首页 > 最新文献

Materials and Corrosion-werkstoffe Und Korrosion最新文献

英文 中文
Contents: Materials and Corrosion. 8/2024 内容:材料与腐蚀。8/2024
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1002/maco.202470083
{"title":"Contents: Materials and Corrosion. 8/2024","authors":"","doi":"10.1002/maco.202470083","DOIUrl":"10.1002/maco.202470083","url":null,"abstract":"","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 8","pages":"946-949"},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202470083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Materials and Corrosion. 8/2024 刊头:材料与腐蚀8/2024
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1002/maco.202470082
{"title":"Masthead: Materials and Corrosion. 8/2024","authors":"","doi":"10.1002/maco.202470082","DOIUrl":"10.1002/maco.202470082","url":null,"abstract":"","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 8","pages":"945"},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202470082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Materials and Corrosion. 8/2024 封面图片:材料与腐蚀。8/2024
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1002/maco.202470081
Maria Asuncion Valiente Bermejo, Alice Moya Núñez, Rikard Norling

Cover:

SEM-EDS analysis of edge section of tube # 9 (Kanthal ® APMT). A type of grain boundary related attack is observed in this specimen. The bright spots correspond to RE elements.

More detailed information can be found in: Maria Asuncion Valiente Bermejo, Alice Moya Núñez, Rikard Norling, Metal loss and corrosion attack of FeCrAl overlay welds on evaporator tube shields of a waste-fi red power plant, Materials and Corrosion 2024, 75, 950.

封面:9 号试管(Kanthal ® APMT)边缘部分的 SEM-EDS 分析。在该试样中观察到一种与晶界相关的侵蚀。更多详细信息,请参阅:Maria Asuncion Valiente Bermejo:Maria Asuncion Valiente Bermejo、Alice Moya Núñez、Rikard Norling,废火电厂蒸发器管屏蔽上的铁铬铝堆焊焊缝的金属损失和腐蚀侵蚀,《材料与腐蚀》2024 年第 75 期,950 页。
{"title":"Cover Picture: Materials and Corrosion. 8/2024","authors":"Maria Asuncion Valiente Bermejo,&nbsp;Alice Moya Núñez,&nbsp;Rikard Norling","doi":"10.1002/maco.202470081","DOIUrl":"10.1002/maco.202470081","url":null,"abstract":"<p><b>Cover:</b></p><p>SEM-EDS analysis of edge section of tube # 9 (Kanthal ® APMT). A type of grain boundary related attack is observed in this specimen. The bright spots correspond to RE elements.</p><p>More detailed information can be found in: <i>Maria Asuncion Valiente Bermejo, Alice Moya Núñez, Rikard Norling</i>, Metal loss and corrosion attack of FeCrAl overlay welds on evaporator tube shields of a waste-fi red power plant, <i>Materials and Corrosion</i> <b>2024</b>, <i>75</i>, 950.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 8","pages":"943"},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202470081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of heat treatment on the microstructure, LBE corrosion resistance, and bonding strength of the FeCrAl-based coatings 热处理对铁铬铝基涂层的微观结构、抗 LBE 腐蚀性和结合强度的影响
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-21 DOI: 10.1002/maco.202414331
Wei Zhang, Mingyang Zhou, Huifang Yue, Danmin Peng, Xi Qiu, Jijun Yang

The bonding strength and LBE corrosion resistance of the Fe15Cr11Al2Si, Fe15Cr11Al0.5Y, and Fe15Cr11Al2Si0.5Y coatings heat-treated at 500–650°C for 500 h were investigated. The results showed that the as-deposited Fe15Cr11Al0.5Y coating has the strongest bonding strength with the F/M steel cladding tube compared with the Fe15Cr11Al2Si and Fe15Cr11Al2Si0.5Y coatings. Heat treatment deteriorates the bonding performance of the coatings, and obvious enrichment of Cr and Al elements appeared. The consumed Al element inside the heat-treated coatings promotes the formation of Fe3O4 on the surface of the coatings after the corrosion test. The Y element can inhibit the enrichment of elements and the formation of Fe3O4. The bonding strength of the heat-treated coatings can be improved after the corrosion test. The underlying mechanism of the evolution of microstructure and properties of the coatings after heat treatment and corrosion test was discussed.

