Pub Date : 2024-01-19DOI: 10.1016/j.mtener.2024.101505
Jian Wu, Quan Kuang, Pan Jiang, Minghui Huang, Jixiang Wei, Qinghua Fan, Youzhong Dong, Yanming Zhao
Owing to the scarcity of eminent Zn-supplied cathodes, traditional aqueous Zn-ion batteries (AZIBs) still pins the hope on unstable Zn-metal anode to supply charge carriers, thus suffering from the dendrite growth and side reactions. Herein, by vanadium-manganese coupling in the spinel matrix, Zn2.5Mn0.5V3O8, a Zn2+ supplied cathode material with outstanding performance, has been prepared to completely get rid of the dependence on Zn-metal anode. Concretely, it delivers a high specific capacity of 355 mA•h g-1 at 200 mA g-1 and comforting retention of 75.7 % after 4500 cycles at 5 A g-1. The energy storage mechanism can be summarized as two-step phase transformation in the first charge process, and the intercalation of Zn2+/H+ into host structure accomplished with a conversion reaction in the subsequent cycles. After discarding the Zn-metal anode, a “rocking-chair” AZIB of Zn2.5Mn0.5V3O8 // anthraquinone has been established, in which Zn2.5Mn0.5V3O8 exhibits the superb specific capacities (190.9 mA•h g-1 at 200 mA g-1) and stable cycling performance (80.8% after 1000 cycles at 200 mA g-1 and 96.4% after 1000 cycles at 2.0 A g-1). This work may accelerate the development of both traditional and “rocking-chair” aqueous batteries.
{"title":"Boosting the Capacity and Life-span of Zn-Supplied Cathode in “Rocking-Chair” Aqueous Zn-Ion Batteries by Vanadium-Manganese Coupling Strategy","authors":"Jian Wu, Quan Kuang, Pan Jiang, Minghui Huang, Jixiang Wei, Qinghua Fan, Youzhong Dong, Yanming Zhao","doi":"10.1016/j.mtener.2024.101505","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101505","url":null,"abstract":"<p>Owing to the scarcity of eminent Zn-supplied cathodes, traditional aqueous Zn-ion batteries (AZIBs) still pins the hope on unstable Zn-metal anode to supply charge carriers, thus suffering from the dendrite growth and side reactions. Herein, by vanadium-manganese coupling in the spinel matrix, Zn<sub>2.5</sub>Mn<sub>0.5</sub>V<sub>3</sub>O<sub>8</sub>, a Zn<sup>2+</sup> supplied cathode material with outstanding performance, has been prepared to completely get rid of the dependence on Zn-metal anode. Concretely, it delivers a high specific capacity of 355 mA•h g<sup>-1</sup> at 200 mA g<sup>-1</sup> and comforting retention of 75.7 % after 4500 cycles at 5 A g<sup>-1</sup>. The energy storage mechanism can be summarized as two-step phase transformation in the first charge process, and the intercalation of Zn<sup>2+</sup>/H<sup>+</sup> into host structure accomplished with a conversion reaction in the subsequent cycles. After discarding the Zn-metal anode, a “rocking-chair” AZIB of Zn<sub>2.5</sub>Mn<sub>0.5</sub>V<sub>3</sub>O<sub>8</sub> // anthraquinone has been established, in which Zn<sub>2.5</sub>Mn<sub>0.5</sub>V<sub>3</sub>O<sub>8</sub> exhibits the superb specific capacities (190.9 mA•h g<sup>-1</sup> at 200 mA g<sup>-1</sup>) and stable cycling performance (80.8% after 1000 cycles at 200 mA g<sup>-1</sup> and 96.4% after 1000 cycles at 2.0 A g<sup>-1</sup>). This work may accelerate the development of both traditional and “rocking-chair” aqueous batteries.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"18 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Notorious shuttle effect and sluggish redox kinetics as major bottlenecks have nowadays hindered the commercial implementation of lithium–sulfur batteries. The activity design of catalysts has attracted increasing attention in this realm thus far. Herein, we devise a Co-based electrocatalytic tandem (Co–N–P) encompassing (N,P)-coordinated Co single atoms and Co2P nanoparticles for guiding the dual-directional sulfur evolution reactions. Such a Co–N–P tandem synergizes high atom utilization, large catalyst loading and smooth charge migration, thereby resulting in the high activity for dictating the Li2S nucleation and decomposition. As a result, the full cell incorporating the Co–N–P modified separator harvests 0.1% capacity decay after 500 cycles at 1.0 C. In addition, a favorable areal capacity output of 4.2 mAh cm–2 is obtained under a sulfur loading of 5.3 mg cm–2. We anticipate that this work would offer insight into the hybrid catalyst design affording high activity and stability for emerging energy applications.
