Marco Harms, Stephan Michalik, Petra Hildebrandt, Marc Schaffer, Manuela Gesell Salazar, Ulf Gerth, Ulrike Mäder, Jan Maarten van Dijl, Michael Hecker, Uwe Völker, Alexander Reder
Seemingly simple bacteria mount intricate adaptive responses when exposed to physical stress or nutrient limitation, and the activation of these responses is governed by complex signal transduction networks. Upon entry into the stationary growth phase, the soil bacterium Bacillus subtilis may develop natural competence, form biofilms or stress-resistant cells, or ultimately trigger a cellular differentiation program leading to spore formation. Master regulators, such as Spo0A, ComK, SinR, and SigB, constantly monitor the bacterium's environment and then determine appropriate adaptive responses. Here, we show that exposure of B. subtilis to visible light and other stresses triggers a general stress response-dependent block in competence development. SigB serves as an "emergency system" to silence inappropriate expression of an alternative developmental program in the face of unfavorable conditions. In particular, we document a stress-dependent molecular mechanism that prevents accumulation of the central competence regulator ComK via expression of a SigB-driven antisense RNA (as-comK, S365) which is part of a noncontiguous operon.
Importance: Bacillus subtilis exhibits a large number of different specific and general adaptation reactions, which need to be well balanced to sustain survival under largely unfavorable conditions. Under specific conditions, natural competence develops, which enables B. subtilis to actively take up exogenous DNA to integrate it into its own genome. In contrast to this specific adaptation, the general stress response is induced by a variety of exogenous stress and starvation stimuli, providing comprehensive protection and enabling survival of vegetative B. subtilis cells. In the present work, we reveal the molecular basis for the interconnection of these two important responses in the regulatory network. We describe that the master regulator of the general stress response SigB is activated by physiological stress stimuli, including daylight and ethanol stress, leading to the inactivation of the competence master regulator ComK by transcriptional anti-sense regulation, showing a strict hierarchy of adaptational responses under severe stress.
{"title":"Activation of the general stress response sigma factor SigB prevents competence development in <i>Bacillus subtilis</i>.","authors":"Marco Harms, Stephan Michalik, Petra Hildebrandt, Marc Schaffer, Manuela Gesell Salazar, Ulf Gerth, Ulrike Mäder, Jan Maarten van Dijl, Michael Hecker, Uwe Völker, Alexander Reder","doi":"10.1128/mbio.02274-24","DOIUrl":"10.1128/mbio.02274-24","url":null,"abstract":"<p><p>Seemingly simple bacteria mount intricate adaptive responses when exposed to physical stress or nutrient limitation, and the activation of these responses is governed by complex signal transduction networks. Upon entry into the stationary growth phase, the soil bacterium <i>Bacillus subtilis</i> may develop natural competence, form biofilms or stress-resistant cells, or ultimately trigger a cellular differentiation program leading to spore formation. Master regulators, such as Spo0A, ComK, SinR, and SigB, constantly monitor the bacterium's environment and then determine appropriate adaptive responses. Here, we show that exposure of <i>B. subtilis</i> to visible light and other stresses triggers a general stress response-dependent block in competence development. SigB serves as an \"emergency system\" to silence inappropriate expression of an alternative developmental program in the face of unfavorable conditions. In particular, we document a stress-dependent molecular mechanism that prevents accumulation of the central competence regulator ComK via expression of a SigB-driven antisense RNA (<i>as-comK</i>, S365) which is part of a noncontiguous operon.</p><p><strong>Importance: </strong><i>Bacillus subtilis</i> exhibits a large number of different specific and general adaptation reactions, which need to be well balanced to sustain survival under largely unfavorable conditions. Under specific conditions, natural competence develops, which enables <i>B. subtilis</i> to actively take up exogenous DNA to integrate it into its own genome. In contrast to this specific adaptation, the general stress response is induced by a variety of exogenous stress and starvation stimuli, providing comprehensive protection and enabling survival of vegetative <i>B. subtilis</i> cells. In the present work, we reveal the molecular basis for the interconnection of these two important responses in the regulatory network. We describe that the master regulator of the general stress response SigB is activated by physiological stress stimuli, including daylight and ethanol stress, leading to the inactivation of the competence master regulator ComK by transcriptional anti-sense regulation, showing a strict hierarchy of adaptational responses under severe stress.