研究了在 500-650°C 下热处理 500 h 的 Fe15Cr11Al2Si、Fe15Cr11Al0.5Y 和 Fe15Cr11Al2Si0.5Y 涂层的结合强度和抗 LBE 腐蚀性能。结果表明,与 Fe15Cr11Al2Si 和 Fe15Cr11Al2Si0.5Y 涂层相比,原敷设的 Fe15Cr11Al0.5Y 涂层与 F/M 包覆钢管的结合强度最强。热处理会恶化涂层的结合性能,出现明显的铬和铝元素富集。热处理涂层内部消耗的铝元素促进了腐蚀试验后涂层表面 Fe3O4 的形成。Y 元素可以抑制元素的富集和 Fe3O4 的形成。腐蚀试验后,热处理涂层的结合强度可以得到改善。讨论了热处理和腐蚀试验后涂层微观结构和性能演变的内在机理。
{"title":"Effect of heat treatment on the microstructure, LBE corrosion resistance, and bonding strength of the FeCrAl-based coatings","authors":"Wei Zhang,&nbsp;Mingyang Zhou,&nbsp;Huifang Yue,&nbsp;Danmin Peng,&nbsp;Xi Qiu,&nbsp;Jijun Yang","doi":"10.1002/maco.202414331","DOIUrl":"10.1002/maco.202414331","url":null,"abstract":"<p>The bonding strength and LBE corrosion resistance of the Fe15Cr11Al2Si, Fe15Cr11Al0.5Y, and Fe15Cr11Al2Si0.5Y coatings heat-treated at 500–650°C for 500 h were investigated. The results showed that the as-deposited Fe15Cr11Al0.5Y coating has the strongest bonding strength with the F/M steel cladding tube compared with the Fe15Cr11Al2Si and Fe15Cr11Al2Si0.5Y coatings. Heat treatment deteriorates the bonding performance of the coatings, and obvious enrichment of Cr and Al elements appeared. The consumed Al element inside the heat-treated coatings promotes the formation of Fe<sub>3</sub>O<sub>4</sub> on the surface of the coatings after the corrosion test. The Y element can inhibit the enrichment of elements and the formation of Fe<sub>3</sub>O<sub>4</sub>. The bonding strength of the heat-treated coatings can be improved after the corrosion test. The underlying mechanism of the evolution of microstructure and properties of the coatings after heat treatment and corrosion test was discussed.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1406-1428"},"PeriodicalIF":1.6,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterisation of black conversion coating of Cr(NO3)3–CoCl2–NiCl2 of Zn–Ni alloy electroplated on 2024 aluminium alloy surface 在 2024 铝合金表面电镀 Zn-Ni 合金的 Cr(NO3)3-CoCl2-NiCl2 黑色转化镀层的制备与表征
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-19 DOI: 10.1002/maco.202414414
Tingyi Chen, Qiming Huang, Hongtao Zhu, Yaqi Ma

To meet the application requirements of electronic connectors, a trivalent chromium process (TCP) conversion coating was prepared on the Zn–Ni alloy plating of 2024 aluminium alloy. The composition of the TCP solution was as follows: 45 g/L Cr(NO3)3, 14 g/L CoCl2, 1.3 g/L NiCl2, 10 g/L citric acid, 10 g/L succinic acid and 1 g/L sodium dodecyl sulphate. The properties of TCP were characterised by a range of techniques, including macroscopic observations, scanning electron microscope, energy-dispersive X-ray spectrometer, three-dimensional (3D) morphometry, electrochemical impedance spectroscopy, polarisation curves and conductivity tests. The TCP prepared in this experiment exhibits a uniform black colour and bright appearance, predominantly composed of Zn, Ni, O, Cr and Co. The TCP enhances the impedance of Zn–Ni alloys, reduces the corrosion current to 1.99 × 10−5 A/cm2 and maintains a flatter surface 3D morphology and less surface roughness following electrochemical testing. It has better corrosion resistance. Following the preparation of the TCP on a suitably sized shell sample, the shell resistance was 1.2 mVDC with good electrical conductivity, which meets the requirements for electrical connector applications.

