首页 > 最新文献

Materials Today Energy最新文献

英文 中文
Lignite derived nanocarbon as surface passivator and co-sensitizer in DSSC 褐煤衍生纳米碳作为 DSSC 的表面钝化剂和共敏化剂
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-27 DOI: 10.1016/j.mtener.2024.101539
Akshatha A. Rao, Shanyukta Upadhyay, Santhosh Narendhiran, Imran Jafri R, Manoj Balachandran
Interfacial exciton recombination and narrow absorption region are two bottlenecks that limit the performance of a DSSC. The present study focuses on improving the solar cell’s efficiency by utilizing a lignite-derived nanocarbon that behaves as a surface passivator and co-sensitizer. Incorporating nanocarbon enhanced the spectral absorption region of N719 dye with a bathochromic shift and played the role of a co-sensitizer. In addition, the quenched PL spectra revealed that nanocarbon also aids in the swift transfer of electrons to the conduction band of TiO by reducing the exciton recombination and acting as a surface passivator. On measuring the fabricated DSSC under AM 1.5G irradiation with the intensity of 100 mWcm, the nanocarbon-based device exhibited an efficiency (ŋ) of 9.02% with a photocurrent density of 20.45 mAcm, outperforming the pristine device (ŋ = 6.21%). An enhancement of 45% in the PCE was achieved. Thus, the results unveiled that nanocarbons derived from pollution-causing fuel synergistically aided in enhancing the performance of DSSC.
界面激子重组和吸收区域狭窄是限制 DSSC 性能的两个瓶颈。本研究的重点是利用褐煤衍生的纳米碳作为表面钝化剂和共敏化剂来提高太阳能电池的效率。纳米碳的加入增强了 N719 染料的光谱吸收区域,并产生了浴色偏移,起到了共敏化剂的作用。此外,淬灭聚光光谱显示,纳米碳还通过减少激子重组和充当表面钝化剂,帮助电子迅速转移到氧化钛的传导带。在强度为 100 mWcm 的 AM 1.5G 辐照下测量所制造的 DSSC 时,纳米碳基器件的效率(ŋ)为 9.02%,光电流密度为 20.45 mAcm,优于原始器件(ŋ = 6.21%)。PCE 提高了 45%。因此,研究结果表明,从造成污染的燃料中提取的纳米碳可协同提高 DSSC 的性能。
{"title":"Lignite derived nanocarbon as surface passivator and co-sensitizer in DSSC","authors":"Akshatha A. Rao, Shanyukta Upadhyay, Santhosh Narendhiran, Imran Jafri R, Manoj Balachandran","doi":"10.1016/j.mtener.2024.101539","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101539","url":null,"abstract":"Interfacial exciton recombination and narrow absorption region are two bottlenecks that limit the performance of a DSSC. The present study focuses on improving the solar cell’s efficiency by utilizing a lignite-derived nanocarbon that behaves as a surface passivator and co-sensitizer. Incorporating nanocarbon enhanced the spectral absorption region of N719 dye with a bathochromic shift and played the role of a co-sensitizer. In addition, the quenched PL spectra revealed that nanocarbon also aids in the swift transfer of electrons to the conduction band of TiO by reducing the exciton recombination and acting as a surface passivator. On measuring the fabricated DSSC under AM 1.5G irradiation with the intensity of 100 mWcm, the nanocarbon-based device exhibited an efficiency (ŋ) of 9.02% with a photocurrent density of 20.45 mAcm, outperforming the pristine device (ŋ = 6.21%). An enhancement of 45% in the PCE was achieved. Thus, the results unveiled that nanocarbons derived from pollution-causing fuel synergistically aided in enhancing the performance of DSSC.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"82 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing grain growth of CsFA-based lead halide perovskite thin films through PbI2 precursor engineering in vapor-solid reaction 通过气固反应中的 PbI2 前驱体工程,促进基于 CsFA 的卤化铅包晶石薄膜的晶粒生长
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-27 DOI: 10.1016/j.mtener.2024.101540
Qiang Tan, Changyu Duan, Yuanyuan Chen, Anqi Kong, Shenghan Hu, Yichen Dou, Jianfeng Lu, Guijie Liang, Zhiliang Ku
Vapor-solid reaction methods are highly regarded as potential solutions for large-scale production of perovskite thin films due to their scalability, compatibility with silicon tandem technology, and lack of solvents. However, the limited penetration of organic vapor through the solid inorganic film results in a slow growth rate of perovskite, leading to poor crystallinity and small grain size. This high defect density in the grain boundaries hinders the enhancement of device performance. In this study, we used 1,3-diaminoguanidine monohydrochloride as an additive in the PbI precursor films, which effectively improved perovskite grain growth in the vapor-solid reaction process. After optimization, we achieved high-quality perovskite thin films with a large grain size exceeding 5 μm. Notably, solar devices based on these large grain perovskite thin films achieved a high power conversion efficiency up to 21.13%.
