Pub Date : 2025-02-07DOI: 10.2174/0115734064336556250116195638
Sarita Sangwan, Sonu Chauhan, Neelam Yadav, Ravi Kumar, Anil Duhan, Vinod Malik
Aim: A simple and efficient synthesis of 14 new (9a-9n) N-phenacyl-2-pyridones with good yields (up to 75%), is reported. The synthesized derivatives were screened for their in vitro radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), their in vitro antimicrobial potential was tested against human pathogenic bacterial strains, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, as well as the fungal strain Candida albicans.
Method: All compounds displayed modest antioxidant activity, with compound 9b being the most potent in the DPPH radical scavenging assay. Most of the synthesized compounds exhibited good to excellent antimicrobial activity, however, the compounds (9d, and 9b) showed maximum inhibition zone diameters of 18.75, and 18.25mm respectively, demonstrating better antimicrobial potential than the standard drug streptomycin against Staphylococcus aureus.
Result: However, the compound 9f was found most effective against Pseudomonas aeruginosa with a 23.25 mm zone of inhibition against a 17.50 mm zone of inhibition of the standard, streptomycin. Molecular docking of the compounds 9d and 9f with tyrosyl-tRNA synthetase revealed good binding with the target.
Conclusion: The electron-withdrawing substituents on the aryl ring of synthesized N-phenacyl-2- pyridones improved the antioxidant activity, however, for Gram-positive bacteria, less lipophilic or more hydrophilic substituents, such as halogens, displayed better antimicrobial activity. Similarly, it was the more lipophilic substitutions on the aryl ring that improved the antimicrobial activity against Gram-negative bacteria.
目的:报道了14种新型(9a-9n) n -phenacyl-2-吡啶酮的简单高效合成方法,收率高达75%。体外筛选合成的衍生物对1,1-二苯基-2-苦味酰肼(DPPH)的自由基清除活性,并对蜡样芽孢杆菌、金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌和真菌白色念珠菌进行体外抑菌活性测试。方法:所有化合物均表现出适度的抗氧化活性,其中化合物9b在DPPH自由基清除试验中最有效。合成的化合物大部分具有良好至优异的抑菌活性,但化合物9d和9b的最大抑菌带直径分别为18.75 mm和18.25mm,比标准药物链霉素对金黄色葡萄球菌具有更好的抑菌潜力。结果:化合物9f对铜绿假单胞菌最有效,其抑制范围为23.25 mm,对标准品链霉素的抑制范围为17.50 mm。化合物9d和9f与酪氨酸- trna合成酶分子对接,发现与靶标结合良好。结论:合成的N-phenacyl-2- pyridones的芳基环上的吸电子取代基提高了抗氧化活性,但对革兰氏阳性菌而言,亲脂性较差或亲水性较强的取代基如卤素具有较好的抗菌活性。同样,芳基环上亲脂性更强的取代提高了对革兰氏阴性菌的抗菌活性。
{"title":"Unlocking the Biological Potential of 2-Pyridones: Synthesis, Antioxidant and Antimicrobial Activity of N-Phenacylated 5/6-Chloro-2-pyridones.","authors":"Sarita Sangwan, Sonu Chauhan, Neelam Yadav, Ravi Kumar, Anil Duhan, Vinod Malik","doi":"10.2174/0115734064336556250116195638","DOIUrl":"https://doi.org/10.2174/0115734064336556250116195638","url":null,"abstract":"<p><strong>Aim: </strong>A simple and efficient synthesis of 14 new (9a-9n) N-phenacyl-2-pyridones with good yields (up to 75%), is reported. The synthesized derivatives were screened for their in vitro radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), their in vitro antimicrobial potential was tested against human pathogenic bacterial strains, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, as well as the fungal strain Candida albicans.</p><p><strong>Method: </strong>All compounds displayed modest antioxidant activity, with compound 9b being the most potent in the DPPH radical scavenging assay. Most of the synthesized compounds exhibited good to excellent antimicrobial activity, however, the compounds (9d, and 9b) showed maximum inhibition zone diameters of 18.75, and 18.25mm respectively, demonstrating better antimicrobial potential than the standard drug streptomycin against Staphylococcus aureus.</p><p><strong>Result: </strong>However, the compound 9f was found most effective against Pseudomonas aeruginosa with a 23.25 mm zone of inhibition against a 17.50 mm zone of inhibition of the standard, streptomycin. Molecular docking of the compounds 9d and 9f with tyrosyl-tRNA synthetase revealed good binding with the target.</p><p><strong>Conclusion: </strong>The electron-withdrawing substituents on the aryl ring of synthesized N-phenacyl-2- pyridones improved the antioxidant activity, however, for Gram-positive bacteria, less lipophilic or more hydrophilic substituents, such as halogens, displayed better antimicrobial activity. Similarly, it was the more lipophilic substitutions on the aryl ring that improved the antimicrobial activity against Gram-negative bacteria.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-04DOI: 10.2174/0115734064366819250125070619
Rashmi Pathak, Phool Chandra
Background: Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.
