wilson, S. J., and others. 2024. Global subterranean estuaries modify groundwater nutrient loading to the ocean. Limnol. Oceanogr.: Lett. <b>9</b>: 411–422. doi:10.1002/lol2.10390.</p><p>In the author affiliation section, the first and third affiliation for the co-author “Michael Ernst Böttcher” have been revised to “Geochemistry &amp; Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany” and “Interdisciplinary Faculty, University of Rostock, Rostock, Germany.” The second affiliation has no changes and it has been left as it was stated originally in this article when it was first published online.</p><p>We apologize for this error.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"837"},"PeriodicalIF":5.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineating population structure of resilient sea/river‐type sockeye salmon 划定具有恢复力的海洋/河流型红鲑的种群结构
IF 7.8 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-19 DOI: 10.1002/lol2.10437
Kyle G. Brennan, Sean R. Brennan, Timothy Cline, Gabriel J. Bowen
Conserving wild fisheries requires identifying and monitoring distinct populations, yet prevalent genetic approaches often do not integrate habitat data and may not fully delineate these structures. This issue is critical in sea/river‐type sockeye salmon (Oncorhynchus nerka), an ecotype whose specific spawning habitats better define distinct breeding populations. Despite possessing traits that confer greater resilience to climate change and significant contributions to wild fisheries, gene flow among groups dilutes genetic structure, making it difficult to track populations. We focus on sea/river sockeye from one of the Pacific Rim's largest Sockeye fisheries, combining river strontium (Sr) isotope predictions, otolith Sr isotope measurements, and a Bayesian assignment model with a 4‐yr radiotelemetry and genetic dataset (n = 1994) to delineate the geographic structure of spawning habitats. Our results identify four distinct subpopulations with unique natal habitat Sr isotope ratios previously undifferentiated by genetic methods, providing a novel approach to monitor critical groups over multiple years.
保护野生渔业需要识别和监测不同的种群,但目前流行的遗传方法往往没有整合栖息地数据,可能无法完全划分这些结构。这个问题对海洋/河流型红鲑鱼(Oncorhynchus nerka)至关重要,这种生态型的特定产卵栖息地能更好地界定不同的繁殖种群。尽管红鲑具有更强的抵御气候变化的能力,并对野生渔业做出了重大贡献,但群体间的基因流动稀释了遗传结构,使得追踪种群变得困难。我们重点研究了环太平洋地区最大的红衫鱼渔业之一的海/河红衫鱼,将河流锶(Sr)同位素预测、耳石 Sr 同位素测量和贝叶斯分配模型与 4 年的放射性遥测和遗传数据集(n = 1994)相结合,划分产卵栖息地的地理结构。我们的研究结果确定了四个不同的亚群,它们具有独特的产卵栖息地钍同位素比率,而以前的遗传方法无法区分它们,这为多年监测关键群体提供了一种新方法。
{"title":"Delineating population structure of resilient sea/river‐type sockeye salmon","authors":"Kyle G. Brennan, Sean R. Brennan, Timothy Cline, Gabriel J. Bowen","doi":"10.1002/lol2.10437","DOIUrl":"https://doi.org/10.1002/lol2.10437","url":null,"abstract":"Conserving wild fisheries requires identifying and monitoring distinct populations, yet prevalent genetic approaches often do not integrate habitat data and may not fully delineate these structures. This issue is critical in sea/river‐type sockeye salmon (<jats:italic>Oncorhynchus nerka</jats:italic>), an ecotype whose specific spawning habitats better define distinct breeding populations. Despite possessing traits that confer greater resilience to climate change and significant contributions to wild fisheries, gene flow among groups dilutes genetic structure, making it difficult to track populations. We focus on sea/river sockeye from one of the Pacific Rim's largest Sockeye fisheries, combining river strontium (Sr) isotope predictions, otolith Sr isotope measurements, and a Bayesian assignment model with a 4‐yr radiotelemetry and genetic dataset (<jats:italic>n</jats:italic> = 1994) to delineate the geographic structure of spawning habitats. Our results identify four distinct subpopulations with unique natal habitat Sr isotope ratios previously undifferentiated by genetic methods, providing a novel approach to monitor critical groups over multiple years.