气固反应法由于其可扩展性、与硅串联技术的兼容性以及无需溶剂等优点,被认为是大规模生产包晶体薄膜的潜在解决方案。然而,有机蒸汽在固体无机薄膜中的渗透有限,导致包晶生长速度缓慢,结晶度差,晶粒尺寸小。晶界的高缺陷密度阻碍了器件性能的提高。在本研究中,我们使用 1,3-二氨基胍盐酸盐作为 PbI 前驱体薄膜的添加剂,有效改善了气固反应过程中的包晶晶粒生长。经过优化,我们获得了晶粒大小超过 5 μm 的高质量透辉石薄膜。值得注意的是,基于这些大晶粒透辉石薄膜的太阳能设备实现了高达 21.13% 的功率转换效率。
{"title":"Enhancing grain growth of CsFA-based lead halide perovskite thin films through PbI2 precursor engineering in vapor-solid reaction","authors":"Qiang Tan, Changyu Duan, Yuanyuan Chen, Anqi Kong, Shenghan Hu, Yichen Dou, Jianfeng Lu, Guijie Liang, Zhiliang Ku","doi":"10.1016/j.mtener.2024.101540","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101540","url":null,"abstract":"Vapor-solid reaction methods are highly regarded as potential solutions for large-scale production of perovskite thin films due to their scalability, compatibility with silicon tandem technology, and lack of solvents. However, the limited penetration of organic vapor through the solid inorganic film results in a slow growth rate of perovskite, leading to poor crystallinity and small grain size. This high defect density in the grain boundaries hinders the enhancement of device performance. In this study, we used 1,3-diaminoguanidine monohydrochloride as an additive in the PbI precursor films, which effectively improved perovskite grain growth in the vapor-solid reaction process. After optimization, we achieved high-quality perovskite thin films with a large grain size exceeding 5 μm. Notably, solar devices based on these large grain perovskite thin films achieved a high power conversion efficiency up to 21.13%.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"74 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt Nanoparticles Embedded in Nitrogen-doped Carbon Nanofibers to Enhance Redox Kinetics for Long-Cycling Sodium-Sulfur Batteries 氮掺杂碳纳米纤维中嵌入钴纳米颗粒,提高长周期钠硫电池的氧化还原动力学性能
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-26 DOI: 10.1016/j.mtener.2024.101536
Peipei Zhi, Yuruo Qi, Jing Zhao, Haifeng Ding, Qing Zhao, Yi Li, Maowen Xu
The shuttle effect resulting from severe volume expansion and polysulfide dissolution imposes limitations to the application of sodium-sulfur (Na-S) batteries. Herein, a three-dimensional self-supported electrode comprised of cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers (CoNCNF) is constructed to accommodate sulfur as cathode for Na-S batteries. The carbon fiber framework facilitates direct electrons transmission and reduces overall contact impedance of electrode. The abundant pore structure not only promotes electrolyte infiltration but also ensures high loading of sulfur, and provides space for volume expansion during charging and discharging. Most significantly, CoNCNF carrier accelerate the conversion rate of sodium polysulfides (NaPSs) into NaS and guide NaS deposition on its surface in a three-dimensional progressive nucleation (3DP) mode, resulting in a high NaS deposition capacity and outstanding long-term cycling performance. When coupled with a Na metal anode, the CoNCNF/S composite cathode exhibits stable electrochemical properties with a capacity up to 1030.2 mA h g after 300 cycles at 0.2C and excellent rate performance.