众所周知的穿梭效应和缓慢的氧化还原动力学是目前锂硫电池商业化的主要瓶颈。迄今为止,催化剂的活性设计在这一领域引起了越来越多的关注。在此,我们设计了一种 Co 基电催化串联(Co-N-P),其中包括(N,P)配位 Co 单原子和 Co2P 纳米颗粒,用于引导双向硫进化反应。这种 Co-N-P 串联协同提高了原子利用率、催化剂负载量和电荷迁移的平稳性,从而产生了支配 Li2S 成核和分解的高活性。此外,在 5.3 毫克/厘米-2 的硫负载条件下,还能获得 4.2 毫安时/厘米-2 的良好面积容量输出。我们希望这项研究能为新兴能源应用领域提供高活性和高稳定性的混合催化剂设计。
{"title":"Cooperative Co Single Atoms and Co2P Nanoparticles as Catalytic Tandem for Boosting Redox Kinetics in Li–S Batteries","authors":"Haorui Zhao, Qin Yang, Daming Zhu, Wenqiang Yang, Zixiong Shi, Xia Li, Yifan Ding, Wenyi Guo, Jiaxi Gu, Yingze Song, Jingyu Sun","doi":"10.1016/j.mtener.2024.101504","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101504","url":null,"abstract":"<p>Notorious shuttle effect and sluggish redox kinetics as major bottlenecks have nowadays hindered the commercial implementation of lithium–sulfur batteries. The activity design of catalysts has attracted increasing attention in this realm thus far. Herein, we devise a Co-based electrocatalytic tandem (Co–N–P) encompassing (N,P)-coordinated Co single atoms and Co<sub>2</sub>P nanoparticles for guiding the dual-directional sulfur evolution reactions. Such a Co–N–P tandem synergizes high atom utilization, large catalyst loading and smooth charge migration, thereby resulting in the high activity for dictating the Li<sub>2</sub>S nucleation and decomposition. As a result, the full cell incorporating the Co–N–P modified separator harvests 0.1% capacity decay after 500 cycles at 1.0 C. In addition, a favorable areal capacity output of 4.2 mAh cm<sup>–2</sup> is obtained under a sulfur loading of 5.3 mg cm<sup>–2</sup>. We anticipate that this work would offer insight into the hybrid catalyst design affording high activity and stability for emerging energy applications.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"85 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1016/j.mtener.2024.101502
Hongchun Luo, Tao Yang, Xingjian Jing, Yingxuan Cui, Weiyang Qin
Self-powered sensing technology has extremely important application value in many areas, like healthcare, meteorology, internet of things (IoT) and so on. The progress of energy harvesting technology suitable for various environments is essential for the advancement of self-powered sensors. Mechanical energy has the characteristics of wide distribution, diverse forms and dispersion. The efficient collection of environmental energy is always a difficult problem in the development of self-power supply technology. In this paper, the latest research progress of mechanical energy acquisition technology, the development of self-powered sensors, the methods to improve the efficiency of energy acquisition and the key technical problems of self-powered sensors are reviewed. Especially the latest progresses in improving the output and mechanical stability of piezoelectric, magnetoelectric, triboelectric, thermoelectric nanogenerators are discussed, including nonlinear structure design, resonant tuning technology, power management circuit design, new material preparation, hybrid energy harvesting. Finally, the application prospect and future development of self-powered sensing are discussed.
