首页 > 最新文献

Materials Today Energy最新文献

英文 中文
Shape-tunable and sustainable carbon materials derived from nanocellulose and nanochitin: Carbonization, structures, and applications 从纳米纤维素和纳米壳质中提取的形状可调的可持续碳材料:碳化、结构和应用
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101604
Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom
{"title":"Shape-tunable and sustainable carbon materials derived from nanocellulose and nanochitin: Carbonization, structures, and applications","authors":"Thanakorn Yeamsuksawat, Hyo Jeong Kim, Youngho Eom","doi":"10.1016/j.mtener.2024.101604","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101604","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion Exchange in Metal-Organic Frameworks and Their Derivatives: A Facile Strategy for Enhanced Water Splitting 金属有机框架及其衍生物中的离子交换:增强水分离的简便策略
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101595
Haoran Li, Li Xin, Jiayan Dai, Shiyou Zheng
{"title":"Ion Exchange in Metal-Organic Frameworks and Their Derivatives: A Facile Strategy for Enhanced Water Splitting","authors":"Haoran Li, Li Xin, Jiayan Dai, Shiyou Zheng","doi":"10.1016/j.mtener.2024.101595","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101595","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic polyphenylene-based anion exchange membranes with flexible side chains via click reaction for high performance water electrolysis 通过点击反应制备具有柔性侧链的各向异性聚苯乙烯基阴离子交换膜,用于高性能水电解
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101602
Seung Jae Lee, Sang-Hun Shin, M. Cha, S. Yang, Tae Hoon Kim, Hye Jin Cho, Keun-Hwan Oh, Tae-Ho Kim, Sungjun Kim, J. Lee
{"title":"Anisotropic polyphenylene-based anion exchange membranes with flexible side chains via click reaction for high performance water electrolysis","authors":"Seung Jae Lee, Sang-Hun Shin, M. Cha, S. Yang, Tae Hoon Kim, Hye Jin Cho, Keun-Hwan Oh, Tae-Ho Kim, Sungjun Kim, J. Lee","doi":"10.1016/j.mtener.2024.101602","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101602","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy of Modulating In-Plane Pores and Zincophilic Sites On the Flexible Graphene Paper for Efficient and Dendrite-Free Hosted Zn Anode 在柔性石墨烯纸上调节平面内孔隙和亲锌位点的协同作用,实现高效、无树枝状晶粒的锌阳极负载
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101606
Zihan Zhou, Liujun Cao, Linyang Li, Hong Pu, Jiagui You, Guilong Yan, Jianping Long
{"title":"Synergy of Modulating In-Plane Pores and Zincophilic Sites On the Flexible Graphene Paper for Efficient and Dendrite-Free Hosted Zn Anode","authors":"Zihan Zhou, Liujun Cao, Linyang Li, Hong Pu, Jiagui You, Guilong Yan, Jianping Long","doi":"10.1016/j.mtener.2024.101606","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101606","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the degradation mechanism of ruthenium oxide for oxygen evolution reaction in acidic media 重新审视氧化钌在酸性介质中氧进化反应的降解机制
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101603
Yulong Tang, Yichao Lin, Yang Zhang, Mengting Deng, Liang Chen
{"title":"Revisiting the degradation mechanism of ruthenium oxide for oxygen evolution reaction in acidic media","authors":"Yulong Tang, Yichao Lin, Yang Zhang, Mengting Deng, Liang Chen","doi":"10.1016/j.mtener.2024.101603","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101603","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Solar Evaporation Efficiency: Integrating Controllable Water Supply and Efficient Salt Collection Methods 优化太阳能蒸发效率:整合可控供水和高效盐分收集方法
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-05-01 DOI: 10.1016/j.mtener.2024.101588
Sourav Chaule, Jihun Kang, Ji-Hyun Jang
{"title":"Optimizing Solar Evaporation Efficiency: Integrating Controllable Water Supply and Efficient Salt Collection Methods","authors":"Sourav Chaule, Jihun Kang, Ji-Hyun Jang","doi":"10.1016/j.mtener.2024.101588","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101588","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-shell engineering of titanium-based anodes toward enhanced electrochemical lithium/sodium storage performance: a review 增强锂/钠电化学储存性能的钛基阳极核壳工程:综述