为满足电子连接器的应用要求,在 2024 铝合金的 Zn-Ni 合金电镀层上制备了三价铬工艺(TCP)转换涂层。TCP 溶液的成分如下:45 g/L Cr(NO3)3、14 g/L CoCl2、1.3 g/L NiCl2、10 g/L 柠檬酸、10 g/L 丁二酸和 1 g/L 十二烷基硫酸钠。通过一系列技术对 TCP 的特性进行了表征,包括宏观观察、扫描电子显微镜、能量色散 X 射线光谱仪、三维(3D)形态测量、电化学阻抗光谱、极化曲线和电导率测试。本实验制备的 TCP 呈均匀的黑色,外观明亮,主要成分为 Zn、Ni、O、Cr 和 Co。TCP 可增强 Zn-Ni 合金的阻抗,将腐蚀电流降低到 1.99 × 10-5 A/cm2 ,并在电化学测试后保持较平坦的表面 3D 形貌和较小的表面粗糙度。它具有更好的耐腐蚀性。在适当大小的外壳样品上制备 TCP 后,外壳电阻为 1.2 mVDC,导电性能良好,符合电气连接器应用的要求。
{"title":"Preparation and characterisation of black conversion coating of Cr(NO3)3–CoCl2–NiCl2 of Zn–Ni alloy electroplated on 2024 aluminium alloy surface","authors":"Tingyi Chen,&nbsp;Qiming Huang,&nbsp;Hongtao Zhu,&nbsp;Yaqi Ma","doi":"10.1002/maco.202414414","DOIUrl":"10.1002/maco.202414414","url":null,"abstract":"<p>To meet the application requirements of electronic connectors, a trivalent chromium process (TCP) conversion coating was prepared on the Zn–Ni alloy plating of 2024 aluminium alloy. The composition of the TCP solution was as follows: 45 g/L Cr(NO<sub>3</sub>)<sub>3</sub>, 14 g/L CoCl<sub>2</sub>, 1.3 g/L NiCl<sub>2</sub>, 10 g/L citric acid, 10 g/L succinic acid and 1 g/L sodium dodecyl sulphate. The properties of TCP were characterised by a range of techniques, including macroscopic observations, scanning electron microscope, energy-dispersive X-ray spectrometer, three-dimensional (3D) morphometry, electrochemical impedance spectroscopy, polarisation curves and conductivity tests. The TCP prepared in this experiment exhibits a uniform black colour and bright appearance, predominantly composed of Zn, Ni, O, Cr and Co. The TCP enhances the impedance of Zn–Ni alloys, reduces the corrosion current to 1.99 × 10<sup>−5 </sup>A/cm<sup>2</sup> and maintains a flatter surface 3D morphology and less surface roughness following electrochemical testing. It has better corrosion resistance. Following the preparation of the TCP on a suitably sized shell sample, the shell resistance was 1.2 mVDC with good electrical conductivity, which meets the requirements for electrical connector applications.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1463-1471"},"PeriodicalIF":1.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the corrosion behavior of as-cast Mg-Zn-Ca alloys with the same Zn/Ca atomic ratio by in situ observation 通过原位观测研究具有相同锌/钙原子比的铸态镁锌钙合金的腐蚀行为
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-17 DOI: 10.1002/maco.202414362
Ye Tian, Yixuan Shao, Qianqian Yu, Shilei Guo, Ruofei Dang, Yiming Du, Guanhong Zhu, Shaoyuan Lyu, Minfang Chen