{"title":"Environmental energy harvesting boosts self-powered sensing","authors":"Hongchun Luo, Tao Yang, Xingjian Jing, Yingxuan Cui, Weiyang Qin","doi":"10.1016/j.mtener.2024.101502","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101502","url":null,"abstract":"<p>Self-powered sensing technology has extremely important application value in many areas, like healthcare, meteorology, internet of things (IoT) and so on. The progress of energy harvesting technology suitable for various environments is essential for the advancement of self-powered sensors. Mechanical energy has the characteristics of wide distribution, diverse forms and dispersion. The efficient collection of environmental energy is always a difficult problem in the development of self-power supply technology. In this paper, the latest research progress of mechanical energy acquisition technology, the development of self-powered sensors, the methods to improve the efficiency of energy acquisition and the key technical problems of self-powered sensors are reviewed. Especially the latest progresses in improving the output and mechanical stability of piezoelectric, magnetoelectric, triboelectric, thermoelectric nanogenerators are discussed, including nonlinear structure design, resonant tuning technology, power management circuit design, new material preparation, hybrid energy harvesting. Finally, the application prospect and future development of self-powered sensing are discussed.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"111 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sodium-ion batteries (SIBs) are promising alternatives for Lithium-ion batteries in the field of large-scale energy storage for abundant sodium resources. Hard Carbons (HCs) are the most commonly used anode materials of SIBs for balanced electrochemical performance. The major challenges lie in low initial coulombic efficiency (ICE), insufficient reversible capacity, and the costs. Defects, pores, and graphitization degree are the main characteristics of HCs. The synergistic effects of defects and pores decide the surface adsorption distribution of electrolytes and the real electrochemical active area, which determine the solid-electrolyte interface formation process and ICE values. Sodium cluster stored in closed pores contributes to low-voltage plateau capacity with high reversibility. Suitable defect distribution on the inner wall of the closed pores ensures stable cluster formation. This review focuses on the defects and pores of HC and corresponding modification strategies, which are highlighted by their synergistic effects. We expect to offer valuable guidance for constructing next-generation HC anodes.
{"title":"Recent advances of tailoring defects and pores in hard carbon for sodium storage","authors":"Chenyang Huang, Junyi Yin, Weichen Shi, Yonghong Cheng, Xin Xu","doi":"10.1016/j.mtener.2024.101501","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101501","url":null,"abstract":"<p>Sodium-ion batteries (SIBs) are promising alternatives for Lithium-ion batteries in the field of large-scale energy storage for abundant sodium resources. Hard Carbons (HCs) are the most commonly used anode materials of SIBs for balanced electrochemical performance. The major challenges lie in low initial coulombic efficiency (ICE), insufficient reversible capacity, and the costs. Defects, pores, and graphitization degree are the main characteristics of HCs. The synergistic effects of defects and pores decide the surface adsorption distribution of electrolytes and the real electrochemical active area, which determine the solid-electrolyte interface formation process and ICE values. Sodium cluster stored in closed pores contributes to low-voltage plateau capacity with high reversibility. Suitable defect distribution on the inner wall of the closed pores ensures stable cluster formation. This review focuses on the defects and pores of HC and corresponding modification strategies, which are highlighted by their synergistic effects. We expect to offer valuable guidance for constructing next-generation HC anodes.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"24 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139463899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The strategy to boost photocatalytic activities towards CO2 reduction and organic pollutants degradation is still a key challenge for novel Sillén-Aurivillius oxyhalides. In this work, a S-scheme heterojunction of Bi24O31Cl10 and Bi7Fe2Ti2O17Cl is designed for CO2 reduction and organic pollutants degradation. The as-synthesized 5% Bi24O31Cl10/Bi7Fe2Ti2O17Cl (BOC/BFTOC-5) composites depicts an appealing CO2 reduction and removal rate for RhB organic pollutants in comparison with pristine Bi24O31Cl10 and Bi7Fe2Ti2O17Cl oxyhalides. This fascinating photocatalytic performance could be ascribed to the synergic effect of the enhanced visible light adsorption and photo-generated carriers separation derived from the Bi24O31Cl10/Bi7Fe2Ti2O17Cl heterojunction. Simultaneously, the trapping experiments confirm that the main active species during the catalytic process are the photo-generated hole (h+) and the hydroxy free radical (·OH). This work aims at providing a S-scheme heterojunction via Bi-based oxyhalides for efficient photocatalytic activity.