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-04-30 DOI: 10.1016/j.mtener.2024.101589
Chuguang Yu, Feng Wu, Mengmeng Qian, Hanlou Li, Ran Wang, Jing Wang, Xiaoyi Xie, Jiaqi Huang, Guoqiang Tan
Titanium-based materials, including titanium dioxide, alkali-titanium oxides, titanium phosphates/oxyphosphates, titanium-based MXenes, and some other complex titanium compounds, have been regarded as promising anode candidates for Li/Na ion batteries, due to their advantages of good stability, high safety, low cost, and easy synthesis. However, poor electrical conductivity, high work potential, and low output capacity largely hinder the practical applications. Core-shell structure has been widely reported as an effective way to address these problems, and tremendous efforts have been made toward this direction. In this review, we offer an overview of core-shell titanium-based anode engineering for highly efficient and stable Li/Na ion batteries. The review presents the recent progresses and challenges in materials discovery, structure design, and electrode engineering, and highlights the advantages and drawbacks of a series of core-shell engineering strategies. In detail, the material structure, morphology, and composition of various core-shell nanocomposites are reviewed; the structure-activity-stability relationship between core-shell electrodes and electrochemical properties is discussed; the effective strategies for core-shell engineering are summarized, and the development prospects of titanium-based anodes are proposed. We anticipate that this review could provide a systematic understanding of core-shell engineering design of high-performance titanium-based anodes.
钛基材料,包括二氧化钛、碱钛氧化物、钛磷酸盐/氧磷酸盐、钛基 MXenes 和其他一些复杂的钛化合物,因其稳定性好、安全性高、成本低和易于合成等优点,一直被视为锂离子/镍离子电池的理想阳极候选材料。然而,导电性差、高做功电位和低输出容量在很大程度上阻碍了其实际应用。核壳结构作为解决这些问题的一种有效方法已被广泛报道,人们也朝着这个方向做出了巨大的努力。在这篇综述中,我们概述了用于高效稳定锂/镍离子电池的核壳钛基负极工程。综述介绍了材料发现、结构设计和电极工程方面的最新进展和挑战,并重点介绍了一系列核壳工程策略的优缺点。详细回顾了各种核壳纳米复合材料的材料结构、形态和组成;讨论了核壳电极的结构-活性-稳定性与电化学性能之间的关系;总结了核壳工程的有效策略,并提出了钛基阳极的发展前景。我们希望本综述能为高性能钛基阳极的核壳工程设计提供一个系统的认识。
{"title":"Core-shell engineering of titanium-based anodes toward enhanced electrochemical lithium/sodium storage performance: a review","authors":"Chuguang Yu, Feng Wu, Mengmeng Qian, Hanlou Li, Ran Wang, Jing Wang, Xiaoyi Xie, Jiaqi Huang, Guoqiang Tan","doi":"10.1016/j.mtener.2024.101589","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101589","url":null,"abstract":"Titanium-based materials, including titanium dioxide, alkali-titanium oxides, titanium phosphates/oxyphosphates, titanium-based MXenes, and some other complex titanium compounds, have been regarded as promising anode candidates for Li/Na ion batteries, due to their advantages of good stability, high safety, low cost, and easy synthesis. However, poor electrical conductivity, high work potential, and low output capacity largely hinder the practical applications. Core-shell structure has been widely reported as an effective way to address these problems, and tremendous efforts have been made toward this direction. In this review, we offer an overview of core-shell titanium-based anode engineering for highly efficient and stable Li/Na ion batteries. The review presents the recent progresses and challenges in materials discovery, structure design, and electrode engineering, and highlights the advantages and drawbacks of a series of core-shell engineering strategies. In detail, the material structure, morphology, and composition of various core-shell nanocomposites are reviewed; the structure-activity-stability relationship between core-shell electrodes and electrochemical properties is discussed; the effective strategies for core-shell engineering are summarized, and the development prospects of titanium-based anodes are proposed. We anticipate that this review could provide a systematic understanding of core-shell engineering design of high-performance titanium-based anodes.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of solid polymer electrolytes for solid-state lithium battery applications 为固态锂电池应用开发固体聚合物电解质