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"24 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing phenology in limnology and oceanography 推进湖沼学和海洋学中的物候学研究
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-12 DOI: 10.1002/lol2.10432
Hilary A. Dugan, Zachary S. Feiner, Monika Winder, Heidi M. Sosik, Emily H. Stanley
<p>Phenology, the study of the seasonal timing of natural phenomena, is a central construct in ecology, focusing on interactions between temporal changes in the physical environment and the structuring of annual organismal, population, community, and ecosystem dynamics (Forrest and Miller-Rushing <span>2010</span>). In aquatic ecology, phenology explicitly or implicitly forms the basis of several foundational concepts. For example, the match/mismatch hypothesis (Cushing <span>1990</span>) theorizes that the survival of newly hatched fish larvae will depend on their temporal overlap with peak production of their food resources, namely plankton, and was explicitly developed from earlier phenological studies of phytoplankton (Cushing <span>1967</span>) and fish spawning (Hjort <span>1914</span>; Cushing <span>1969</span>). The Plankton Ecology Group (PEG) model (Sommer et al. <span>1986</span>, <span>2012</span>) implicitly draws on phenological concepts to explain observed, predictable seasonal succession in plankton communities.</p><p>Despite the centrality of phenology in how we understand aquatic ecosystems, the study of aquatic phenology lags behind its terrestrial counterpart. We see three related explanations for slower progress in the aquatic realm. First and most simply, observing phenological phenomena in aquatic systems is difficult because they occur out of sight, and monitoring is costly as a result. Terrestrial research has benefited from the wealth of observations collected by well-coordinated volunteer networks (e.g., National Phenology Network [NPN], European Phenology Network, and the Global Phenological Monitoring Programme) that report observations often at a daily timescale outfitted with little to no equipment. Aquatic representation within these programs is largely limited to observations of the appearance of aquatic birds, large fish, amphibians, or budding/blooming of well-known riparian or wetland vegetation. The relative ease of tracking terrestrial organisms has also allowed deeper investigations of the ecological and evolutionary processes driving terrestrial phenology, including the ability of organisms to adapt to shifting seasonality (Anderson et al. <span>2012</span>; Kingsolver and Buckley <span>2015</span>). Thus, it is not surprising that a literature search on the study of phenology reveals a terrestrial bias, with studies dominated by topics such as the timing of bird migration or the appearance of various developmental stages among a range of plant species and locations.</p><p>Second, the problem of observing subsurface events or behaviors is compounded by the short life cycles and small body sizes of key aquatic groups. Short generation times mean that notable phenological events occur rapidly and briefly, and small body sizes allow many species to escape notice even under the best of circumstances. Thus, one cannot track the appearance and decline of a spring phytoplankton bloom or the emergence of zooplankto