严重的体积膨胀和多硫化物溶解产生的穿梭效应限制了钠硫(Na-S)电池的应用。在此,我们构建了一种由嵌入氮掺杂碳纳米纤维(CoNCNF)的钴纳米颗粒组成的三维自支撑电极,可将硫作为钠硫电池的阴极。碳纤维框架有利于电子直接传输,并降低了电极的整体接触阻抗。丰富的孔隙结构不仅能促进电解质的渗透,还能确保硫的高负载量,并为充放电过程中的体积膨胀提供空间。最重要的是,CoNCNF 载体可加快多硫化钠(NaPSs)转化为 NaS 的速度,并以三维渐进成核(3DP)模式引导 NaS 在其表面沉积,因此具有很高的 NaS 沉积能力和出色的长期循环性能。当与 Na 金属阳极耦合时,CoNCNF/S 复合阴极表现出稳定的电化学特性,在 0.2C 下循环 300 次后,容量可达 1030.2 mA h g,并具有优异的速率性能。
{"title":"Cobalt Nanoparticles Embedded in Nitrogen-doped Carbon Nanofibers to Enhance Redox Kinetics for Long-Cycling Sodium-Sulfur Batteries","authors":"Peipei Zhi, Yuruo Qi, Jing Zhao, Haifeng Ding, Qing Zhao, Yi Li, Maowen Xu","doi":"10.1016/j.mtener.2024.101536","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101536","url":null,"abstract":"The shuttle effect resulting from severe volume expansion and polysulfide dissolution imposes limitations to the application of sodium-sulfur (Na-S) batteries. Herein, a three-dimensional self-supported electrode comprised of cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers (CoNCNF) is constructed to accommodate sulfur as cathode for Na-S batteries. The carbon fiber framework facilitates direct electrons transmission and reduces overall contact impedance of electrode. The abundant pore structure not only promotes electrolyte infiltration but also ensures high loading of sulfur, and provides space for volume expansion during charging and discharging. Most significantly, CoNCNF carrier accelerate the conversion rate of sodium polysulfides (NaPSs) into NaS and guide NaS deposition on its surface in a three-dimensional progressive nucleation (3DP) mode, resulting in a high NaS deposition capacity and outstanding long-term cycling performance. When coupled with a Na metal anode, the CoNCNF/S composite cathode exhibits stable electrochemical properties with a capacity up to 1030.2 mA h g after 300 cycles at 0.2C and excellent rate performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"50 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Charge Compensation Mechanisms in Na2/3MgxNi1/3-xMn2/3O2 Cathode Materials: Insights into Cationic and Anionic Redox 揭示 Na2/3MgxNi1/3-xMn2/3O2 阴极材料中的电荷补偿机制:对阳离子和阴离子氧化还原的见解
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-22 DOI: 10.1016/j.mtener.2024.101534
Yanli Zhang, Zengqing Zhuo, Tianran Yan, Wenjuan Zhang, Xiaoning Li, Jiakun Zhou, Wenzhang Zhou, Yan Feng, Liang Zhang, Jing Mao, Ding Zhang, Wanli Yang, Jinghua Guo, Kehua Dai
{"title":"Unveiling Charge Compensation Mechanisms in Na2/3MgxNi1/3-xMn2/3O2 Cathode Materials: Insights into Cationic and Anionic Redox","authors":"Yanli Zhang, Zengqing Zhuo, Tianran Yan, Wenjuan Zhang, Xiaoning Li, Jiakun Zhou, Wenzhang Zhou, Yan Feng, Liang Zhang, Jing Mao, Ding Zhang, Wanli Yang, Jinghua Guo, Kehua Dai","doi":"10.1016/j.mtener.2024.101534","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101534","url":null,"abstract":"","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"21 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the local structural properties in the electrochemical characteristics of Na1-xFe1-yNiyO2 cathodes 局部结构特性在 Na1-xFe1-yNiyO2 阴极电化学特性中的作用
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-02 DOI: 10.1016/j.mtener.2024.101519
Wojciech Olszewski, Sourav Baiju, Payam Kaghazchi, Carlo Marini, Benoit Mortemard de Boisse, Masashi Okubo, Atsuo Yamada, Takashi Mizokawa, Naurang Lal Saini, Laura Simonelli

The natural abundance of sodium makes the Na-ion batteries (SIBs) attractive devices in the framework of a global economy change toward net zero CO2 emission. SIBs naturally deliver relatively lower energy density respect to Li-ion counterparts (LiBs), however, their lower cost and fast charge/discharge-ability make them a promising competitor to LiBs to load level the intermittent power from renewable energy sources for smart grids or renewable power stations. The O3-type NaFeO2 is a promising candidate for SIBs cathodes, even if the irreversible structural transition occurring during Na-ion extraction/insertion seriously hinders its practical application. Partial replacement of Fe by Ni significantly improves its electrochemical properties. The possible reasons of such improvement are here investigated accessing the details on the Fe and Ni local electronic and structural properties by means of x-ray absorption spectroscopy and spin-polarized DFT calculations. Different Ni concentrations and charge states have been analysed. The results support the stability of the electronic properties of Fe and Ni as a function of cycling in partially substituted system. Instead, the local structure is affected by the Fe substitution as well by the charge/discharge cycling. In particular, the decrease of Fe-O covalency and the local disorder by partial substitution Fe by Ni seems at the origin of the improved performances.