Aim: Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.
Results: The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.
Conclusion: The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.
{"title":"Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets.","authors":"Rashmi Pathak, Phool Chandra","doi":"10.2174/0115734064366819250125070619","DOIUrl":"https://doi.org/10.2174/0115734064366819250125070619","url":null,"abstract":"<p><strong>Background: </strong>Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.</p><p><strong>Aim: </strong>Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.</p><p><strong>Results: </strong>The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.</p><p><strong>Conclusion: </strong>The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.2174/0115734064343054250108152240
Amruta M Balikai, M R Pradeep Kumar, Kalirajan Rajagopal, Mohammed Ali Alshehri, Safia Obaidur Rab, Mohamed H Nafady, Talha Bin Emran
Pyridine and its derivatives are six-membered aromatic rings containing nitrogen, which are abundant in nature and indispensable in studying heterocyclic chemistry. They constitute significant chemical substances with numerous applications. The application of pyridine derivatives by incorporating metals in modern medicine is growing in relevance. Due to their convenient parallelization and various testing capabilities in the chemical domain, pyridine derivatives have attracted increased interest in the treatment of various disease states. This review aims to systematically evaluate and highlight the recent advancements in the synthesis (conventional, synthetic, and green approach) and biological activities of metal-based pyridine derivatives, including antioxidant, antimicrobial, and antitumor activities, while identifying promising candidates for further drug development. By consolidating all this knowledge underlying their biological effects, this review aims to pave the way for future research endeavors and encourage the exploration of pyridine derivatives as viable therapeutic agents across a diverse array of medical applications.
{"title":"Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications.","authors":"Amruta M Balikai, M R Pradeep Kumar, Kalirajan Rajagopal, Mohammed Ali Alshehri, Safia Obaidur Rab, Mohamed H Nafady, Talha Bin Emran","doi":"10.2174/0115734064343054250108152240","DOIUrl":"https://doi.org/10.2174/0115734064343054250108152240","url":null,"abstract":"<p><p>Pyridine and its derivatives are six-membered aromatic rings containing nitrogen, which are abundant in nature and indispensable in studying heterocyclic chemistry. They constitute significant chemical substances with numerous applications. The application of pyridine derivatives by incorporating metals in modern medicine is growing in relevance. Due to their convenient parallelization and various testing capabilities in the chemical domain, pyridine derivatives have attracted increased interest in the treatment of various disease states. This review aims to systematically evaluate and highlight the recent advancements in the synthesis (conventional, synthetic, and green approach) and biological activities of metal-based pyridine derivatives, including antioxidant, antimicrobial, and antitumor activities, while identifying promising candidates for further drug development. By consolidating all this knowledge underlying their biological effects, this review aims to pave the way for future research endeavors and encourage the exploration of pyridine derivatives as viable therapeutic agents across a diverse array of medical applications.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.2174/0115734064342827241230053148
Deepak Dua, Prakash Kumar, Riya Anand, Salvi Sood, Gurdeep Singh
Background: Diabetes mellitus and obesity are two of the most frequent health conditions in the world, prompting medical researchers to seek novel effective treatments. According to World Health Organization (WHO) regulations and several research studies, diabetes is regarded as a significant and leading health concern worldwide. The search for efficient and safe antidiabetic drugs has led to the study of pyridine derivatives, a family of molecules with a wide range of pharmacological characteristics. Pyridines are important heterocyclic chemicals renowned for their various pharmacological properties.
Methods: Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts using keywords like diabetes, pyridine Derivatives, α- glucosidase inhibitors, and α-amylase inhibitors.