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-04-12 DOI: 10.1016/j.mtener.2024.101574
Jieyan Li, Xin Chen, Saz Muhammad, Shubham Roy, Haiyan Huang, Chen Yu, Zia Ullah, Zeru Wang, Yinghe Zhang, Ke Wang, Bing Guo
Nowadays, the safety concern for lithium batteries is mostly on the usage of flammable electrolytes and the lithium dendrite formation. The emerging solid polymer electrolytes (SPEs) have been extensively applied to construct solid-state lithium batteries, which hold great promise to circumvent these problems due to their merits including intrinsically high safety, good stability, and high capacity of lithium (Li) metal. Single-ion conducting polymer electrolytes (SICPEs) have great advantages over traditional SPEs due to their high lithium transference numbers (LTN) (near to 1). SICPEs improve the overall performance of the battery by suppressing both concentration polarization and impedance. Herein, this review is to offer timely update of the development of SPEs for solid-state lithium battery applications. Generally, the fundamental principles, classification, key parameters, and ion transport mechanisms of SPEs are summarized, followed by a discussion on the modification method. Furthermore, for SICPEs, a special focus is on synthesis and tuning of negative charge dispersion. In addition, artificial intelligence (AI) and machine learning (ML) in material design for SPEs are pointed out. Moreover, we bring up the challenges and offer solutions for further development of SPEs in solid-state lithium batteries.
目前,锂电池的安全问题主要集中在易燃电解质的使用和锂枝晶的形成上。新兴的固体聚合物电解质(SPEs)已被广泛应用于制造固态锂电池,由于其固有的高安全性、良好的稳定性和锂金属(Li)的高容量等优点,有望规避这些问题。单离子导电聚合物电解质(SICPEs)因其高锂转移数(LTN)(接近 1)而比传统的 SPEs 具有更大的优势。单离子导电聚合物电解质可抑制浓度极化和阻抗,从而提高电池的整体性能。本综述旨在及时更新固态锂电池应用中 SPPE 的发展情况。总体而言,本文概述了固态锂电池固相萃取物的基本原理、分类、关键参数和离子传输机制,随后讨论了改性方法。此外,对于 SICPE,特别关注负电荷分散的合成和调整。此外,我们还指出了 SPE 材料设计中的人工智能(AI)和机器学习(ML)。此外,我们还提出了固态锂电池中 SPEs 的进一步发展所面临的挑战并提供了解决方案。
{"title":"Development of solid polymer electrolytes for solid-state lithium battery applications","authors":"Jieyan Li, Xin Chen, Saz Muhammad, Shubham Roy, Haiyan Huang, Chen Yu, Zia Ullah, Zeru Wang, Yinghe Zhang, Ke Wang, Bing Guo","doi":"10.1016/j.mtener.2024.101574","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101574","url":null,"abstract":"Nowadays, the safety concern for lithium batteries is mostly on the usage of flammable electrolytes and the lithium dendrite formation. The emerging solid polymer electrolytes (SPEs) have been extensively applied to construct solid-state lithium batteries, which hold great promise to circumvent these problems due to their merits including intrinsically high safety, good stability, and high capacity of lithium (Li) metal. Single-ion conducting polymer electrolytes (SICPEs) have great advantages over traditional SPEs due to their high lithium transference numbers (LTN) (near to 1). SICPEs improve the overall performance of the battery by suppressing both concentration polarization and impedance. Herein, this review is to offer timely update of the development of SPEs for solid-state lithium battery applications. Generally, the fundamental principles, classification, key parameters, and ion transport mechanisms of SPEs are summarized, followed by a discussion on the modification method. Furthermore, for SICPEs, a special focus is on synthesis and tuning of negative charge dispersion. In addition, artificial intelligence (AI) and machine learning (ML) in material design for SPEs are pointed out. Moreover, we bring up the challenges and offer solutions for further development of SPEs in solid-state lithium batteries.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ construction of porous carbon substrate from sodium carboxymethyl cellulose boosting ultra-long lifespan for Na3V2(PO4)3 cathode material 利用羧甲基纤维素钠原位构建多孔碳衬底,提高 Na3V2(PO4)3 阴极材料的超长寿命
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-04-05 DOI: 10.1016/j.mtener.2024.101570
Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen
NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.