钠的天然丰富性使得钠离子电池(SIB)成为全球经济向二氧化碳净零排放转变过程中极具吸引力的设备。与锂离子电池(LiBs)相比,钠离子电池(SIBs)的能量密度相对较低,但其较低的成本和快速充放电能力使其成为锂离子电池的有力竞争者,可为智能电网或可再生发电站提供来自可再生能源的间歇性电力。O3 型 NaFeO2 是 SIBs 阴极的理想候选材料,尽管在萃取/插入 Na 离子过程中发生的不可逆结构转变严重阻碍了它的实际应用。用镍部分取代铁能显著改善其电化学性能。本文通过 X 射线吸收光谱和自旋极化 DFT 计算,详细研究了铁和镍的局部电子和结构特性,并探讨了这种改善的可能原因。对不同的镍浓度和电荷状态进行了分析。结果表明,在部分取代体系中,随着循环的进行,铁和镍的电子特性保持稳定。相反,局部结构受到了铁的替代以及充放电循环的影响。特别是,镍部分取代铁后,Fe-O 共价性和局部无序性降低,这似乎是性能提高的原因。
{"title":"The role of the local structural properties in the electrochemical characteristics of Na1-xFe1-yNiyO2 cathodes","authors":"Wojciech Olszewski, Sourav Baiju, Payam Kaghazchi, Carlo Marini, Benoit Mortemard de Boisse, Masashi Okubo, Atsuo Yamada, Takashi Mizokawa, Naurang Lal Saini, Laura Simonelli","doi":"10.1016/j.mtener.2024.101519","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101519","url":null,"abstract":"<p>The natural abundance of sodium makes the Na-ion batteries (SIBs) attractive devices in the framework of a global economy change toward net zero CO<sub>2</sub> emission. SIBs naturally deliver relatively lower energy density respect to Li-ion counterparts (LiBs), however, their lower cost and fast charge/discharge-ability make them a promising competitor to LiBs to load level the intermittent power from renewable energy sources for smart grids or renewable power stations. The O3-type NaFeO<sub>2</sub> is a promising candidate for SIBs cathodes, even if the irreversible structural transition occurring during Na-ion extraction/insertion seriously hinders its practical application. Partial replacement of Fe by Ni significantly improves its electrochemical properties. The possible reasons of such improvement are here investigated accessing the details on the Fe and Ni local electronic and structural properties by means of x-ray absorption spectroscopy and spin-polarized DFT calculations. Different Ni concentrations and charge states have been analysed. The results support the stability of the electronic properties of Fe and Ni as a function of cycling in partially substituted system. Instead, the local structure is affected by the Fe substitution as well by the charge/discharge cycling. In particular, the decrease of Fe-O covalency and the local disorder by partial substitution Fe by Ni seems at the origin of the improved performances.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"9 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization dynamics control in perovskite films using alkylamines as additives in a 2-methoxyethanol-based anti-solvent free process 在基于 2-甲氧基乙醇的无溶剂反工艺中使用烷基胺作为添加剂控制过氧化物薄膜的结晶动力学
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-02 DOI: 10.1016/j.mtener.2024.101516
Sung Hun Lee, Seungyeon Hong, Geun-young Yoon, Jin woo Kim, Hyun Hwi Lee, Hyo Jung Kim

We found that the trace amount of alkylamine ligands added to perovskite solutions can act as a nucleation promoter in an anti-solvent free process. We studied the effects of adding alkylamines with different alkyl chain lengths on perovskite film formation using a 2-methoxyethanol single solvent system without adding a Lewis base solvent. Compared to a porous film prepared without additives, the film with oleylamine (OAm) containing an 18-carbon alkyl chain exhibited a smoother surface and denser interior. At optimal conditions, the perovskite solar cell with the OAm-based film exhibited an enhanced device performance of 21.01% compared to that of the pristine film (11.65%). To investigate how alkylamines support the formation of the uniform perovskite film without the assistance of a Lewis base solvent or anti-solvent process, we employed in situ grazing incidence wide-angle X-ray scattering during spin-coating. As a result, we discovered that adding OAm with longer alkyl chains leaded to more nucleation in less time promoting the formation of the dense film. Furthermore, we confirmed that the effect of OAm addition was similar in other solvent systems. Based on the results, we propose a new pathway utilizing alkylamines to control crystallization dynamics in the anti-solvent free process.