Results: Pyridine and its derivatives have received a lot of attention due to their wide range of potential uses in medicinal chemistry and pharmacology. Structural alterations and optimization efforts have resulted in higher effectiveness, selectivity, and safety characteristics. These discoveries highlight the importance of pyridine analogues as a novel class of therapeutic agents for diabetes management.
Conclusion: The review highlights the significance of pyridine analogues in the development of antidiabetic treatments, opening new avenues for developing drugs and clinical use. The ongoing advancements in the discovery of pyridine derivatives underscore their potential as prospective agents in diabetic treatments.
{"title":"Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents.","authors":"Deepak Dua, Prakash Kumar, Riya Anand, Salvi Sood, Gurdeep Singh","doi":"10.2174/0115734064342827241230053148","DOIUrl":"https://doi.org/10.2174/0115734064342827241230053148","url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus and obesity are two of the most frequent health conditions in the world, prompting medical researchers to seek novel effective treatments. According to World Health Organization (WHO) regulations and several research studies, diabetes is regarded as a significant and leading health concern worldwide. The search for efficient and safe antidiabetic drugs has led to the study of pyridine derivatives, a family of molecules with a wide range of pharmacological characteristics. Pyridines are important heterocyclic chemicals renowned for their various pharmacological properties.</p><p><strong>Methods: </strong>Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts using keywords like diabetes, pyridine Derivatives, α- glucosidase inhibitors, and α-amylase inhibitors.</p><p><strong>Results: </strong>Pyridine and its derivatives have received a lot of attention due to their wide range of potential uses in medicinal chemistry and pharmacology. Structural alterations and optimization efforts have resulted in higher effectiveness, selectivity, and safety characteristics. These discoveries highlight the importance of pyridine analogues as a novel class of therapeutic agents for diabetes management.</p><p><strong>Conclusion: </strong>The review highlights the significance of pyridine analogues in the development of antidiabetic treatments, opening new avenues for developing drugs and clinical use. The ongoing advancements in the discovery of pyridine derivatives underscore their potential as prospective agents in diabetic treatments.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.2174/0115734064354700241202174614
Suman Lata, Lucky Choudhary, Ankita Bharwal, Amit Pandit, Vikrant Abbot
Introduction: Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects. Notably, several commercially available medications, such as tiodazosin, raltegravir, zibotentan, and nesapidil, incorporate this structural motif.
Methods: This review compiles and analyzes existing synthetic methods for preparing 1,3,4- oxadiazole and its derivatives. By examining various synthetic routes and methodologies, the review provides a detailed overview of the strategies employed to generate these biologically active compounds.
Results: The review highlights the potential of 1,3,4-oxadiazole derivatives in addressing the toxicity, side effects, and drug resistance commonly associated with existing anticancer therapies. By combining the 1,3,4-oxadiazole moiety with other heteroatoms, novel hybrid derivatives have been synthesized, demonstrating enhanced pharmacological activities across various therapeutic areas.
Conclusion: This comprehensive review offers valuable insights into the synthesis and pharmacological applications of 1,3,4-oxadiazoles. It serves as a crucial resource for researchers exploring the development of new therapeutic compounds, with the ultimate goal of improving public health. The review builds on existing literature from the last two decades to present an exhaustive examination of the potential of 1,3,4-oxadiazole derivatives in drug development.
{"title":"A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds.","authors":"Suman Lata, Lucky Choudhary, Ankita Bharwal, Amit Pandit, Vikrant Abbot","doi":"10.2174/0115734064354700241202174614","DOIUrl":"https://doi.org/10.2174/0115734064354700241202174614","url":null,"abstract":"<p><strong>Introduction: </strong>Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects. Notably, several commercially available medications, such as tiodazosin, raltegravir, zibotentan, and nesapidil, incorporate this structural motif.</p><p><strong>Methods: </strong>This review compiles and analyzes existing synthetic methods for preparing 1,3,4- oxadiazole and its derivatives. By examining various synthetic routes and methodologies, the review provides a detailed overview of the strategies employed to generate these biologically active compounds.</p><p><strong>Results: </strong>The review highlights the potential of 1,3,4-oxadiazole derivatives in addressing the toxicity, side effects, and drug resistance commonly associated with existing anticancer therapies. By combining the 1,3,4-oxadiazole moiety with other heteroatoms, novel hybrid derivatives have been synthesized, demonstrating enhanced pharmacological activities across various therapeutic areas.</p><p><strong>Conclusion: </strong>This comprehensive review offers valuable insights into the synthesis and pharmacological applications of 1,3,4-oxadiazoles. It serves as a crucial resource for researchers exploring the development of new therapeutic compounds, with the ultimate goal of improving public health. The review builds on existing literature from the last two decades to present an exhaustive examination of the potential of 1,3,4-oxadiazole derivatives in drug development.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.2174/0115734064262975241208063806
Zhou Dejun, Zhang Yuying, Liu Xiaoyue, Zheng Huachuan
Background: Dopamine (1) is a commonly used vasopressor, primarily employed to treat various types of shock, congestive heart failure, and acute renal failure. Dopamine dimer (2) is an impurity generated during the production process of dopamine raw materials or the metabolism of dopamine drugs themselves.