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Duan, Pingping Li, Deyao Zhang, Lili Wang, Yuan Fang, Hong Hu, Qiulu Mao, Xiaolan Zhou, Panpan Zhao, Xuechun Li, Jinfeng Wei, Jintian Tang, Li Pan, Hao Liu, Xiaolin Chen, Xiaoyang Chen, Tom Hsiang, Junbin Huang, Lu Zheng
S-palmitoylation is an important reversible protein post-translational modification in organisms. However, its role in fungi is uncertain. Here, we found the treatment of the rice false fungus Ustilaginoidea virens with S-palmitoylation inhibitor 2 BP resulted in a significant decrease in fungal virulence. Comprehensive identification of S-palmitoylation sites and proteins in U. virens revealed a total of 4,089 S-palmitoylation sites identified among 2,192 proteins and that S-palmitoylated proteins were involved in diverse biological processes. Among the five palmitoyltransferases, UvPfa3 and UvPfa4 were found to regulate the pathogenicity of U. virens. We then performed quantitative proteomic analysis of ∆UvPfa3 and ∆UvPfa4 mutants. Interestingly, S-palmitoylated proteins were significantly enriched in the mitogen-activated protein kinase and autophagy pathways, and MAP kinase UvSlt2 was confirmed to be an S-palmitoylated protein which was palmitoylated by UvPfa4. Mutations of S-palmitoylation sites in UvSlt2 resulted in significantly reduced fungal virulence and decreased kinase enzymatic activity and phosphorylation levels. Simulations of molecular dynamics demonstrated mutation of S-palmitoylation sites in UvSlt2 causing decreased hydrophobic solvent-accessible surface area, thereby weakening the bonding force with its substrate UvRlm1. Taken together, S-palmitoylation promotes U. virens virulence through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen.IMPORTANCES-palmitoylation is an important post-translational lipid modification of proteins. However, its role in fungi is uncertain. In this study, we found that S-palmitoylation promotes virulence of rice false smut fungus U. virens through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen. This is the first functional study to reveal the role of S-palmitoylation in fungal virulence.
{"title":"S-palmitoylation of MAP kinase is essential for fungal virulence.","authors":"Yuhang Duan, Pingping Li, Deyao Zhang, Lili Wang, Yuan Fang, Hong Hu, Qiulu Mao, Xiaolan Zhou, Panpan Zhao, Xuechun Li, Jinfeng Wei, Jintian Tang, Li Pan, Hao Liu, Xiaolin Chen, Xiaoyang Chen, Tom Hsiang, Junbin Huang, Lu Zheng","doi":"10.1128/mbio.02704-24","DOIUrl":"https://doi.org/10.1128/mbio.02704-24","url":null,"abstract":"<p><p>S-palmitoylation is an important reversible protein post-translational modification in organisms. However, its role in fungi is uncertain. Here, we found the treatment of the rice false fungus <i>Ustilaginoidea virens</i> with S-palmitoylation inhibitor 2 BP resulted in a significant decrease in fungal virulence. Comprehensive identification of S-palmitoylation sites and proteins in <i>U. virens</i> revealed a total of 4,089 S-palmitoylation sites identified among 2,192 proteins and that S-palmitoylated proteins were involved in diverse biological processes. Among the five palmitoyltransferases, UvPfa3 and UvPfa4 were found to regulate the pathogenicity of <i>U. virens</i>. We then performed quantitative proteomic analysis of ∆<i>UvPfa3</i> and ∆<i>UvPfa4</i> mutants. Interestingly, S-palmitoylated proteins were significantly enriched in the mitogen-activated protein kinase and autophagy pathways, and MAP kinase UvSlt2 was confirmed to be an S-palmitoylated protein which was palmitoylated by UvPfa4. Mutations of S-palmitoylation sites in <i>UvSlt2</i> resulted in significantly reduced fungal virulence and decreased kinase enzymatic activity and phosphorylation levels. Simulations of molecular dynamics demonstrated mutation of S-palmitoylation sites in <i>UvSlt2</i> causing decreased hydrophobic solvent-accessible surface area, thereby weakening the bonding force with its substrate UvRlm1. Taken together, S-palmitoylation promotes <i>U. virens</i> virulence through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen.IMPORTANCES-palmitoylation is an important post-translational lipid modification of proteins. However, its role in fungi is uncertain. In this study, we found that S-palmitoylation promotes virulence of rice false smut fungus <i>U. virens</i> through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen. This is the first functional study to reveal the role of S-palmitoylation in fungal virulence.