对于新型 Sillén-Aurivillius 氧卤化物来说,提高光催化活性以实现二氧化碳还原和有机污染物降解的策略仍然是一个关键挑战。本研究设计了 Bi24O31Cl10 和 Bi7Fe2Ti2O17Cl 的 S 型异质结,用于还原二氧化碳和降解有机污染物。与原始的 Bi24O31Cl10 和 Bi7Fe2Ti2O17Cl 氧卤化物相比,合成的 5% Bi24O31Cl10/Bi7Fe2Ti2O17Cl (BOC/BFTOC-5)复合材料的二氧化碳还原率和 RhB 有机污染物的去除率都很高。这种迷人的光催化性能可归因于 Bi24O31Cl10/Bi7Fe2Ti2O17Cl 异质结所产生的增强可见光吸附和光生载流子分离的协同效应。同时,捕获实验证实,催化过程中的主要活性物种是光生空穴(h+)和羟基自由基(-OH)。这项工作旨在通过 Bi 基氧卤化物提供一种 S 型异质结,以实现高效的光催化活性。
{"title":"Novel S-scheme Bi24O31Cl10/Bi7Fe2Ti2O17Cl Heterojunction for Efficient and Stable Photocatalytic Activities","authors":"Yunxiang Zhang, Zhichao Mu, Chenliang Zhou, Zhe Zhang, Zhili Chen, Xiangyu Cheng, Hazem Abdelsalam, Wei Chen, Diab Khalafallah, Qinfang Zhang","doi":"10.1016/j.mtener.2024.101498","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101498","url":null,"abstract":"<p>The strategy to boost photocatalytic activities towards CO<sub>2</sub> reduction and organic pollutants degradation is still a key challenge for novel Sillén-Aurivillius oxyhalides. In this work, a S-scheme heterojunction of Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> and Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl is designed for CO<sub>2</sub> reduction and organic pollutants degradation. The as-synthesized 5% Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>/Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl (BOC/BFTOC-5) composites depicts an appealing CO<sub>2</sub> reduction and removal rate for RhB organic pollutants in comparison with pristine Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> and Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl oxyhalides. This fascinating photocatalytic performance could be ascribed to the synergic effect of the enhanced visible light adsorption and photo-generated carriers separation derived from the Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>/Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl heterojunction. Simultaneously, the trapping experiments confirm that the main active species during the catalytic process are the photo-generated hole (h<sup>+</sup>) and the hydroxy free radical (·OH). This work aims at providing a S-scheme heterojunction via Bi-based oxyhalides for efficient photocatalytic activity.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"7 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139464363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11DOI: 10.1016/j.mtener.2024.101499
Jin Li, Guoliang Liu, Fangfang Zhang, Jun Liao, Haolin Tang, Haining Zhang
Ingenious crosslinked network structure in phosphoric acid doped polybenzimidazole membranes can mitigate the mutual restriction of proton conductivity and mechanical properties. However, the complicated synthesis of tailored macromolecular crosslinker and the time-consuming post-treatment hinder their practical application as high temperature proton exchange membranes. Herein, crosslinked polybenzimidazole membranes are synthesized using small molecular crosslinker containing acidophilic quaternary ammonium groups through a one-step crosslinking strategy. After doping with phosphoric acid, the quaternary ammonium-biphosphate ion-pair coordination and the crosslinked structure result in the improved anhydrous proton conductivity, oxidation stability, and mechanical strength of the formed membranes compared to sample without crosslinking structure. Membrane with the optimized degree of crosslinking exhibits an anhydrous conductivity of 72.27 mS cm-1 at 160 °C with a tensile strength of 12.14 MPa. Benefiting from the crosslinked structure and high proton conductivity, the accordingly formed membrane electrode assembly possesses a high open circuit voltage of 1.01 V and the improved Ohmic polarization, delivering a peak power density of 0.66 W cm-2 using hydrogen as fuel and air as oxidant.