物候学是对自然现象的季节性时间的研究,是生态学的核心概念,其重点是物理环境中的时间变化与年度生物、种群、群落和生态系统动态结构之间的相互作用(Forrest 和 Miller-Rushing,2010 年)。在水生生态学中,物候学或明或暗地构成了几个基本概念的基础。例如,"匹配/错配假说"(Cushing,1990 年)认为,新孵化鱼类幼体的存活率取决于其与食物资源(即浮游生物)生产高峰期的时间重合度,该假说是根据早期对浮游植物(Cushing,1967 年)和鱼类产卵(Hjort,1914 年;Cushing,1969 年)的物候学研究明确提出的。浮游生物生态学小组(PEG)模型(Sommer 等人,1986 年,2012 年)隐含地借鉴了物候学概念,以解释浮游生物群落中观察到的可预测的季节演替。我们认为水生领域进展缓慢有三个相关原因。首先,也是最简单的一点,水生系统中的物候现象很难观测,因为它们发生在视线之外,因此监测成本很高。陆地研究得益于协调良好的志愿者网络(如国家物候网络(NPN)、欧洲物候网络和全球物候监测计划)所收集的大量观测数据,这些网络通常每天都会报告观测结果,几乎不需要任何设备。在这些计划中,水生生物的代表性主要局限于观测水鸟、大型鱼类、两栖动物的出现,或知名河岸或湿地植被的萌芽/开花。陆地生物的追踪相对容易,这也使得人们能够更深入地研究驱动陆地物候的生态和进化过程,包括生物适应季节性变化的能力(Anderson 等,2012 年;Kingsolver 和 Buckley,2015 年)。因此,对物候学研究进行文献检索,就不难发现陆地物候学偏向于鸟类迁徙的时间或一系列植物物种和地点的不同发育阶段的出现等主题。世代时间短意味着显著的物候事件会迅速而短暂地发生,体型小使得许多物种即使在最好的情况下也能逃脱注意。因此,人们无法通过海岸线观测或简单的相机设置来跟踪春季浮游植物绽放的出现和衰退,或浮游动物从休眠期的出现。要记录这些和其他水生物候,需要在具有挑战性的条件下采用先进技术(遥感、自主浮标)和/或在数十年内频繁取样,才能评估其模式和变化。这些后勤障碍的最终结果是,对于某些生物而言,物候研究所需的连续十年数据集非常罕见或根本不存在(Woods 等,2022 年)。在海洋和内陆水域研究中,研究最多的物候现象是季节性冰的开始和融化以及浮游植物生物量高峰的时间(如 Racault 等,2012 年;Ji 等,2013 年;Henson 等,2018 年)。湖冰(Sharma 等,2016 年,2019 年)因其长达一个世纪的记录、面对气候变化时的快速变化以及由此带来的恶名而与众不同,已成为淡水世界的樱花(Aono 和 Kazui,2008 年)。这个例子表明了与陆地研究的区别:陆地研究主要强调物种层面的事件,而水生科学家则扩展了物候学的定义,将物理、化学以及生物事件都包括在内,通常关注生态系统过程以及物种动态。例如,分层和缺氧现象的出现通常用物候学的语言表达(Woolway 等,2021 年;Rohwer 等,2024 年),部分原因是物理生境对生态系统动力学的重要性(Ladwig 等,2022 年)。水生物候学研究的第二个显著特点是物候学(即时间)与季节性(即事件或过程的 周期性,可以承认也可以忽略其确切时间)的进一步延伸或混淆。
{"title":"Advancing phenology in limnology and oceanography","authors":"Hilary A. Dugan,&nbsp;Zachary S. Feiner,&nbsp;Monika Winder,&nbsp;Heidi M. Sosik,&nbsp;Emily H. Stanley","doi":"10.1002/lol2.10432","DOIUrl":"10.1002/lol2.10432","url":null,"abstract":"&lt;p&gt;Phenology, the study of the seasonal timing of natural phenomena, is a central construct in ecology, focusing on interactions between temporal changes in the physical environment and the structuring of annual organismal, population, community, and ecosystem dynamics (Forrest and Miller-Rushing &lt;span&gt;2010&lt;/span&gt;). In aquatic ecology, phenology explicitly or implicitly forms the basis of several foundational concepts. For example, the match/mismatch hypothesis (Cushing &lt;span&gt;1990&lt;/span&gt;) theorizes that the survival of newly hatched fish larvae will depend on their temporal overlap with peak production of their food resources, namely plankton, and was explicitly developed from earlier phenological studies of phytoplankton (Cushing &lt;span&gt;1967&lt;/span&gt;) and fish spawning (Hjort &lt;span&gt;1914&lt;/span&gt;; Cushing &lt;span&gt;1969&lt;/span&gt;). The Plankton Ecology Group (PEG) model (Sommer et al. &lt;span&gt;1986&lt;/span&gt;, &lt;span&gt;2012&lt;/span&gt;) implicitly draws on phenological concepts to explain observed, predictable seasonal succession in plankton communities.&lt;/p&gt;&lt;p&gt;Despite the centrality of phenology in how we understand aquatic ecosystems, the study of aquatic phenology lags behind its terrestrial counterpart. We see three related explanations for slower progress in the aquatic realm. First and most simply, observing phenological phenomena in aquatic systems is difficult because they occur out of sight, and monitoring is costly as a result. Terrestrial research has benefited from the wealth of observations collected by well-coordinated volunteer networks (e.g., National Phenology Network [NPN], European Phenology Network, and the Global Phenological Monitoring Programme) that