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The protein disulfide isomerase (PDI) family is a group of enzymes that have thiol-disulfide oxidoreductase, disulfide isomerase, and redox-dependent chaperone activities. PDIs facilitate diverse infections in mammalian hosts by directly binding to pathogens, immunomodulation, or enabling microbial invasion of host cells. PDI homologs within pathogens are also potential virulence factors. However, whether PDIs within blood-feeding ticks influence microbial infection remains unknown. In this study, we investigated the role of Ixodes scapularis PDIs, on the Lyme disease agent, Borrelia burgdorferi. I. scapularis has five PDIs (IsPDIs), and IsPDIA6 gene expression is reduced upon B. burgdorferi infection in the tick. IsPDIA6-mediated trypsin inhibitor gene expression contributes to B. burgdorferi colonization within the tick midgut. IsPDIA6 is also secreted into the host during tick feeding, alters cytokine/chemokine expression at the tick bite site, and influences the initial stage of bacterial infection in mice. These data demonstrate that a PDI from a blood-feeding vector plays a role in the life cycle of an extracellular pathogen.
Importance: Vector-borne diseases are a leading cause of death and illness worldwide, and more than 80% of the global population live in areas at risk from at least one major vector-borne disease. In this study, we demonstrate a dual role of a specific Ixodes tick protein disulfide isomerase (PDI) in inhibiting the ability of the Lyme disease agent to colonize ticks and also in enhancing the initial stage of spirochete infection of mice. This study represents a novel conceptual advancement that a PDI from a blood-feeding vector plays important roles in the life cycle of an extracellular pathogen.
{"title":"Dual roles for a tick protein disulfide isomerase during the life cycle of the Lyme disease agent.","authors":"Xiaotian Tang, Yingjun Cui, Ushuu Namarra, Xiuqi Tian, Freddie Rivas-Giorgi, Erol Fikrig","doi":"10.1128/mbio.01754-24","DOIUrl":"10.1128/mbio.01754-24","url":null,"abstract":"<p><p>The protein disulfide isomerase (PDI) family is a group of enzymes that have thiol-disulfide oxidoreductase, disulfide isomerase, and redox-dependent chaperone activities. PDIs facilitate diverse infections in mammalian hosts by directly binding to pathogens, immunomodulation, or enabling microbial invasion of host cells. PDI homologs within pathogens are also potential virulence factors. However, whether PDIs within blood-feeding ticks influence microbial infection remains unknown. In this study, we investigated the role of <i>Ixodes scapularis</i> PDIs, on the Lyme disease agent, <i>Borrelia burgdorferi. I. scapularis</i> has five PDIs (IsPDIs), and <i>IsPDIA6</i> gene expression is reduced upon <i>B. burgdorferi</i> infection in the tick. IsPDIA6-mediated trypsin inhibitor gene expression contributes to <i>B. burgdorferi</i> colonization within the tick midgut. IsPDIA6 is also secreted into the host during tick feeding, alters cytokine/chemokine expression at the tick bite site, and influences the initial stage of bacterial infection in mice. These data demonstrate that a PDI from a blood-feeding vector plays a role in the life cycle of an extracellular pathogen.</p><p><strong>Importance: </strong>Vector-borne diseases are a leading cause of death and illness worldwide, and more than 80% of the global population live in areas at risk from at least one major vector-borne disease. In this study, we demonstrate a dual role of a specific <i>Ixodes</i> tick protein disulfide isomerase (PDI) in inhibiting the ability of the Lyme disease agent to colonize ticks and also in enhancing the initial stage of spirochete infection of mice. This study represents a novel conceptual advancement that a PDI from a blood-feeding vector plays important roles in the life cycle of an extracellular pathogen.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyu Zhang, Liaoyuan Zhang, Dakai Liu, Hongyan Shi, Xin Zhang, Jianfei Chen, Xiaoman Yang, Miaomiao Zeng, Jialin Zhang, Tingshuai Feng, Xiaoyuan Zhu, Zhaoyang Jing, Zhaoyang Ji, Da Shi, Li Feng