掺杂磷酸的聚苯并咪唑膜中巧妙的交联网络结构可以缓解质子传导性和机械性能之间的相互限制。然而,定制大分子交联剂的复杂合成和耗时的后处理阻碍了其作为高温质子交换膜的实际应用。本文采用一步交联策略,使用含有亲酸性季铵基团的小分子交联剂合成了交联聚苯并咪唑膜。在掺入磷酸后,季铵-二磷酸离子对配位和交联结构使形成的膜与无交联结构的样品相比,在无水质子传导性、氧化稳定性和机械强度方面都得到了改善。具有优化交联度的膜在 160 °C 时的无水电导率为 72.27 mS cm-1,抗拉强度为 12.14 MPa。得益于交联结构和高质子传导性,相应形成的膜电极组件具有 1.01 V 的高开路电压和改进的欧姆极化,使用氢气作为燃料和空气作为氧化剂可提供 0.66 W cm-2 的峰值功率密度。
{"title":"Improving the Ohmic polarization of high temperature proton exchange membrane fuel cells using crosslinked polybenzimidazole membranes containing acidophilic quaternary ammonium groups synthesized by one-step strategy","authors":"Jin Li, Guoliang Liu, Fangfang Zhang, Jun Liao, Haolin Tang, Haining Zhang","doi":"10.1016/j.mtener.2024.101499","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101499","url":null,"abstract":"<p>Ingenious crosslinked network structure in phosphoric acid doped polybenzimidazole membranes can mitigate the mutual restriction of proton conductivity and mechanical properties. However, the complicated synthesis of tailored macromolecular crosslinker and the time-consuming post-treatment hinder their practical application as high temperature proton exchange membranes. Herein, crosslinked polybenzimidazole membranes are synthesized using small molecular crosslinker containing acidophilic quaternary ammonium groups through a one-step crosslinking strategy. After doping with phosphoric acid, the quaternary ammonium-biphosphate ion-pair coordination and the crosslinked structure result in the improved anhydrous proton conductivity, oxidation stability, and mechanical strength of the formed membranes compared to sample without crosslinking structure. Membrane with the optimized degree of crosslinking exhibits an anhydrous conductivity of 72.27 mS cm<sup>-1</sup> at 160 °C with a tensile strength of 12.14 MPa. Benefiting from the crosslinked structure and high proton conductivity, the accordingly formed membrane electrode assembly possesses a high open circuit voltage of 1.01 V and the improved Ohmic polarization, delivering a peak power density of 0.66 W cm<sup>-2</sup> using hydrogen as fuel and air as oxidant.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"41 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1016/j.mtener.2024.101495
Yan Wang, Xiang Yang, Yike Zhang, Chi Zhang, Lu Yang, Quanguo Jiang, Haiyan He, Guobing Ying, Huajie Huang
Rational design and precise synthesis of cost-effective and highly-active Pt-alternative anode catalysts are important paths to accelerate the application and promotion of direct methanol fuel cell. Herein, a robust and controllable synthetic strategy is developed to the bottom-up construction of carbon nanotube-bridged Ti3C2Tx MXene nanoarchitectures decorated with ultrasmall Rh nanoparticles (Rh/CNT-MX) through a facile co-assembly process. The existence of MXene nanosheets with abundant anchoring sites can immobilize nanosized Rh crystals and facilitate their dispersion, while the integration of CNT skeletons effectively separates the neighboring MXene layers and offers unimpeded electron transport channels, which are conducive to making full use of respective catalytic functions for each component. As a consequence, the optimized Rh/CNT-MX catalyst expresses superior methanol oxidation performance with a considerable electrochemically active surface area of 89.4 m2 g-1, high mass/specific activity of 911.0 mA mg-1/1.02 mA cm-2, and reliable long-term durability, which has obvious competitive advantages over the conventional Rh/carbon black, Rh/CNT, Rh/MXene as well as commercial Pt/carbon black and Pd/carbon black catalysts.