我们发现,添加到包晶溶液中的微量烷基胺配体可以在反溶剂过程中起到成核促进剂的作用。我们使用 2-甲氧基乙醇单一溶剂体系,在不添加路易斯碱溶剂的情况下,研究了添加不同烷基链长的烷基胺对包晶薄膜形成的影响。与不添加添加剂制备的多孔薄膜相比,添加了含有 18 个碳烷基链的油胺 (OAm) 的薄膜表面更光滑,内部更致密。在最佳条件下,与原始薄膜(11.65%)相比,使用基于 OAm 的薄膜的过氧化物太阳能电池的设备性能提高了 21.01%。为了研究烷基胺如何在没有路易斯碱溶剂或反溶剂过程的帮助下支持均匀的包晶体薄膜的形成,我们在旋涂过程中使用了原位掠入射广角 X 射线散射。结果我们发现,添加烷基链较长的 OAm 能在更短的时间内形成更多的晶核,从而促进致密薄膜的形成。此外,我们还证实了在其他溶剂体系中添加 OAm 的效果类似。基于这些结果,我们提出了一种利用烷基胺控制无溶剂反过程中结晶动态的新途径。
{"title":"Crystallization dynamics control in perovskite films using alkylamines as additives in a 2-methoxyethanol-based anti-solvent free process","authors":"Sung Hun Lee, Seungyeon Hong, Geun-young Yoon, Jin woo Kim, Hyun Hwi Lee, Hyo Jung Kim","doi":"10.1016/j.mtener.2024.101516","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101516","url":null,"abstract":"<p>We found that the trace amount of alkylamine ligands added to perovskite solutions can act as a nucleation promoter in an anti-solvent free process. We studied the effects of adding alkylamines with different alkyl chain lengths on perovskite film formation using a 2-methoxyethanol single solvent system without adding a Lewis base solvent. Compared to a porous film prepared without additives, the film with oleylamine (OAm) containing an 18-carbon alkyl chain exhibited a smoother surface and denser interior. At optimal conditions, the perovskite solar cell with the OAm-based film exhibited an enhanced device performance of 21.01% compared to that of the pristine film (11.65%). To investigate how alkylamines support the formation of the uniform perovskite film without the assistance of a Lewis base solvent or anti-solvent process, we employed in situ grazing incidence wide-angle X-ray scattering during spin-coating. As a result, we discovered that adding OAm with longer alkyl chains leaded to more nucleation in less time promoting the formation of the dense film. Furthermore, we confirmed that the effect of OAm addition was similar in other solvent systems. Based on the results, we propose a new pathway utilizing alkylamines to control crystallization dynamics in the anti-solvent free process.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"198 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
F-doped Co-free LiNixMn1-xO2 (0.7≤x≤0.9) Cathodes for Ameliorating Electrochemical Performance of Li-ion Batteries 用于改善锂离子电池电化学性能的掺 F 无 Co LiNixMn1-xO2 (0.7≤x≤0.9) 阴极
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-01 DOI: 10.1016/j.mtener.2024.101520
So-Yeon Ahn, Deok-Hye Park, Ji-Hwan Kim, Jae-Sung Jang, Won-Chan Kim, Gang-In Lee, Jong-Won Lim, Ji-Min Hong, Kyung-Won Park

Ni-rich LiNiCoMnO2 cathodes, which exhibit high energy densities and layered structures, have been studied For Li-ion batteries (LIBs) with high capacities and excellent stabilities. However, the high cost and price fluctuation of Co as the main element in the cathodes remain severe issue for the stable development of LIBs. Therefore, in this study, F-doped Co-free Ni-rich LiNixMn1-xO2 (0.7 ≤ x ≤ 0.9) cathodes were prepared for high-performance LIBs. With increasing Ni content, the undoped Ni-rich LiNixMn1-xO2 cathodes exhibited increased discharge capacities and decreased stabilities. In contrast, the F-doped Ni-rich LiNixMn1-xO2 cathodes delivered higher cycle retentions at 0.5 C for 100 cycles compared to the undoped cathodes. In addition, the F doping of Ni-rich LiNixMn1-xO2 cathodes can facilitate Li-ion diffusion, retaining their reversibility and high capacities at high current densities.

富含镍的镍钴锰酸锂阴极具有高能量密度和层状结构,已被研究用于具有高容量和优异稳定性的锂离子电池(LIB)。然而,阴极中主要元素 Co 的高成本和价格波动仍然是锂离子电池稳定发展的严重问题。因此,本研究制备了掺杂F的无Co富Ni LiNixMn1-xO2(0.7 ≤ x ≤ 0.9)阴极,用于制备高性能锂离子电池。随着镍含量的增加,未掺杂的富镍 LiNixMn1-xO2 阴极的放电容量增加,稳定性降低。相比之下,与未掺杂阴极相比,掺杂 F 的富镍钴锰酸锂阴极在 0.5 摄氏度的条件下循环 100 次可获得更高的循环保持率。此外,掺杂 F 的富镍锰酸锂-xO2 阴极可促进锂离子扩散,在高电流密度下保持其可逆性和高容量。