Type Ι interferon (IFN) production mediated by retinoic acid-inducible gene 1 (RIG-I) and mitochondrial antiviral signaling protein (MAVS) is essential for antiviral innate immune responses. Here, we report the identification of a novel co-sensor for cytosolic nucleic acids: DEAD/H-box helicase 11 (DDX11), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family. Knockdown or knockout of DDX11 attenuated the ability of cells to increase IFN-β, IFN-stimulated gene 56, and C-X-C motif chemokine ligand 10 in response to SeV and poly (I:C) by blocking the activation of TANK-binding kinase 1 and IFN regulatory factor 3. Nucleic acid sensing by DDX11 was independent of the stimulator of IFN genes but was dependent on RIG-I and MAVS. DDX11 regulated RIG-I-MAVS-mediated IFN signaling by specifically interacting with nucleic acid, RIG-I, and MAVS to enhance RIG-I-double-strand RNA and RIG-I-MAVS binding affinity. Overall, our results identified a critical role for DDX11 in the innate immune response and provided molecular insights into the mechanisms by which DDX11 recognized cytosolic nucleic acid and interacted with RIG-Ι and MAVS for potent IFN signaling and antiviral immunity.
Importance: Innate immunity is the first and most rapid host defense against virus infection. Recognition of viral RNA by the retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) initiates innate antiviral immune responses. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified DEAD/H-box helicase 11 (DDX11) as a positive regulator of the RIG-I-mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathways. Mechanistically, we demonstrated that DDX11 bound to viral RNA, interacted with RIG-I, and promoted their binding to viral RNA. DDX11 also promoted the interaction between RIG-I and MAVS and activation of RIG-I-MAVS signaling. Overall, our results elucidate the role of DDX11 in RIG-I-MAVS-dependent signaling pathways and may shed light on innate immune gene regulation.
{"title":"Helicase protein DDX11 as a novel antiviral factor promoting RIG-I-MAVS-mediated signaling pathway.","authors":"Jiyu Zhang, Liaoyuan Zhang, Dakai Liu, Hongyan Shi, Xin Zhang, Jianfei Chen, Xiaoman Yang, Miaomiao Zeng, Jialin Zhang, Tingshuai Feng, Xiaoyuan Zhu, Zhaoyang Jing, Zhaoyang Ji, Da Shi, Li Feng","doi":"10.1128/mbio.02028-24","DOIUrl":"https://doi.org/10.1128/mbio.02028-24","url":null,"abstract":"<p><p>Type Ι interferon (IFN) production mediated by retinoic acid-inducible gene 1 (RIG-I) and mitochondrial antiviral signaling protein (MAVS) is essential for antiviral innate immune responses. Here, we report the identification of a novel co-sensor for cytosolic nucleic acids: DEAD/H-box helicase 11 (DDX11), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family. Knockdown or knockout of DDX11 attenuated the ability of cells to increase IFN-β, IFN-stimulated gene 56, and C-X-C motif chemokine ligand 10 in response to SeV and poly (I:C) by blocking the activation of TANK-binding kinase 1 and IFN regulatory factor 3. Nucleic acid sensing by DDX11 was independent of the stimulator of IFN genes but was dependent on RIG-I and MAVS. DDX11 regulated RIG-I-MAVS-mediated IFN signaling by specifically interacting with nucleic acid, RIG-I, and MAVS to enhance RIG-I-double-strand RNA and RIG-I-MAVS binding affinity. Overall, our results identified a critical role for DDX11 in the innate immune response and provided molecular insights into the mechanisms by which DDX11 recognized cytosolic nucleic acid and interacted with RIG-Ι and MAVS for potent IFN signaling and antiviral immunity.</p><p><strong>Importance: </strong>Innate immunity is the first and most rapid host defense against virus infection. Recognition of viral RNA by the retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) initiates innate antiviral immune responses. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified DEAD/H-box helicase 11 (DDX11) as a positive regulator of the RIG-I-mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathways. Mechanistically, we demonstrated that DDX11 bound to viral RNA, interacted with RIG-I, and promoted their binding to viral RNA. DDX11 also promoted the interaction between RIG-I and MAVS and activation of RIG-I-MAVS signaling. Overall, our results elucidate the role of DDX11 in RIG-I-MAVS-dependent signaling pathways and may shed light on innate immune gene regulation.