{"title":"Carbon nanotube-bridged MXene nanoarchitectures decorated with ultrasmall Rh nanoparticles for efficient methanol oxidation","authors":"Yan Wang, Xiang Yang, Yike Zhang, Chi Zhang, Lu Yang, Quanguo Jiang, Haiyan He, Guobing Ying, Huajie Huang","doi":"10.1016/j.mtener.2024.101495","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101495","url":null,"abstract":"<p>Rational design and precise synthesis of cost-effective and highly-active Pt-alternative anode catalysts are important paths to accelerate the application and promotion of direct methanol fuel cell. Herein, a robust and controllable synthetic strategy is developed to the bottom-up construction of carbon nanotube-bridged Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanoarchitectures decorated with ultrasmall Rh nanoparticles (Rh/CNT-MX) through a facile co-assembly process. The existence of MXene nanosheets with abundant anchoring sites can immobilize nanosized Rh crystals and facilitate their dispersion, while the integration of CNT skeletons effectively separates the neighboring MXene layers and offers unimpeded electron transport channels, which are conducive to making full use of respective catalytic functions for each component. As a consequence, the optimized Rh/CNT-MX catalyst expresses superior methanol oxidation performance with a considerable electrochemically active surface area of 89.4 m<sup>2</sup> g<sup>-1</sup>, high mass/specific activity of 911.0 mA mg<sup>-1</sup>/1.02 mA cm<sup>-2</sup>, and reliable long-term durability, which has obvious competitive advantages over the conventional Rh/carbon black, Rh/CNT, Rh/MXene as well as commercial Pt/carbon black and Pd/carbon black catalysts.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"256 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139409918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for biosensor and bioelectronics applications have attracted the great attention of scientists. However, the limited energy density, poor biocompatibility and excessive space occupation of existing biodegradable energy storage devices pose major challenges to their application in the biomedical field. To address these challenges, in this work, flexible Ti3C2Tx film with an adhesive-free structure constructed is proposed as electrode material for the flexible solid-state biodegradable supercapacitor (FSBSC). The morphology and structure of MXene films were characterized by XRD, XPS, Raman, SEM and TEM. A 0.9% NaCl saline, similar human body fluids was used as the electrolyte solution to construct symmetrical FSBSC (Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC). The Ti3C2Tx//NaCl-PVA//Ti3C2Tx-FSBSC exhibits a high capacitance of 112 F/g at 1 A/g, excellent rate capability (73.2% at 20 A/g), long lifetime (81.6 % after 10,000 cycles), and high specific energy/power (62.3 Wh/kg at 1,000.8 W/kg). The charge storage mechanism was analyzed using ex-situ XRD, XPS and density function theory (DFT). DFT results show that the Ti3C2Tx (Tx = O)) electrode possesses metallic properties. The calculated adsorption energies (Eads) and smaller diffusion barriers of Na+-ions further proved the outstanding performance of the Ti3C2Tx electrode. Moreover, the apparatus is entirely biodegradable, thereby paving a promising path for the progression of bioelectronics and biomedical energy storage technologies.