Methods: This article presents an effective method for synthesizing dopamine dimer through the condensation of methyl 3,4-dimethoxyphenyl acetate (4) and 3,4-dimethoxyphenylethyl amine (5), followed by reduction and demethylation.
Results: The product was synthesized from easily accessible raw materials, achieving a total yield of 48% over five steps.
Conclusion: This synthesis method is simple and beneficial for pharmaceutical companies to adopt and implement.
{"title":"Effective Synthesis of Dopamine Dimer.","authors":"Zhou Dejun, Zhang Yuying, Liu Xiaoyue, Zheng Huachuan","doi":"10.2174/0115734064262975241208063806","DOIUrl":"https://doi.org/10.2174/0115734064262975241208063806","url":null,"abstract":"<p><strong>Background: </strong>Dopamine (1) is a commonly used vasopressor, primarily employed to treat various types of shock, congestive heart failure, and acute renal failure. Dopamine dimer (2) is an impurity generated during the production process of dopamine raw materials or the metabolism of dopamine drugs themselves.</p><p><strong>Methods: </strong>This article presents an effective method for synthesizing dopamine dimer through the condensation of methyl 3,4-dimethoxyphenyl acetate (4) and 3,4-dimethoxyphenylethyl amine (5), followed by reduction and demethylation.</p><p><strong>Results: </strong>The product was synthesized from easily accessible raw materials, achieving a total yield of 48% over five steps.</p><p><strong>Conclusion: </strong>This synthesis method is simple and beneficial for pharmaceutical companies to adopt and implement.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.2174/0115734064362377241217093427
Dan Wang, Ming-Tao Xia, Jia-Xin Yan, Ling Yu, Shuai Li
Cyclin-Dependent Kinase (CDK) 12 is a member of the 20-membered CDK family (CDK1-20) and plays a vital role in regulating gene transcription, mRNA splicing, translation, cell cycle, and repair of DNA damage. CDK12 is an emerging therapeutic target due to its role in regulating the transcription of DNA Damage Response (DDR) genes in Cyclin-Dependent Kinase (CDK). However, the development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. So far, no CDK12 inhibitors approved by the US FDA have been found, and more novel CDK12 inhibitors have been reported for the treatment of prostate cancer, breast cancer, ovarian cancer, lung adenocarcinoma, stomach cancer, cervical cancer, etc. This review has attempted to summarize the structural characteristics and biological activities of various novel CDK12 inhibitors reported since 2020. Meanwhile, we collated and analyzed the reported CDK12 inhibitors from the perspective of structure, summarized the current clinical application potential of CDK12 inhibitors, and further analyzed their current challenges and future development trends.
