Elvira de Eyto, Robyn L. Smyth, Rachel M. Pilla, Alo Laas, Amir Reza Shahabinia, Angela Baldocchi, Ankur R. Desai, Anna Lupon, Annalea Lohila, Biel Obrador, Blaize A. Denfeld, Cayelan C. Carey, David Bastviken, David Reed, David Rudberg, Eva-Ingrid Rõõm, Francois Clayer, Gesa A. Weyhenmeyer, Hannah E. Chmiel, Hans Peter Grossart, Heleen A. de Wit, Ilga Kokorite, Jan-Erik Thrane, Jānis Bikše, James A. Rusak, Jorge Encinas Fernández, José Fernandes Bezerra-Neto, Ludmila S. Brighenti, Matthias Koschorreck, Mika Aurela, Nathan Barros, Philipp S. Keller, R. Iestyn Woolway, Rafael Marcé, Ryan P. McClure, Samuel Haverinen, Sari Juutinen, Sarian Kosten, Steve Sadro, Brian C. Doyle
Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO2). In situ measurements of CO2 flux (FCO2) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole-lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO2 across lakes. We sampled 21 lakes over 41 campaigns and measured FCO2 at 4-h intervals over a full diel cycle. Rates of FCO2 ranged from −3.16 to 4.39 mmol m−2 h−1. Integrated over a day, FCO2 ranged from −381.68 to 878.49 mg C m−2 d−1 (mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO2 related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement.
湖泊作为二氧化碳的源和汇,在全球碳循环中发挥着重要作用。湖泊的CO2通量(FCO2)的现场测量通常是在白天收集的,尽管有明显的昼夜变化迹象。当按比例放大到整个湖泊的年度水生碳预算时,这就引入了偏差。我们进行了一项国际抽样计划,以确定湖泊中FCO2的昼夜变化程度。我们在41个活动中对21个湖泊进行了采样,并在整个昼夜循环中每隔4小时测量FCO2。FCO2的速率范围为−3.16 ~ 4.39 mmol m−2 h−1。在一天内,整个活动的FCO2范围为- 381.68至878.49 mg cm - 2 d - 1(平均值= 76.54)。我们确定了与营养状态相关的FCO2的三种特征日模式,并表明在一半的活动中,如果基于单一(白天)测量,日通量估计偏差为50%。
{"title":"Diel variation in CO2 flux is substantial in many lakes","authors":"Elvira de Eyto, Robyn L. Smyth, Rachel M. Pilla, Alo Laas, Amir Reza Shahabinia, Angela Baldocchi, Ankur R. Desai, Anna Lupon, Annalea Lohila, Biel Obrador, Blaize A. Denfeld, Cayelan C. Carey, David Bastviken, David Reed, David Rudberg, Eva-Ingrid Rõõm, Francois Clayer, Gesa A. Weyhenmeyer, Hannah E. Chmiel, Hans Peter Grossart, Heleen A. de Wit, Ilga Kokorite, Jan-Erik Thrane, Jānis Bikše, James A. Rusak, Jorge Encinas Fernández, José Fernandes Bezerra-Neto, Ludmila S. Brighenti, Matthias Koschorreck, Mika Aurela, Nathan Barros, Philipp S. Keller, R. Iestyn Woolway, Rafael Marcé, Ryan P. McClure, Samuel Haverinen, Sari Juutinen, Sarian Kosten, Steve Sadro, Brian C. Doyle","doi":"10.1002/lol2.70066","DOIUrl":"10.1002/lol2.70066","url":null,"abstract":"<p>Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO<sub>2</sub>). In situ measurements of CO<sub>2</sub> flux (FCO<sub>2</sub>) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole-lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO<sub>2</sub> across lakes. We sampled 21 lakes over 41 campaigns and measured FCO<sub>2</sub> at 4-h intervals over a full diel cycle. Rates of FCO<sub>2</sub> ranged from −3.16 to 4.39 mmol m<sup>−2</sup> h<sup>−1</sup>. Integrated over a day, FCO<sub>2</sub> ranged from −381.68 to 878.49 mg C m<sup>−2</sup> d<sup>−1</sup> (mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO<sub>2</sub> related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"10 6","pages":"977-989"},"PeriodicalIF":5.0,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregory L. Britten, Bror Jönsson, Gemma Kulk, Heather A. Bouman, Michael J. Follows, Shubha Sathyendranath
Photosynthesis–irradiance (PI) relationships are important for phytoplankton ecology and quantifying carbon fixation rates in the environment. However, the parameters of PI relationships are typically unknown across space and time. Here we use machine learning, satellite remote-sensing, and a database of in situ PI relationships to build models that predict the seasonal cycle of PI parameters as a function of satellite-observed variables. Using only surface light, temperature, and chlorophyll, we achieve an R2 of 58% for predicting photosynthesis rates at saturating light (