report observations often at a daily timescale outfitted with little to no equipment. Aquatic representation within these programs is largely limited to observations of the appearance of aquatic birds, large fish, amphibians, or budding/blooming of well-known riparian or wetland vegetation. The relative ease of tracking terrestrial organisms has also allowed deeper investigations of the ecological and evolutionary processes driving terrestrial phenology, including the ability of organisms to adapt to shifting seasonality (Anderson et al. &lt;span&gt;2012&lt;/span&gt;; Kingsolver and Buckley &lt;span&gt;2015&lt;/span&gt;). Thus, it is not surprising that a literature search on the study of phenology reveals a terrestrial bias, with studies dominated by topics such as the timing of bird migration or the appearance of various developmental stages among a range of plant species and locations.&lt;/p&gt;&lt;p&gt;Second, the problem of observing subsurface events or behaviors is compounded by the short life cycles and small body sizes of key aquatic groups. Short generation times mean that notable phenological events occur rapidly and briefly, and small body sizes allow many species to escape notice even under the best of circumstances. Thus, one cannot track the appearance and decline of a spring phytoplankton bloom or the emergence of zooplankto","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 5","pages":"506-511"},"PeriodicalIF":5.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple climatic drivers increase pace and consequences of ecosystem change in the Arctic Coastal Ocean 多种气候驱动因素加快了北冰洋沿岸生态系统变化的速度并加剧了其后果
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-09-12 DOI: 10.1002/lol2.10431
Mikael K. Sejr, Amanda E. Poste, Paul E. Renaud

The impacts of climate change on Arctic marine systems are noticeable within the scientific “lifetime” of most researchers and the iconic image of a polar bear struggling to stay on top of a melting ice floe captures many of the dominant themes of Arctic marine ecosystem change. But has our focus on open-ocean systems and parameters that are more easily modeled and sensed remotely neglected an element that is responding more dramatically and with broader implications for Arctic ecosystems? We argue that a complementary set of changes to the open ocean is occurring along Arctic coasts, amplified by the interaction with changes on land and in the sea. We observe an increased number of ecosystem drivers with larger implications for the ecological and human communities they touch than are quantifiable in the open Arctic Ocean. Substantial knowledge gaps exist that must be filled to support adaptation and sustainability of socioecological systems along Arctic coasts.

气候变化对北极海洋系统的影响在大多数研究人员的科学 "有生之年 "都是显而易见的,北极熊在融化的浮冰上挣扎的标志性形象捕捉到了北极海洋生态系统变化的许多主导主题。但是,我们对开阔洋系统和参数的关注是否忽略了一个更容易建模和遥感的因素,而这个因素的反应更为剧烈,对北极生态系统的影响也更为广泛?我们认为,在与陆地和海洋变化的相互作用下,北极沿岸正在发生一系列与公海互补的变化。我们观察到生态系统驱动因素的数量有所增加,这些因素对其所涉及的生态和人类社区的影响比在开阔的北冰洋中可量化的影响更大。要支持北极沿岸社会生态系统的适应性和可持续性,必须填补大量的知识空白。