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As healthcare improves and our ability to support patients with compromised immune systems increases, such patients become more vulnerable to microbes in the environment. These include fungal pathogens such as Cryptococcus neoformans, the primary cause of fungal meningitis and a top priority pathogen on the World Health Organization fungal pathogen list. Like many other environmental pathogens, C. neoformans must adapt to and thrive in diverse environments in order to cause disease: (i) the environmental niche, (ii) the lungs following inhalation of infectious particles, (iii) the bloodstream and/or lymphatic system during dissemination, and (iv) the central nervous system (CNS), where it causes a deadly cryptococcal meningoencephalitis. Because CNS infection is the driver of mortality and the presenting illness, understanding the dissemination process from both host and fungal perspectives is important for treating these infections. In this review, we discuss the different stages of dissemination, how fungal cells interact with host cells during disease, and the ability to adapt to different environments within hosts.
{"title":"Elements of dissemination in cryptococcosis.","authors":"Joseph M Bednarek, Jessica C S Brown","doi":"10.1128/mbio.02155-23","DOIUrl":"https://doi.org/10.1128/mbio.02155-23","url":null,"abstract":"<p><p>As healthcare improves and our ability to support patients with compromised immune systems increases, such patients become more vulnerable to microbes in the environment. These include fungal pathogens such as <i>Cryptococcus neoformans</i>, the primary cause of fungal meningitis and a top priority pathogen on the World Health Organization fungal pathogen list. Like many other environmental pathogens, <i>C. neoformans</i> must adapt to and thrive in diverse environments in order to cause disease: (i) the environmental niche, (ii) the lungs following inhalation of infectious particles, (iii) the bloodstream and/or lymphatic system during dissemination, and (iv) the central nervous system (CNS), where it causes a deadly cryptococcal meningoencephalitis. Because CNS infection is the driver of mortality and the presenting illness, understanding the dissemination process from both host and fungal perspectives is important for treating these infections. In this review, we discuss the different stages of dissemination, how fungal cells interact with host cells during disease, and the ability to adapt to different environments within hosts.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fayez Alghofaili, Hastyar Najmuldeen, Banaz O Kareem, Bushra Shlla, Vitor E Fernandes, Morten Danielsen, Julian M Ketley, Primrose Freestone, Hasan Yesilkaya
{"title":"Correction for Alghofaili et al., \"Host Stress Signals Stimulate Pneumococcal Transition from Colonization to Dissemination into the Lungs\".","authors":"Fayez Alghofaili, Hastyar Najmuldeen, Banaz O Kareem, Bushra Shlla, Vitor E Fernandes, Morten Danielsen, Julian M Ketley, Primrose Freestone, Hasan Yesilkaya","doi":"10.1128/mbio.02872-24","DOIUrl":"https://doi.org/10.1128/mbio.02872-24","url":null,"abstract":"","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16Epub Date: 2024-08-30DOI: 10.1128/mbio.02558-24
Harry T Child, George Airey, Daniel M Maloney, Abby Parker, Jonathan Wild, Suzie McGinley, Nicholas Evens, Jonathan Porter, Kate Templeton, Steve Paterson, Ronny van Aerle, Matthew J Wade, Aaron R Jeffries, Irene Bassano
{"title":"Erratum for Child et al., \"Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater\".","authors":"Harry T Child, George Airey, Daniel M Maloney, Abby Parker, Jonathan Wild, Suzie McGinley, Nicholas Evens, Jonathan Porter, Kate Templeton, Steve Paterson, Ronny van Aerle, Matthew J Wade, Aaron R Jeffries, Irene Bassano","doi":"10.1128/mbio.02558-24","DOIUrl":"10.1128/mbio.02558-24","url":null,"abstract":"","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