The alloying contents with the same Zn/Ca atomic ratio of 0.13 on the corrosion behavior of Mg-Zn-Ca (ZX) alloys were investigated. The second phases in ZX10, ZX20, ZX30, and ZX51 alloys were identical with a majority of Mg2Ca and very few Ca2Mg6Zn3 and their distribution changed from isolated to continuous state in ZX30 and ZX51. ZX10 had the lowest corrosion rate of 0.55 mm/year after 168 h immersion in simulated body fluid solution due to the smallest number of sites of galvanic corrosion. The corrosion rate of ZX30 alloy was the highest (0.72 mm/year), while though ZX51 alloy had the most Mg2Ca, its corrosion rate was reduced to 0.69 mm/year, resulting from the small size and thin Mg2Ca. In situ microstructure observation demonstrated the high fraction Mg2Ca phase and continuous Mg2Ca with bulky size were the main reason for the fast corrosion rate.

研究了 Zn/Ca 原子比为 0.13 的合金含量对 Mg-Zn-Ca (ZX) 合金腐蚀行为的影响。ZX10、ZX20、ZX30 和 ZX51 合金中的第二相完全相同,大部分为 Mg2Ca,只有极少量的 Ca2Mg6Zn3,而且在 ZX30 和 ZX51 中,第二相的分布从孤立状态变为连续状态。在模拟体液溶液中浸泡 168 小时后,ZX10 的腐蚀速率最低,为 0.55 毫米/年,这是因为它的电化学腐蚀点数量最少。ZX30 合金的腐蚀速率最高(0.72 毫米/年),而 ZX51 合金虽然含有最多的 Mg2Ca,但由于 Mg2Ca 尺寸小、厚度薄,其腐蚀速率降至 0.69 毫米/年。原位显微结构观察表明,高分量 Mg2Ca 相和尺寸大的连续 Mg2Ca 是腐蚀速率快的主要原因。
{"title":"Investigating the corrosion behavior of as-cast Mg-Zn-Ca alloys with the same Zn/Ca atomic ratio by in situ observation","authors":"Ye Tian,&nbsp;Yixuan Shao,&nbsp;Qianqian Yu,&nbsp;Shilei Guo,&nbsp;Ruofei Dang,&nbsp;Yiming Du,&nbsp;Guanhong Zhu,&nbsp;Shaoyuan Lyu,&nbsp;Minfang Chen","doi":"10.1002/maco.202414362","DOIUrl":"10.1002/maco.202414362","url":null,"abstract":"<p>The alloying contents with the same Zn/Ca atomic ratio of 0.13 on the corrosion behavior of Mg-Zn-Ca (ZX) alloys were investigated. The second phases in ZX10, ZX20, ZX30, and ZX51 alloys were identical with a majority of Mg<sub>2</sub>Ca and very few Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> and their distribution changed from isolated to continuous state in ZX30 and ZX51. ZX10 had the lowest corrosion rate of 0.55 mm/year after 168 h immersion in simulated body fluid solution due to the smallest number of sites of galvanic corrosion. The corrosion rate of ZX30 alloy was the highest (0.72 mm/year), while though ZX51 alloy had the most Mg<sub>2</sub>Ca, its corrosion rate was reduced to 0.69 mm/year, resulting from the small size and thin Mg<sub>2</sub>Ca. In situ microstructure observation demonstrated the high fraction Mg<sub>2</sub>Ca phase and continuous Mg<sub>2</sub>Ca with bulky size were the main reason for the fast corrosion rate.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1472-1483"},"PeriodicalIF":1.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature oxidation of Cu–Al–Ni–Mn shape-memory alloy 铜-铝-镍-锰形状记忆合金的高温氧化
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1002/maco.202414438
Edelize Angélica Gomes, Renato Altobelli Antunes, Eric Marchezini Mazzer, Vanessa de Freitas Cunha Lins