{"title":"F-doped Co-free LiNixMn1-xO2 (0.7≤x≤0.9) Cathodes for Ameliorating Electrochemical Performance of Li-ion Batteries","authors":"So-Yeon Ahn, Deok-Hye Park, Ji-Hwan Kim, Jae-Sung Jang, Won-Chan Kim, Gang-In Lee, Jong-Won Lim, Ji-Min Hong, Kyung-Won Park","doi":"10.1016/j.mtener.2024.101520","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101520","url":null,"abstract":"<p>Ni-rich LiNiCoMnO<sub>2</sub> cathodes, which exhibit high energy densities and layered structures, have been studied For Li-ion batteries (LIBs) with high capacities and excellent stabilities. However, the high cost and price fluctuation of Co as the main element in the cathodes remain severe issue for the stable development of LIBs. Therefore, in this study, F-doped Co-free Ni-rich LiNi<sub>x</sub>Mn<sub>1-x</sub>O<sub>2</sub> (0.7 ≤ x ≤ 0.9) cathodes were prepared for high-performance LIBs. With increasing Ni content, the undoped Ni-rich LiNi<sub>x</sub>Mn<sub>1-x</sub>O<sub>2</sub> cathodes exhibited increased discharge capacities and decreased stabilities. In contrast, the F-doped Ni-rich LiNi<sub>x</sub>Mn<sub>1-x</sub>O<sub>2</sub> cathodes delivered higher cycle retentions at 0.5 C for 100 cycles compared to the undoped cathodes. In addition, the F doping of Ni-rich LiNi<sub>x</sub>Mn<sub>1-x</sub>O<sub>2</sub> cathodes can facilitate Li-ion diffusion, retaining their reversibility and high capacities at high current densities.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"294 2 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-scale mismatches of electrically conductive and mechanically resilient regimes in Li-variant sulfide conductors 硫化锂变体导体中导电和机械弹性状态的微尺度失配
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-01 DOI: 10.1016/j.mtener.2024.101517
Ji-Su Kim, Sung Soo Shin, Hyoungchul Kim

Li-ion-conductive sulfide electrolytes have attracted significant attention with regard to the development of superior solid-state batteries owing to their high ionic conductivity and ductile mechanical properties. Nevertheless, the relationship between the variations in Li content resulting from extraction and insertion in sulfide electrolytes and their subsequent influence on the electrochemical and mechanical properties remains unelucidated. In this study, we simulated the electrochemical operating conditions of glass sulfides through experimental and computational methods. Our investigation focused on the microscale reversibility of their electrochemical and mechanical properties. In Li-variant glass sulfides, (Li2S)0.75(1−x)(P2S5)0.25S0.75x, we demonstrated that 50% Li deficiency induced polymerization, resulting in a 98% decrease in Li-ion conductivity. Furthermore, we posit that changes in the mechanical properties of solid electrolytes during plastic deformation can be evaluated using Pugh’s ratio. In the case of Li deficiency, the Pugh’s ratio is reduced by 24%, and the solid electrolyte becomes extremely brittle. Interface deterioration in solid-state batteries is accelerated by the irreversible elastic hardening resulting from delithiation and polymerization of solid electrolytes during continuous electrochemical cycling. These evaluation approaches, which are based on Li-variant glass sulfides, afford guidelines for designing electrolytes suitable for cathodes.

锂离子导电硫化物电解质具有高离子传导性和韧性机械特性,因此在开发优质固态电池方面备受关注。然而,硫化物电解质中因萃取和插入而产生的锂含量变化与其随后对电化学和机械性能的影响之间的关系仍未得到阐明。在本研究中,我们通过实验和计算方法模拟了玻璃硫化物的电化学工作条件。我们的研究重点是其电化学和机械性能的微尺度可逆性。在锂变体玻璃硫化物 (Li2S)0.75(1-x)(P2S5)0.25S0.75x 中,我们证明了 50% 的锂缺乏会诱导聚合,导致锂离子电导率下降 98%。此外,我们认为固体电解质在塑性变形过程中的机械性能变化可以通过普氏比来评估。在缺锂的情况下,普氏比降低了 24%,固体电解质变得极脆。在连续电化学循环过程中,固体电解质的脱ithiation 和聚合作用会导致不可逆的弹性硬化,从而加速固态电池的界面劣化。这些基于锂变体玻璃硫化物的评估方法为设计适合阴极的电解质提供了指导。
{"title":"Micro-scale mismatches of electrically conductive and mechanically resilient regimes in Li-variant sulfide conductors","authors":"Ji-Su Kim, Sung Soo Shin, Hyoungchul Kim","doi":"10.1016/j.mtener.2024.101517","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101517","url":null,"abstract":"<p>Li-ion-conductive sulfide electrolytes have attracted significant attention with regard to the development of superior solid-state batteries owing to their high ionic conductivity and ductile mechanical properties. Nevertheless, the relationship between the variations in Li content resulting from extraction and insertion in sulfide electrolytes and their subsequent influence on the electrochemical and mechanical properties remains unelucidated. In this study, we simulated the electrochemical operating conditions of glass sulfides through experimental and computational methods. Our investigation focused on the microscale reversibility of their electrochemical and mechanical properties. In Li-variant glass sulfides, (Li<sub>2</sub>S)<sub>0.75(1−<em>x</em>)</sub>(P<sub>2</sub>S<sub>5</sub>)<sub>0.25</sub>S<sub>0.75<em>x</em></sub>, we demonstrated that 50% Li deficiency