钠离子电池的阴极材料 NaV(PO)(正磷酸三钒三钠盐 [NVP])面临着一些挑战,如较低的固有电子和离子电导率,这阻碍了其商业可行性。在这项工作中,通过引入羧甲基纤维素钠(Na CMC)对 NVP 系统进行改性,实现了三重改性效果:富钠、交联碳涂层网络和碳层表面改性。同时,CMC 作为一种具有大孔的多孔碳基质,可为 Na 提供快速迁移通道。同样,从活性颗粒中生长出来的碳纳米管(CNT)成为活性颗粒之间的连接载体,从而有效改善了电子传输。值得注意的是,循环后的扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像验证了 NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) 复合材料稳定的多孔结构。经改性的 0.7wt.%CMC@CNTs 在 0.1 摄氏度时显示出 111.4 mAh/g 的容量,在 1 摄氏度时达到 105.0 mAh/g 的高值,循环 1,000 次后容量保持率为 84.10%。即使在 15 摄氏度时,它仍能释放出 86.6 mAh/g,在 3,600 次循环后,每次循环的容量衰减率仅为 0.0230%。值得注意的是,在 80 摄氏度的超高温度下,经过 13,000 次循环后,其容量保持率达到了惊人的 96.09%。
{"title":"In-situ construction of porous carbon substrate from sodium carboxymethyl cellulose boosting ultra-long lifespan for Na3V2(PO4)3 cathode material","authors":"Chenghao Qian, Mengna Shi, Changcheng Liu, Que Huang, Yanjun Chen","doi":"10.1016/j.mtener.2024.101570","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101570","url":null,"abstract":"NaV(PO) (trisodium divanadium (III) tris (orthophosphate [NVP]), the cathode material for sodium ion batteries, faces several challenges, such as lower intrinsic electronic and ionic conductivities, which hinder its commercial viability. In this work, NVP system is modified by introducing sodium carboxymethyl cellulose (Na CMC) to achieve triple modification effects: sodium-rich, cross-linked carbon coating network, and carbon layer surface modification. Meanwhile, CMC, as a porous carbon substrate with large pores, provides a fast migration channel for Na. Similarly, carbon nanotubes (CNTs) grown from the active particles become the connecting carriers between the active particles, thus effectively improving the electron transport. Notably, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images after cycling verify the stabilized porous structure of the NaV(PO)/C@0.7wt.%CMC@CNTs (0.7wt.%CMC@CNTs) composite. Distinctively, the modified 0.7wt.%CMC@CNTs reveals a capacity of 111.4 mAh/g at 0.1 C. It submits a high value of 105.0 mAh/g at 1 C with a capacity retention rate of 84.10% after 1,000 cycles. Even at 15 C, it still releases 86.6 mAh/g with a low capacity decay rate of 0.0230% per cycle after 3,600 cycles. Notably, its capacity retention reaches an astonishing 96.09% after 13,000 cycles at an ultra-high rate of 80 C.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the effect of double bond-modified Li6.75La3Zr1.75Ta0.25O12 on the Li-ion conduction of composite solid electrolytes 揭示双键改性 Li6.75La3Zr1.75Ta0.25O12 对复合固体电解质锂离子传导的影响
IF 9.3 2区 材料科学 Q1 Energy Pub Date : 2024-04-01 DOI: 10.1016/j.mtener.2024.101583
Jiechen Song, Yuxing Xu, Yun-Cai Zhou, Rui He, Aijia Wei, Qiangqiang Tan
{"title":"Revealing the effect of double bond-modified Li6.75La3Zr1.75Ta0.25O12 on the Li-ion conduction of composite solid electrolytes","authors":"Jiechen Song, Yuxing Xu, Yun-Cai Zhou, Rui He, Aijia Wei, Qiangqiang Tan","doi":"10.1016/j.mtener.2024.101583","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101583","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140790966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1