The isothermal oxidation behavior of the Cu-11.35Al-3.2Ni-3.5Mn (wt.%) shape-memory alloy (SMA) in the temperature range of 500–900°C in oxygen was studied using the thermogravimetric (TG) method. TG curve showed that the alloy has parabolic isothermal oxidation characteristics. The effect of oxidation on the surface morphology and chemical composition of the Cu–Al–Ni–Mn alloy was determined by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The oxidation rate of SMA increases up to 700°C, remains stable at 800°C, and increases again up to 900°C. The XPS analysis identified that the corrosion products mainly contained MnO2, MnO/Mn2O3, and Al2O3.

采用热重法(TG)研究了 Cu-11.35Al-3.2Ni-3.5Mn (wt.%) 形状记忆合金(SMA)在氧气中于 500-900°C 温度范围内的等温氧化行为。TG 曲线显示合金具有抛物线等温氧化特性。通过扫描电子显微镜、能量色散光谱和 X 射线光电子能谱(XPS)分析,确定了氧化对铜-铝-镍-锰合金表面形貌和化学成分的影响。SMA 的氧化率在 700°C 时上升,800°C 时保持稳定,900°C 时再次上升。XPS 分析表明,腐蚀产物主要含有 MnO2、MnO/Mn2O3 和 Al2O3。
{"title":"High-temperature oxidation of Cu–Al–Ni–Mn shape-memory alloy","authors":"Edelize Angélica Gomes,&nbsp;Renato Altobelli Antunes,&nbsp;Eric Marchezini Mazzer,&nbsp;Vanessa de Freitas Cunha Lins","doi":"10.1002/maco.202414438","DOIUrl":"10.1002/maco.202414438","url":null,"abstract":"<p>The isothermal oxidation behavior of the Cu-11.35Al-3.2Ni-3.5Mn (wt.%) shape-memory alloy (SMA) in the temperature range of 500–900°C in oxygen was studied using the thermogravimetric (TG) method. TG curve showed that the alloy has parabolic isothermal oxidation characteristics. The effect of oxidation on the surface morphology and chemical composition of the Cu–Al–Ni–Mn alloy was determined by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The oxidation rate of SMA increases up to 700°C, remains stable at 800°C, and increases again up to 900°C. The XPS analysis identified that the corrosion products mainly contained MnO<sub>2</sub>, MnO/Mn<sub>2</sub>O<sub>3</sub>, and Al<sub>2</sub>O<sub>3</sub>.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1429-1437"},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated microbiologically influenced corrosion of copper by sulfate-reducing bacterium Desulfovibrio desulfovibrio 受硫酸盐还原菌脱硫弧菌影响的微生物对铜的加速腐蚀
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1002/maco.202414451
Lijuan Chen, Jialin Li, Bo Wei, Jin Xu, Cheng Sun

The corrosion behavior and electrochemical damage mechanisms induced by sulfate-reducing bacteria (SRB) on copper (Cu) were investigated in this study. Electrochemical impedance spectroscopy revealed that SRB accelerated the corrosion of Cu, albeit with a mitigating effect observed due to the formation of a protective and dense biofilm. However, upon the rupture of this protective film, the corrosion tendency of Cu significantly increased. Surface analysis corroborated these findings, with the predominant corrosion product identified as Cu2S, a result further supported by thermodynamic calculations. The accelerated corrosion of Cu was primarily attributed to the physiological metabolism of SRB, which generates hydrogen sulfide as the principal agent driving corrosion processes.