{"title":"Multiple climatic drivers increase pace and consequences of ecosystem change in the Arctic Coastal Ocean","authors":"Mikael K. Sejr,&nbsp;Amanda E. Poste,&nbsp;Paul E. Renaud","doi":"10.1002/lol2.10431","DOIUrl":"10.1002/lol2.10431","url":null,"abstract":"<p>The impacts of climate change on Arctic marine systems are noticeable within the scientific “lifetime” of most researchers and the iconic image of a polar bear struggling to stay on top of a melting ice floe captures many of the dominant themes of Arctic marine ecosystem change. But has our focus on open-ocean systems and parameters that are more easily modeled and sensed remotely neglected an element that is responding more dramatically and with broader implications for Arctic ecosystems? We argue that a complementary set of changes to the open ocean is occurring along Arctic coasts, amplified by the interaction with changes on land and in the sea. We observe an increased number of ecosystem drivers with larger implications for the ecological and human communities they touch than are quantifiable in the open Arctic Ocean. Substantial knowledge gaps exist that must be filled to support adaptation and sustainability of socioecological systems along Arctic coasts.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"683-695"},"PeriodicalIF":5.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dataset of individual wet weights of benthic macroinvertebrates 底栖大型无脊椎动物个体湿重数据集
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-08-26 DOI: 10.1002/lol2.10428
Allison R. Hrycik, Lyubov E. Burlakova, Alexander Y. Karatayev, Susan E. Daniel, Ronald Dermott, Morgan Tarbell, Elizabeth K. Hinchey

Biomass estimates are crucial for modeling and understanding energy flow through ecosystems. Many modeling frameworks rely on published body weights of organisms to convert density estimates to biomass. However, published body weight data are limited to few taxa in a limited number of systems. Here we present mean individual weights for common benthic macroinvertebrates of the Laurentian Great Lakes from over 2000 benthic samples and 8 yr of data collection. We also compiled wet to dry weight conversions to facilitate data reuse for researchers interested in dry weight. We compared our benthic invertebrate weights to other lakes, demonstrating when weight measurements may be applied outside the Great Lakes. Sensitivity analyses supported the robustness of our calculations. Our dataset is applicable to food web energy flow models, calculation of secondary production, interpretation of trophic markers, and for understanding how biomass distribution varies by benthic invertebrate species in the Great Lakes.

生物量估算对于模拟和了解生态系统中的能量流至关重要。许多建模框架依赖于已公布的生物体重,将密度估算值转换为生物量。然而,已公布的体重数据仅限于有限系统中的少数分类群。在此,我们介绍了劳伦森五大湖常见底栖大型无脊椎动物的平均个体重量,这些数据来自 2000 多个底栖样本和 8 年的数据收集。我们还编制了湿重与干重的换算,以方便对干重感兴趣的研究人员重新使用数据。我们将底栖无脊椎动物的重量与其他湖泊进行了比较,证明了重量测量在五大湖以外地区的应用。敏感性分析证明了我们计算的稳健性。我们的数据集适用于食物网能量流模型、计算次生产量、解释营养标记以及了解五大湖底栖无脊椎动物物种的生物量分布如何变化。
{"title":"A dataset of individual wet weights of benthic macroinvertebrates","authors":"Allison R. Hrycik,&nbsp;Lyubov E. Burlakova,&nbsp;Alexander Y. Karatayev,&nbsp;Susan E. Daniel,&nbsp;Ronald Dermott,&nbsp;Morgan Tarbell,&nbsp;Elizabeth K. Hinchey","doi":"10.1002/lol2.10428","DOIUrl":"10.1002/lol2.10428","url":null,"abstract":"<p>Biomass estimates are crucial for modeling and understanding energy flow through ecosystems. Many modeling frameworks rely on published body weights of organisms to convert density estimates to biomass. However, published body weight data are limited to few taxa in a limited number of systems. Here we present mean individual weights for common benthic macroinvertebrates of the Laurentian Great Lakes from over 2000 benthic samples and 8 yr of data collection. We also compiled wet to dry weight conversions to facilitate data reuse for researchers interested in dry weight. We compared our benthic invertebrate weights to other lakes, demonstrating when weight measurements may be applied outside the Great Lakes. Sensitivity analyses supported the robustness of our calculations. Our dataset is applicable to food web energy flow models, calculation of secondary production, interpretation of trophic markers, and for understanding how biomass distribution varies by benthic invertebrate species in the Great Lakes.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"696-715"},"PeriodicalIF":5.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eutrophication and urbanization enhance methane emissions from coastal lagoons 富营养化和城市化加剧了沿海泻湖的甲烷排放