{"title":"Human-friendly flexible solid-state biodegradable supercapacitor based on Ti3C2Tx MXene film without adhesive structure","authors":"Xiaofeng Zhang, Muhammad Sufyan Javed, Hongjia Ren, Xinze Zhang, Salamat Ali, Kaiming Han, Awais Ahmad, Ammar M. Tighezza, Weihua Han, Kui-Qing Peng","doi":"10.1016/j.mtener.2024.101496","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101496","url":null,"abstract":"<p>With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for biosensor and bioelectronics applications have attracted the great attention of scientists. However, the limited energy density, poor biocompatibility and excessive space occupation of existing biodegradable energy storage devices pose major challenges to their application in the biomedical field. To address these challenges, in this work, flexible Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> film with an adhesive-free structure constructed is proposed as electrode material for the flexible solid-state biodegradable supercapacitor (FSBSC). The morphology and structure of MXene films were characterized by XRD, XPS, Raman, SEM and TEM. A 0.9% NaCl saline, similar human body fluids was used as the electrolyte solution to construct symmetrical FSBSC (Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC). The Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>//NaCl-PVA//Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-FSBSC exhibits a high capacitance of 112 F/g at 1 A/g, excellent rate capability (73.2% at 20 A/g), long lifetime (81.6 % after 10,000 cycles), and high specific energy/power (62.3 Wh/kg at 1,000.8 W/kg). The charge storage mechanism was analyzed using ex-situ XRD, XPS and density function theory (DFT). DFT results show that the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> (T<sub><em>x</em></sub> = O)) electrode possesses metallic properties. The calculated adsorption energies (<em>E</em><sub>ads</sub>) and smaller diffusion barriers of Na<sup>+</sup>-ions further proved the outstanding performance of the Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> electrode. Moreover, the apparatus is entirely biodegradable, thereby paving a promising path for the progression of bioelectronics and biomedical energy storage technologies.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"16 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1016/j.mtener.2024.101497
Shanshan Liang, Susana Chauque, Marco Ricci, Remo Proietti Zaccaria
As one of the most promising energy storage devices, Lithium-sulfur batteries (LSBs or Li-S batteries) are still facing obstacles due to the notorious shuttling of soluble polysulfide intermediates, accompanied by low S utilization, corrosion of the lithium anode, and rapid capacity fading leading to a short cycling life. To overcome these issues and achieve high-performance LSBs, we introduce a modified separator composed of multi-walled carbon nanotubes/lithium lanthanum titanium oxide (MWCNTs/LLTO). The proposed MWCNTs/LLTO-modified separator improves the redox reaction kinetics from soluble higher-order lithium polysulfides to the insoluble lower-order ones and ultimately to Li2S, thereby reducing the polysulfides dissolved in the electrolyte. It also serves as a physical barrier to adsorb polysulfides, efficiently preventing their diffusion from the cathode to the anode. LSBs adopting the MWCNTs/LLTO-modified separator exhibit higher ionic and electronic conductivity than the un-modified counterparts, leading to an initial specific capacity of 1496 mA h g−1 (∼90% of the theoretical capacity) at 0.1C, an excellent rate capability performance, and a remarkable capacity retention of 80% after 200 cycles. Furthermore, the cells with S loading reaching up to 4.18 mg cm-2 further confirmed the beneficial impact of the MWCNTs/LLTO-modified separator.