本研究调查了硫酸盐还原菌(SRB)对铜(Cu)的腐蚀行为和电化学损伤机制。电化学阻抗谱显示,SRB 加速了铜的腐蚀,尽管由于形成了一层致密的生物保护膜而起到了缓解作用。然而,当这层保护膜破裂时,铜的腐蚀趋势明显加剧。表面分析证实了这些发现,主要的腐蚀产物是 Cu2S,热力学计算进一步支持了这一结果。铜的加速腐蚀主要归因于 SRB 的生理代谢,它产生的硫化氢是驱动腐蚀过程的主要物质。
{"title":"Accelerated microbiologically influenced corrosion of copper by sulfate-reducing bacterium Desulfovibrio desulfovibrio","authors":"Lijuan Chen,&nbsp;Jialin Li,&nbsp;Bo Wei,&nbsp;Jin Xu,&nbsp;Cheng Sun","doi":"10.1002/maco.202414451","DOIUrl":"10.1002/maco.202414451","url":null,"abstract":"<p>The corrosion behavior and electrochemical damage mechanisms induced by sulfate-reducing bacteria (SRB) on copper (Cu) were investigated in this study. Electrochemical impedance spectroscopy revealed that SRB accelerated the corrosion of Cu, albeit with a mitigating effect observed due to the formation of a protective and dense biofilm. However, upon the rupture of this protective film, the corrosion tendency of Cu significantly increased. Surface analysis corroborated these findings, with the predominant corrosion product identified as Cu2S, a result further supported by thermodynamic calculations. The accelerated corrosion of Cu was primarily attributed to the physiological metabolism of SRB, which generates hydrogen sulfide as the principal agent driving corrosion processes.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1495-1505"},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: Materials and Corrosion. 7/2024 内容:材料与腐蚀。7/2024
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1002/maco.202470073
{"title":"Contents: Materials and Corrosion. 7/2024","authors":"","doi":"10.1002/maco.202470073","DOIUrl":"https://doi.org/10.1002/maco.202470073","url":null,"abstract":"","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 7","pages":"826-829"},"PeriodicalIF":1.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202470073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Materials and Corrosion. 7/2024 封面图片:材料与腐蚀7/2024
IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1002/maco.202470071
Grzegorz Smola, Richard Gawel, Zbigniew Grzesik

Cover:

A multi-layered microstructure of the sulfide scale formed on Al20Co25Cr25Ni25Si5 high entropy alloy at 900°C and 1 kPa of sulfur partial pressure (a), and corresponding EDS maps of elements distribution in the outer, compact part of the sulfide scale (b).

More detailed information can be found in: Grzegorz Smola, Richard Gawel, Zbigniew Grzesik, Sulfidation behavior of an AlCoCrNiSi high entropy alloy, Materials and Corrosion 202475, 830.

封面:Al20Co25Cr25Ni25Si5 高熵合金在 900°C 和 1 kPa 硫分压条件下形成的硫化物鳞片的多层微观结构(a),以及硫化物鳞片外部紧密部分元素分布的相应 EDS 图(b):Grzegorz Smola, Richard Gawel, Zbigniew Grzesik, Sulfidation behavior of an AlCoCrNiSi high entropy alloy, Materials and Corrosion 2024, 75, 830.
{"title":"Cover Picture: Materials and Corrosion. 7/2024","authors":"Grzegorz Smola,&nbsp;Richard Gawel,&nbsp;Zbigniew Grzesik","doi":"10.1002/maco.202470071","DOIUrl":"https://doi.org/10.1002/maco.202470071","url":null,"abstract":"<p><b>Cover:</b></p><p>A multi-layered microstructure of the sulfide scale formed on Al<sub>20</sub>Co<sub>25</sub>Cr<sub>25</sub>Ni<sub>25</sub>Si<sub>5</sub> high entropy alloy at 900°C and 1 kPa of sulfur partial pressure (a), and corresponding EDS maps of elements distribution in the outer, compact part of the sulfide scale (b).</p><p>More detailed information can be found in: <i>Grzegorz Smola, Richard Gawel, Zbigniew Grzesik</i>, Sulfidation behavior of an AlCoCrNiSi high entropy alloy, <i>Materials and Corrosion</i> <b>2024</b>, <i>75</i>, 830.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 7","pages":"823"},"PeriodicalIF":1.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202470071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials and Corrosion-werkstoffe Und Korrosion
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1