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-08-24 DOI: 10.1002/lol2.10430
Stefano Bonaglia, Henry L. S. Cheung, Tobia Politi, Irma Vybernaite-Lubiene, Tristan McKenzie, Isaac R. Santos, Mindaugas Zilius

Coastal lagoons are important nutrient filters and carbon sinks but may release large amounts of methane (CH4) to the atmosphere. Here, we hypothesize that eutrophication and population density will turn coastal lagoons into stronger methane emitters. We report benthic fluxes from 187 sediment cores incubated from three of the largest European lagoons suffering persistent eutrophication. Methane fluxes were mainly driven by sediment porosity, organic matter, and dissolved inorganic carbon (DIC) fluxes. Methane was always supersaturated (250–49,000%) in lagoon waters leading to large, variable emissions of 0.04–26 mg CH4 m−2 d−1. Combining our new dataset with earlier estimates revealed a global coastal lagoon emission of 7.9 (1.4–34.7) Tg CH4 yr−1 with median values of 5.4 mg CH4 m−2 d−1. Lagoons with very highly populated catchments released much more methane (223 mg CH4 m−2 d−1). Overall, projected increases in eutrophication, organic loading and population densities will enhance methane fluxes from lagoons worldwide.

沿海泻湖是重要的营养物过滤器和碳汇,但可能会向大气释放大量甲烷(CH4)。在这里,我们假设富营养化和人口密度将使沿海泻湖成为更强的甲烷排放源。我们报告了从三个遭受持续富营养化的欧洲最大环礁湖培养的 187 个沉积物岩心中提取的底栖生物甲烷通量。甲烷通量主要受沉积物孔隙度、有机物和溶解无机碳(DIC)通量的影响。甲烷在泻湖水域中始终处于过饱和状态(250%-49,000%),导致了大量不同的排放量(0.04-26 毫克 CH4 m-2 d-1)。将我们的新数据集与之前的估计值相结合,发现全球沿海泻湖的甲烷排放量为 7.9 (1.4-34.7) Tg CH4 yr-1,中值为 5.4 mg CH4 m-2 d-1。人口密度非常高的集水区释放的甲烷要多得多(223 毫克 CH4 m-2 d-1)。总体而言,预计富营养化、有机负荷和人口密度的增加将提高全球泻湖的甲烷通量。
{"title":"Eutrophication and urbanization enhance methane emissions from coastal lagoons","authors":"Stefano Bonaglia,&nbsp;Henry L. S. Cheung,&nbsp;Tobia Politi,&nbsp;Irma Vybernaite-Lubiene,&nbsp;Tristan McKenzie,&nbsp;Isaac R. Santos,&nbsp;Mindaugas Zilius","doi":"10.1002/lol2.10430","DOIUrl":"10.1002/lol2.10430","url":null,"abstract":"<p>Coastal lagoons are important nutrient filters and carbon sinks but may release large amounts of methane (CH<sub>4</sub>) to the atmosphere. Here, we hypothesize that eutrophication and population density will turn coastal lagoons into stronger methane emitters. We report benthic fluxes from 187 sediment cores incubated from three of the largest European lagoons suffering persistent eutrophication. Methane fluxes were mainly driven by sediment porosity, organic matter, and dissolved inorganic carbon (DIC) fluxes. Methane was always supersaturated (250–49,000%) in lagoon waters leading to large, variable emissions of 0.04–26 mg CH<sub>4</sub> m<sup>−2</sup> d<sup>−1</sup>. Combining our new dataset with earlier estimates revealed a global coastal lagoon emission of 7.9 (1.4–34.7) Tg CH<sub>4</sub> yr<sup>−1</sup> with median values of 5.4 mg CH<sub>4</sub> m<sup>−2</sup> d<sup>−1</sup>. Lagoons with very highly populated catchments released much more methane (223 mg CH<sub>4</sub> m<sup>−2</sup> d<sup>−1</sup>). Overall, projected increases in eutrophication, organic loading and population densities will enhance methane fluxes from lagoons worldwide.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"10 1","pages":"140-150"},"PeriodicalIF":5.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tagging of water masses with covariance of trace metals and prokaryotic taxa in the Southern Ocean 用南大洋痕量金属和原核生物分类群的协方差标记水团