{"title":"Enhancing Lithium-Sulfur Battery Performance through Electronic/Ionic Co-Conductive MWCNTs/LLTO Separator Modification","authors":"Shanshan Liang, Susana Chauque, Marco Ricci, Remo Proietti Zaccaria","doi":"10.1016/j.mtener.2024.101497","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101497","url":null,"abstract":"<p>As one of the most promising energy storage devices, Lithium-sulfur batteries (LSBs or Li-S batteries) are still facing obstacles due to the notorious shuttling of soluble polysulfide intermediates, accompanied by low S utilization, corrosion of the lithium anode, and rapid capacity fading leading to a short cycling life. To overcome these issues and achieve high-performance LSBs, we introduce a modified separator composed of multi-walled carbon nanotubes/lithium lanthanum titanium oxide (MWCNTs/LLTO). The proposed MWCNTs/LLTO-modified separator improves the redox reaction kinetics from soluble higher-order lithium polysulfides to the insoluble lower-order ones and ultimately to Li<sub>2</sub>S, thereby reducing the polysulfides dissolved in the electrolyte. It also serves as a physical barrier to adsorb polysulfides, efficiently preventing their diffusion from the cathode to the anode. LSBs adopting the MWCNTs/LLTO-modified separator exhibit higher ionic and electronic conductivity than the un-modified counterparts, leading to an initial specific capacity of 1496 mA h g<sup>−1</sup> (∼90% of the theoretical capacity) at 0.1C, an excellent rate capability performance, and a remarkable capacity retention of 80% after 200 cycles. Furthermore, the cells with S loading reaching up to 4.18 mg cm<sup>-2</sup> further confirmed the beneficial impact of the MWCNTs/LLTO-modified separator.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"23 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-06DOI: 10.1016/j.mtener.2024.101493
Ziqiang Wang, Min Li, Shan Xu, Hongjie Ye, Kai Deng, You Xu, Hongjing Wang, Liang Wang
The replacement of sluggish oxygen evolution reaction by more thermodynamically favorable ethanol oxidation reaction (EOR) is a promising strategy for co-production of hydrogen and valuable chemicals in energy-saving mode. Here, we propose the synthesis of highly curved PdOs bimetallene, which possesses high active sites atomic utilization and conductivity. Furthermore, alloy effect can regulate electronic structure and optimize adsorption energy of reactants. Therefore, PdOs bimetallene exhibits superior performance for hydrogen evolution reaction (HER) and EOR under basic solutions, with overpotential of 36 mV at 10 mA cm-2 and mass activity of 1.51 mA μg-1Pd, respectively. In the EOR-HER co-electrolysis system, PdOs bimetallene requires low voltage of 0.801 V for concurrent production of hydrogen and acetate at 50 mA cm−2, which greatly reduces energy consumption compared to conventional water electrolysis (1.976 V). This method provides a promising strategy for designing bimetallic electrocatalysts towards simultaneous energy-saving generation of hydrogen and high-value chemicals by replacing sluggish OER with more favorable ethanol oxidation reaction.
用热力学上更有利的乙醇氧化反应(EOR)取代缓慢的氧进化反应,是一种以节能模式联合生产氢气和有价值化学品的有前途的战略。在此,我们提出了高弯曲 PdOs 双金属的合成方法,它具有高活性位点原子利用率和导电性。此外,合金效应可以调节电子结构,优化反应物的吸附能。因此,在碱性溶液条件下,PdOs 双茂钛在氢进化反应(HER)和 EOR 方面表现出卓越的性能,在 10 mA cm-2 条件下的过电位为 36 mV,质量活度为 1.51 mA μg-1Pd。在 EOR-HER 共电解系统中,PdOs 双茂钛需要 0.801 V 的低电压才能在 50 mA cm-2 的条件下同时产生氢气和醋酸盐,与传统的水电解(1.976 V)相比,大大降低了能耗。这种方法为设计双金属电催化剂提供了一种前景广阔的策略,通过用更有利的乙醇氧化反应取代迟缓的 OER,从而实现同时生成氢气和高价值化学品的节能目标。
{"title":"PdOs bimetallene for energy-saving hydrogen production coupled with ethanol electro-oxidation","authors":"Ziqiang Wang, Min Li, Shan Xu, Hongjie Ye, Kai Deng, You Xu, Hongjing Wang, Liang Wang","doi":"10.1016/j.mtener.2024.101493","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101493","url":null,"abstract":"<p>The replacement of sluggish oxygen evolution reaction by more thermodynamically favorable ethanol oxidation reaction (EOR) is a promising strategy for co-production of hydrogen and valuable chemicals in energy-saving mode. Here, we propose the synthesis of highly curved PdOs bimetallene, which possesses high active sites atomic utilization and conductivity. Furthermore, alloy effect can regulate electronic structure and optimize adsorption energy of reactants. Therefore, PdOs bimetallene exhibits superior performance for hydrogen evolution reaction (HER) and EOR under basic solutions, with overpotential of 36 mV at 10 mA cm<sup>-2</sup> and mass activity of 1.51 mA μg<sup>-1</sup><sub>Pd</sub>, respectively. In the EOR-HER co-electrolysis system, PdOs bimetallene requires low voltage of 0.801 V for concurrent production of hydrogen and acetate at 50 mA cm<sup>−2</sup>, which greatly reduces energy consumption compared to conventional water electrolysis (1.976 V). This method provides a promising strategy for designing bimetallic electrocatalysts towards simultaneous energy-saving generation of hydrogen and high-value chemicals by replacing sluggish OER with more favorable ethanol oxidation reaction.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"72 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}