Pub Date : 2024-05-01DOI: 10.1016/j.mtener.2024.101604
Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom
{"title":"Shape-tunable and sustainable carbon materials derived from nanocellulose and nanochitin: Carbonization, structures, and applications","authors":"Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom","doi":"10.1016/j.mtener.2024.101604","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101604","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.mtener.2024.101595
Haoran Li, Li Xin, Jiayan Dai, Shiyou Zheng
{"title":"Ion Exchange in Metal-Organic Frameworks and Their Derivatives: A Facile Strategy for Enhanced Water Splitting","authors":"Haoran Li, Li Xin, Jiayan Dai, Shiyou Zheng","doi":"10.1016/j.mtener.2024.101595","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101595","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.mtener.2024.101602
Seung Jae Lee, Sang-Hun Shin, M. Cha, S. Yang, Tae Hoon Kim, Hye Jin Cho, Keun-Hwan Oh, Tae-Ho Kim, Sungjun Kim, J. Lee
{"title":"Anisotropic polyphenylene-based anion exchange membranes with flexible side chains via click reaction for high performance water electrolysis","authors":"Seung Jae Lee, Sang-Hun Shin, M. Cha, S. Yang, Tae Hoon Kim, Hye Jin Cho, Keun-Hwan Oh, Tae-Ho Kim, Sungjun Kim, J. Lee","doi":"10.1016/j.mtener.2024.101602","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101602","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.mtener.2024.101606
Zihan Zhou, Liujun Cao, Linyang Li, Hong Pu, Jiagui You, Guilong Yan, Jianping Long
{"title":"Synergy of Modulating In-Plane Pores and Zincophilic Sites On the Flexible Graphene Paper for Efficient and Dendrite-Free Hosted Zn Anode","authors":"Zihan Zhou, Liujun Cao, Linyang Li, Hong Pu, Jiagui You, Guilong Yan, Jianping Long","doi":"10.1016/j.mtener.2024.101606","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101606","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1016/j.mtener.2024.101589
Chuguang Yu, Feng Wu, Mengmeng Qian, Hanlou Li, Ran Wang, Jing Wang, Xiaoyi Xie, Jiaqi Huang, Guoqiang Tan
Titanium-based materials, including titanium dioxide, alkali-titanium oxides, titanium phosphates/oxyphosphates, titanium-based MXenes, and some other complex titanium compounds, have been regarded as promising anode candidates for Li/Na ion batteries, due to their advantages of good stability, high safety, low cost, and easy synthesis. However, poor electrical conductivity, high work potential, and low output capacity largely hinder the practical applications. Core-shell structure has been widely reported as an effective way to address these problems, and tremendous efforts have been made toward this direction. In this review, we offer an overview of core-shell titanium-based anode engineering for highly efficient and stable Li/Na ion batteries. The review presents the recent progresses and challenges in materials discovery, structure design, and electrode engineering, and highlights the advantages and drawbacks of a series of core-shell engineering strategies. In detail, the material structure, morphology, and composition of various core-shell nanocomposites are reviewed; the structure-activity-stability relationship between core-shell electrodes and electrochemical properties is discussed; the effective strategies for core-shell engineering are summarized, and the development prospects of titanium-based anodes are proposed. We anticipate that this review could provide a systematic understanding of core-shell engineering design of high-performance titanium-based anodes.