induced polymerization, resulting in a 98% decrease in Li-ion conductivity. Furthermore, we posit that changes in the mechanical properties of solid electrolytes during plastic deformation can be evaluated using Pugh’s ratio. In the case of Li deficiency, the Pugh’s ratio is reduced by 24%, and the solid electrolyte becomes extremely brittle. Interface deterioration in solid-state batteries is accelerated by the irreversible elastic hardening resulting from delithiation and polymerization of solid electrolytes during continuous electrochemical cycling. These evaluation approaches, which are based on Li-variant glass sulfides, afford guidelines for designing electrolytes suitable for cathodes.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buried interface defects 2-bromo-1-ethylpyridinium tetrafluoroborate passivates tin oxide layer for high performance planar perovskite solar cells 埋入式界面缺陷 2-溴-1-乙基吡啶鎓四氟硼酸盐钝化氧化锡层,用于高性能平面过氧化物太阳能电池
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-01 DOI: 10.1016/j.mtener.2024.101514
Thambidurai M, Herlina Arianita Dewi, Wang Xizu, Anil Kanwat, Annalisa Bruno, Nripan Mathews, Cuong Dang, Hung D. Nguyen

The electron transport layer (ETL)/perovskite interfaces play a crucial role in facilitating efficient charge transfer and minimizing recombination losses, which are key factors for achieving high power conversion efficiency (PCE) in perovskite solar cells (PSCs). Herein, a novel ionic liquid (IL) called 2-bromo-1-ethylpyridinium tetrafluoroborate (BEPBF4) is added between tin oxide (SnO2) and perovskite layers to improve the photovoltaic performance of PSCs. The BEPBF4 interface modification not only reduces the defect density, increases the crystallinity, and aligns the energy bands at the interface, but also shortens the lifetime of the charge carriers, resulting in improved PCE and stability. Consequently, the device modified with BEPBF4 achieved a PCE of 20.14% and retained 94% of the initial PCE without encapsulation, in contrast to the control device (18.41%), which retained only 82% of the initial PCE after 1000 h of storage at ambient conditions. In addition, the BEPBF4-PSCs exhibited significantly better thermal stability, retaining 64% of the initial PCE after 400 h of continuous thermal aging at 85 °C, compared to only 31% for the unencapsulated pristine device.

电子传输层(ETL)/过氧化物界面在促进高效电荷转移和最大限度减少重组损耗方面发挥着至关重要的作用,而这正是过氧化物太阳能电池(PSCs)实现高功率转换效率(PCE)的关键因素。在这里,一种名为 2-溴-1-乙基吡啶鎓四氟硼酸盐(BEPBF4)的新型离子液体(IL)被添加到氧化锡(SnO2)和过氧化物层之间,以改善 PSC 的光伏性能。BEPBF4 界面改性不仅能降低缺陷密度、增加结晶度、调整界面能带,还能缩短电荷载流子的寿命,从而提高 PCE 和稳定性。因此,使用 BEPBF4 修饰的器件实现了 20.14% 的 PCE,并且在没有封装的情况下保留了 94% 的初始 PCE,而对照器件(18.41%)在环境条件下存储 1000 小时后仅保留了 82% 的初始 PCE。此外,BEPBF4-PSC 的热稳定性也显著提高,在 85 °C 下持续热老化 400 小时后,仍能保持 64% 的初始 PCE,而未封装的原始器件仅能保持 31%。
{"title":"Buried interface defects 2-bromo-1-ethylpyridinium tetrafluoroborate passivates tin oxide layer for high performance planar perovskite solar cells","authors":"Thambidurai M, Herlina Arianita Dewi, Wang Xizu, Anil Kanwat, Annalisa Bruno, Nripan Mathews, Cuong Dang, Hung D. Nguyen","doi":"10.1016/j.mtener.2024.101514","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101514","url":null,"abstract":"<p>The electron transport layer (ETL)/perovskite interfaces play a crucial role in facilitating efficient charge transfer and minimizing recombination losses, which are key factors for achieving high power conversion efficiency (PCE) in perovskite solar cells (PSCs). Herein, a novel ionic liquid (IL) called 2-bromo-1-ethylpyridinium tetrafluoroborate (BEPBF<sub>4</sub>) is added between tin oxide (SnO<sub>2</sub>) and perovskite layers to improve the photovoltaic performance of PSCs. The BEPBF<sub>4</sub> interface modification not only reduces the defect density, increases the crystallinity, and aligns the energy bands at the interface, but also shortens the lifetime of the charge carriers, resulting in improved PCE and stability. Consequently, the device modified with BEPBF<sub>4</sub> achieved a PCE of 20.14% and retained 94% of the initial PCE without encapsulation, in contrast to the control device (18.41%), which retained only 82% of the initial PCE after 1000 h of storage at ambient conditions. In addition, the BEPBF<sub>4</sub>-PSCs exhibited significantly better thermal stability, retaining 64% of the initial PCE after 400 h of continuous thermal aging at 85 °C, compared to only 31% for the unencapsulated pristine device.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"56 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139670297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen Vacancy Rich δ-MnO2 Nanosheets Encapsulating Single Cobalt Atoms-Anchored Carbon Nanotubes for Efficient Oxygen Evolution 富氧空位δ-MnO2 纳米片封装单钴原子填充碳纳米管,实现高效氧气进化