{"title":"Single-cell transcriptome sequencing reveals that <i>Wolbachia</i> induces gene expression changes in <i>Drosophila</i> ovary cells to favor its own maternal transmission.","authors":"Yun-Heng Miao, Wei-Hao Dou, Jing Liu, Da-Wei Huang, Jin-Hua Xiao","doi":"10.1128/mbio.01473-24","DOIUrl":"10.1128/mbio.01473-24","url":null,"abstract":"<p><p><i>Wolbachia</i> is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of <i>Wolbachia</i> within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in <i>Drosophila</i> ovaries infected and uninfected with <i>Wolbachia</i>. Our findings indicate that <i>Wolbachia</i> significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of <i>Wolbachia</i> from extracellular to intracellular. Moreover, the genes <i>nos</i> and <i>orb</i>, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with <i>Wolbachia</i>, revealing that <i>Wolbachia</i> can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of <i>Wolbachia</i> between host ovarian cells.IMPORTANCE<i>Wolbachia</i>, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from <i>Drosophila melanogaster</i> and observed the effects of <i>Wolbachia</i> (strain <i>w</i>Mel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of <i>Wolbachia</i> within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with <i>Wolbachia</i> are significantly altered, which possibly favors the maternal transmission of <i>Wolbachia</i>. Meanwhile, we also discovered that <i>Wolbachia</i> may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of <i>Wolbachia</i> within the host.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16Epub Date: 2024-08-29DOI: 10.1128/mbio.01965-24
Pratyush Kumar Das, Margaret Kielian
Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif 278PPAY281 at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses.
Importance: Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, 278PPAY281, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.
{"title":"Rubella virus assembly requirements and evolutionary relationships with novel rubiviruses.","authors":"Pratyush Kumar Das, Margaret Kielian","doi":"10.1128/mbio.01965-24","DOIUrl":"10.1128/mbio.01965-24","url":null,"abstract":"<p><p>Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif <sup>278</sup>PPAY<sup>281</sup> at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses.</p><p><strong>Importance: </strong>Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, <sup>278</sup>PPAY<sup>281</sup>, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16Epub Date: 2024-09-17DOI: 10.1128/mbio.02159-24
Nathaniel S O'Bier, Andrew C Camire, Dhara T Patel, John S Billingsley, Kelly R Hodges, Richard T Marconi
Lyme disease is the most common tick-borne disease in North America. A vaccine for use in humans is not available. Here, we detail the development of two chimeric vaccine antigens, BAF and Chv2M. BAF elicits Abs that target proteins and protein variants produced by Borreliella species in ticks (OspB and OspA) and mammals (FtlA/B). OspB serves as the backbone structure for the BAF chimeric. Two OspA221-240 epitope-containing domain (ECD) variants (#A1 and #A15) were inserted into a loop in OspB. The N-terminal region of the FtlA protein was joined to the C-terminus of the chimeric. The second chimeric, Chv2M, consists of L5 (loop 5) and H5 (helix 5) ECDs derived from diverse OspC proteins. Borreliella species produce OspC upon exposure to the bloodmeal and during early infection in mammals. Here, we demonstrate that BAF and Chv2M are potent immunogens that elicit Abs that bind to each component protein (FtlA, FtlB, OspB, and multiple OspA and OspC variants). Anti-BAF and anti-Chv2M Abs kill Borreliella burgdorferi strains through Ab-mediated complement-dependent and complement-independent mechanisms. Eighty percent (32/40) of mice that received a three-dose vaccine regimen were protected from infection with B. burgdorferi B31. Efficacy increased to 90% (18/20) when the amount of Chv2M was increased in the third vaccine dose. Readouts for infection were flaB PCR and seroconversion to VlsE. This study establishes proof of principle for a chimeric immunogen vaccine formulation that elicits Abs to multiple targets on the B. burgdorferi cell surface produced during tick and mammalian stages of the enzootic cycle.IMPORTANCELyme disease is a growing public health threat across parts of the Northern Hemisphere. Regions that can support sustained tick populations are expanding, and the incidence of tick-borne diseases is increasing. In light of the increasing risk of Lyme disease, effective preventive strategies are needed. Most vaccine development efforts have focused on outer surface protein A, a Borreliella burgdorferi protein produced only in ticks. Herein, we describe the development of a novel vaccine formulation consisting of two multivalent chimeric proteins that are immunogenic and elicit antibodies with bactericidal activity that target several cell surface proteins produced by the Lyme disease spirochetes in feeding ticks and mammals. In a broader sense, this study advances efforts to develop custom-designed vaccinogens comprised of epitope-containing domains from multiple proteins.