IF 5.1 2区 地球科学 Q1 LIMNOLOGY Pub Date : 2024-08-22 DOI: 10.1002/lol2.10429
Rui Zhang, Stéphane Blain, Corentin Baudet, Hélène Planquette, Frédéric Vivier, Philippe Catala, Olivier Crispi, Audrey Guéneuguès, Barbara Marie, Pavla Debeljak, Ingrid Obernosterer

Marine microbes are strongly interrelated to trace metals in the ocean. How the availability of trace metals selects for prokaryotic taxa and the potential feedback of microbial processes on the trace metal distribution in the ocean remain poorly understood. We investigate here the potential reciprocal links between diverse prokaryotic taxa and iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) as well as apparent oxygen utilization (AOU) across 12 well-defined water masses in the Southern Indian Ocean (SWINGS—South West Indian Ocean GEOTRACES GS02 Section cruise). Applying partial least square regression (PLSR) analysis, we show that the water masses are associated with particular latent vectors that are a combination of the spatial distribution of prokaryotic taxa, trace elements, and AOU. This approach provides novel insights on the potential interactions between prokaryotic taxa and trace metals in relation to organic matter remineralization in distinct water masses of the ocean.

海洋微生物与海洋中的痕量金属密切相关。人们对痕量金属如何选择原核生物类群以及微生物过程对海洋痕量金属分布的潜在反馈作用仍然知之甚少。我们在此研究了南印度洋(SWINGS-西南印度洋 GEOTRACES GS02 航段)12 个明确界定的水团中不同原核生物类群与铁(Fe)、锰(Mn)、铜(Cu)和镍(Ni)以及表观氧利用率(AOU)之间的潜在相互联系。通过偏最小二乘法回归(PLSR)分析,我们发现这些水团与特定的潜在矢量有关,这些矢量是原核生物分类群、痕量元素和表观氧利用率空间分布的组合。这种方法为原核生物类群与痕量金属之间的潜在相互作用提供了新的见解,这种相互作用与海洋中不同水团的有机物再矿化有关。
{"title":"Tagging of water masses with covariance of trace metals and prokaryotic taxa in the Southern Ocean","authors":"Rui Zhang,&nbsp;Stéphane Blain,&nbsp;Corentin Baudet,&nbsp;Hélène Planquette,&nbsp;Frédéric Vivier,&nbsp;Philippe Catala,&nbsp;Olivier Crispi,&nbsp;Audrey Guéneuguès,&nbsp;Barbara Marie,&nbsp;Pavla Debeljak,&nbsp;Ingrid Obernosterer","doi":"10.1002/lol2.10429","DOIUrl":"10.1002/lol2.10429","url":null,"abstract":"<p>Marine microbes are strongly interrelated to trace metals in the ocean. How the availability of trace metals selects for prokaryotic taxa and the potential feedback of microbial processes on the trace metal distribution in the ocean remain poorly understood. We investigate here the potential reciprocal links between diverse prokaryotic taxa and iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) as well as apparent oxygen utilization (AOU) across 12 well-defined water masses in the Southern Indian Ocean (<i>SWINGS—South West Indian Ocean GEOTRACES GS02 Section</i> cruise). Applying partial least square regression (PLSR) analysis, we show that the water masses are associated with particular latent vectors that are a combination of the spatial distribution of prokaryotic taxa, trace elements, and AOU. This approach provides novel insights on the potential interactions between prokaryotic taxa and trace metals in relation to organic matter remineralization in distinct water masses of the ocean.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"776-784"},"PeriodicalIF":5.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Limnology and Oceanography Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1