IF 9.3 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-02-01 DOI: 10.1016/j.mtener.2024.101515
Yan Cheng, Bo Cao, Xuan Xu, Lele Peng, Baocang Liu, Jinlu He, Jun Zhang

Oxygen vacancy (OVac) and interface engineering are effective tactics for regulating the electronic structure of electrocatalysts and optimizing the absorption/desorption of reactants and intermediates on the catalyst surface to enhance the oxygen evolution reaction (OER). Herein, a self-supported electrocatalyst, comprising δ-MnO2 nanosheets grown on Co single atoms (CoSAs) anchored on N-doped carbon nanotubes (NCNTs) embedded with Co nanoparticle on a carbon cloth (CC) (δ-MnO2/CoNP@CoSAs-NCNTs/CC), was fabricated. Through in-situ growth of δ-MnO2 nanosheets on CoNP@CoSAs-NCNTs/CC, the number of OVac is increased, as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Positron annihilation lifetime spectrometer (PALS), due to the redox between MnO2 and Co. Experimental results and theoretical calculations confirm that the formation of OVac rich δ-MnO2 nanosheets and the construction of heterogeneous interface between δ-MnO2 and CoSAs-NCNTs endow the electrocatalyst with good conductivity, fast charge transfer, and multiple active sites, leading to rapid OER reaction kinetics. Therefore, the δ-MnO2/CoNP@CoSAs-NCNTs/CC electrocatalyst demonstrates remarkable OER performance, requiring only 165 mV overpotential to reach a current density of 10 mA cm−2 in an alkaline solution.

氧空位(OVac)和界面工程是调节电催化剂电子结构、优化催化剂表面对反应物和中间产物的吸收/解吸以增强氧进化反应(OER)的有效手段。在此,我们制备了一种自支撑电催化剂(δ-MnO2/CoNP@CoSAs-NCNTs/CC),该催化剂由生长在锚定在碳布(CC)上嵌有钴纳米粒子的掺杂 N 的碳纳米管(NCNT)上的钴单原子(CoSAs)组成。通过在 CoNP@CoSAs-NCNTs/CC 上原位生长 δ-MnO2 纳米片,X 射线光电子能谱(XPS)、电子顺磁共振(EPR)和正电子湮没寿命光谱仪(PALS)证明,由于 MnO2 和 Co 之间的氧化还原作用,OVac 的数量增加了。实验结果和理论计算证实,富含 OVac 的 δ-MnO2 纳米片的形成以及 δ-MnO2 与 CoSAs-NCNTs 之间异质界面的构建,使该电催化剂具有良好的导电性、快速的电荷转移和多个活性位点,从而导致快速的 OER 反应动力学。因此,δ-MnO2/CoNP@CoSAs-NCNTs/CC 电催化剂具有显著的 OER 性能,在碱性溶液中只需要 165 mV 的过电位就能达到 10 mA cm-2 的电流密度。
{"title":"Oxygen Vacancy Rich δ-MnO2 Nanosheets Encapsulating Single Cobalt Atoms-Anchored Carbon Nanotubes for Efficient Oxygen Evolution","authors":"Yan Cheng, Bo Cao, Xuan Xu, Lele Peng, Baocang Liu, Jinlu He, Jun Zhang","doi":"10.1016/j.mtener.2024.101515","DOIUrl":"https://doi.org/10.1016/j.mtener.2024.101515","url":null,"abstract":"<p>Oxygen vacancy (OV<sub>ac</sub>) and interface engineering are effective tactics for regulating the electronic structure of electrocatalysts and optimizing the absorption/desorption of reactants and intermediates on the catalyst surface to enhance the oxygen evolution reaction (OER). Herein, a self-supported electrocatalyst, comprising δ-MnO<sub>2</sub> nanosheets grown on Co single atoms (CoSAs) anchored on N-doped carbon nanotubes (NCNTs) embedded with Co nanoparticle on a carbon cloth (CC) (δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC), was fabricated. Through in-situ growth of δ-MnO<sub>2</sub> nanosheets on Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC, the number of OV<sub>ac</sub> is increased, as proved by X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Positron annihilation lifetime spectrometer (PALS), due to the redox between MnO<sub>2</sub> and Co. Experimental results and theoretical calculations confirm that the formation of OV<sub>ac</sub> rich δ-MnO<sub>2</sub> nanosheets and the construction of heterogeneous interface between δ-MnO<sub>2</sub> and Co<sub>SAs</sub>-NCNTs endow the electrocatalyst with good conductivity, fast charge transfer, and multiple active sites, leading to rapid OER reaction kinetics. Therefore, the δ-MnO<sub>2</sub>/Co<sub>NP</sub>@Co<sub>SAs</sub>-NCNTs/CC electrocatalyst demonstrates remarkable OER performance, requiring only 165 mV overpotential to reach a current density of 10 mA cm<sup>−2</sup> in an alkaline solution.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"38 1","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1