{"title":"Development of novel multi-protein chimeric immunogens that protect against infection with the Lyme disease agent, <i>Borreliella burgdorferi</i>.","authors":"Nathaniel S O'Bier, Andrew C Camire, Dhara T Patel, John S Billingsley, Kelly R Hodges, Richard T Marconi","doi":"10.1128/mbio.02159-24","DOIUrl":"10.1128/mbio.02159-24","url":null,"abstract":"<p><p>Lyme disease is the most common tick-borne disease in North America. A vaccine for use in humans is not available. Here, we detail the development of two chimeric vaccine antigens, BAF and Chv2M. BAF elicits Abs that target proteins and protein variants produced by <i>Borreliella</i> species in ticks (OspB and OspA) and mammals (FtlA/B). OspB serves as the backbone structure for the BAF chimeric. Two OspA<sub>221-240</sub> epitope-containing domain (ECD) variants (#A1 and #A15) were inserted into a loop in OspB. The N-terminal region of the FtlA protein was joined to the C-terminus of the chimeric. The second chimeric, Chv2M, consists of L5 (loop 5) and H5 (helix 5) ECDs derived from diverse OspC proteins. <i>Borreliella</i> species produce OspC upon exposure to the bloodmeal and during early infection in mammals. Here, we demonstrate that BAF and Chv2M are potent immunogens that elicit Abs that bind to each component protein (FtlA, FtlB, OspB, and multiple OspA and OspC variants). Anti-BAF and anti-Chv2M Abs kill <i>Borreliella burgdorferi</i> strains through Ab-mediated complement-dependent and complement-independent mechanisms. Eighty percent (32/40) of mice that received a three-dose vaccine regimen were protected from infection with <i>B. burgdorferi</i> B31. Efficacy increased to 90% (18/20) when the amount of Chv2M was increased in the third vaccine dose. Readouts for infection were <i>flaB</i> PCR and seroconversion to VlsE. This study establishes proof of principle for a chimeric immunogen vaccine formulation that elicits Abs to multiple targets on the <i>B. burgdorferi</i> cell surface produced during tick and mammalian stages of the enzootic cycle.IMPORTANCELyme disease is a growing public health threat across parts of the Northern Hemisphere. Regions that can support sustained tick populations are expanding, and the incidence of tick-borne diseases is increasing. In light of the increasing risk of Lyme disease, effective preventive strategies are needed. Most vaccine development efforts have focused on outer surface protein A, a <i>Borreliella burgdorferi</i> protein produced only in ticks. Herein, we describe the development of a novel vaccine formulation consisting of two multivalent chimeric proteins that are immunogenic and elicit antibodies with bactericidal activity that target several cell surface proteins produced by the Lyme disease spirochetes in feeding ticks and mammals. In a broader sense, this study advances efforts to develop custom-designed vaccinogens comprised of epitope-containing domains from multiple proteins.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}