{"title":"Core-shell engineering of titanium-based anodes toward enhanced electrochemical lithium/sodium storage performance: a review","authors":"Chuguang Yu, Feng Wu, Mengmeng Qian, Hanlou Li, Ran Wang, Jing Wang, Xiaoyi Xie, Jiaqi Huang, Guoqiang Tan","doi":"10.1016/j.mtener.2024.101589","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101589","url":null,"abstract":"Titanium-based materials, including titanium dioxide, alkali-titanium oxides, titanium phosphates/oxyphosphates, titanium-based MXenes, and some other complex titanium compounds, have been regarded as promising anode candidates for Li/Na ion batteries, due to their advantages of good stability, high safety, low cost, and easy synthesis. However, poor electrical conductivity, high work potential, and low output capacity largely hinder the practical applications. Core-shell structure has been widely reported as an effective way to address these problems, and tremendous efforts have been made toward this direction. In this review, we offer an overview of core-shell titanium-based anode engineering for highly efficient and stable Li/Na ion batteries. The review presents the recent progresses and challenges in materials discovery, structure design, and electrode engineering, and highlights the advantages and drawbacks of a series of core-shell engineering strategies. In detail, the material structure, morphology, and composition of various core-shell nanocomposites are reviewed; the structure-activity-stability relationship between core-shell electrodes and electrochemical properties is discussed; the effective strategies for core-shell engineering are summarized, and the development prospects of titanium-based anodes are proposed. We anticipate that this review could provide a systematic understanding of core-shell engineering design of high-performance titanium-based anodes.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, the safety concern for lithium batteries is mostly on the usage of flammable electrolytes and the lithium dendrite formation. The emerging solid polymer electrolytes (SPEs) have been extensively applied to construct solid-state lithium batteries, which hold great promise to circumvent these problems due to their merits including intrinsically high safety, good stability, and high capacity of lithium (Li) metal. Single-ion conducting polymer electrolytes (SICPEs) have great advantages over traditional SPEs due to their high lithium transference numbers (LTN) (near to 1). SICPEs improve the overall performance of the battery by suppressing both concentration polarization and impedance. Herein, this review is to offer timely update of the development of SPEs for solid-state lithium battery applications. Generally, the fundamental principles, classification, key parameters, and ion transport mechanisms of SPEs are summarized, followed by a discussion on the modification method. Furthermore, for SICPEs, a special focus is on synthesis and tuning of negative charge dispersion. In addition, artificial intelligence (AI) and machine learning (ML) in material design for SPEs are pointed out. Moreover, we bring up the challenges and offer solutions for further development of SPEs in solid-state lithium batteries.
{"title":"Development of solid polymer electrolytes for solid-state lithium battery applications","authors":"Jieyan Li, Xin Chen, Saz Muhammad, Shubham Roy, Haiyan Huang, Chen Yu, Zia Ullah, Zeru Wang, Yinghe Zhang, Ke Wang, Bing Guo","doi":"10.1016/j.mtener.2024.101574","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101574","url":null,"abstract":"Nowadays, the safety concern for lithium batteries is mostly on the usage of flammable electrolytes and the lithium dendrite formation. The emerging solid polymer electrolytes (SPEs) have been extensively applied to construct solid-state lithium batteries, which hold great promise to circumvent these problems due to their merits including intrinsically high safety, good stability, and high capacity of lithium (Li) metal. Single-ion conducting polymer electrolytes (SICPEs) have great advantages over traditional SPEs due to their high lithium transference numbers (LTN) (near to 1). SICPEs improve the overall performance of the battery by suppressing both concentration polarization and impedance. Herein, this review is to offer timely update of the development of SPEs for solid-state lithium battery applications. Generally, the fundamental principles, classification, key parameters, and ion transport mechanisms of SPEs are summarized, followed by a discussion on the modification method. Furthermore, for SICPEs, a special focus is on synthesis and tuning of negative charge dispersion. In addition, artificial intelligence (AI) and machine learning (ML) in material design for SPEs are pointed out. Moreover, we bring up the challenges and offer solutions for further development of SPEs in solid-state lithium batteries.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1016/j.mtener.2024.101570
Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen
NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.
{"title":"In-situ construction of porous carbon substrate from sodium carboxymethyl cellulose boosting ultra-long lifespan for Na3V2(PO4)3 cathode material","authors":"Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen","doi":"10.1016/j.mtener.2024.101570","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101570","url":null,"abstract":"NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}