{"title":"Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors.","authors":"Dan Wang, Ming-Tao Xia, Jia-Xin Yan, Ling Yu, Shuai Li","doi":"10.2174/0115734064362377241217093427","DOIUrl":"https://doi.org/10.2174/0115734064362377241217093427","url":null,"abstract":"<p><p>Cyclin-Dependent Kinase (CDK) 12 is a member of the 20-membered CDK family (CDK1-20) and plays a vital role in regulating gene transcription, mRNA splicing, translation, cell cycle, and repair of DNA damage. CDK12 is an emerging therapeutic target due to its role in regulating the transcription of DNA Damage Response (DDR) genes in Cyclin-Dependent Kinase (CDK). However, the development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. So far, no CDK12 inhibitors approved by the US FDA have been found, and more novel CDK12 inhibitors have been reported for the treatment of prostate cancer, breast cancer, ovarian cancer, lung adenocarcinoma, stomach cancer, cervical cancer, etc. This review has attempted to summarize the structural characteristics and biological activities of various novel CDK12 inhibitors reported since 2020. Meanwhile, we collated and analyzed the reported CDK12 inhibitors from the perspective of structure, summarized the current clinical application potential of CDK12 inhibitors, and further analyzed their current challenges and future development trends.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.2174/0115734064345432241120101422
Thaysnara Batista Brito, Luana Marília Santos Oliveira, Rafaela Karolina Viana Nunes, Edson Luis Maistro, Socrates Cabral de Holanda Cavalcanti
Background: Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.
Methods: Comprehensive searches across the major databases were conducted to identify heterocyclic compounds exhibiting larvicidal efficacy against Ae. aegypti with the goal to unveil the main characteristics that are essential for exhibiting larvicidal activity.
Results: Active compounds display LC50 values varying from 0.36 to 2907 μM. Fifteen heterocyclic compounds displayed larvicidal activities below 20 μM. Five-membered ring molecules containing nitrogen and oxygen have displayed larvicidal activity according to the position of heteroatoms in the ring. Molecules bearing 1,2,4-oxadiazole and 1,2-oxazole moieties have been shown to be more active than 1,3,4-oxadiazole derivatives. Compounds possessing the indole scaffold have proven to be more potent than isatin and pyrimidine derivatives. Structural characteristics other than a heterocyclic moiety, such as the presence of halogens and less ionized and polar molecules, may also play a role in determining the final larvicidal activity.
Conclusion: The rationale behind this review is to stimulate the discovery of innovative heterocyclic larvicides. Thus, it is important to continue synthesizing new scaffolds to comprehensively elucidate the structure-activity relationship for each heterocyclic moiety outlined in this investigation.
{"title":"Synthetic Strategies for the Development of Novel Heterocycles as Larvicides Targeting Aedes aegypti Linn.","authors":"Thaysnara Batista Brito, Luana Marília Santos Oliveira, Rafaela Karolina Viana Nunes, Edson Luis Maistro, Socrates Cabral de Holanda Cavalcanti","doi":"10.2174/0115734064345432241120101422","DOIUrl":"https://doi.org/10.2174/0115734064345432241120101422","url":null,"abstract":"<p><strong>Background: </strong>Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.</p><p><strong>Methods: </strong>Comprehensive searches across the major databases were conducted to identify heterocyclic compounds exhibiting larvicidal efficacy against Ae. aegypti with the goal to unveil the main characteristics that are essential for exhibiting larvicidal activity.</p><p><strong>Results: </strong>Active compounds display LC50 values varying from 0.36 to 2907 μM. Fifteen heterocyclic compounds displayed larvicidal activities below 20 μM. Five-membered ring molecules containing nitrogen and oxygen have displayed larvicidal activity according to the position of heteroatoms in the ring. Molecules bearing 1,2,4-oxadiazole and 1,2-oxazole moieties have been shown to be more active than 1,3,4-oxadiazole derivatives. Compounds possessing the indole scaffold have proven to be more potent than isatin and pyrimidine derivatives. Structural characteristics other than a heterocyclic moiety, such as the presence of halogens and less ionized and polar molecules, may also play a role in determining the final larvicidal activity.</p><p><strong>Conclusion: </strong>The rationale behind this review is to stimulate the discovery of innovative heterocyclic larvicides. Thus, it is important to continue synthesizing new scaffolds to comprehensively elucidate the structure-activity relationship for each heterocyclic moiety outlined in this investigation.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule. The focus of this review revolves around the strategic incorporation of heterocycles, particularly thiazole derivatives. Thiazole derivatives, due to their unique structural features, are explored in depth within this review paper. The paper comprehensively outlines diverse hybridization strategies of thiazole derivatives, highlighting their vibrant biological activities mainly in the last decade, 2014-2024. By presenting an extensive overview, the review aims to provide valuable insights into the potential of thiazole derivatives as promising candidates for drug development. The insights garnered from this paper are expected to offer valuable guidance for future drug design endeavors, providing a foundation for developing novel and effective drugs to combat lifestyle diseases and microbial resistance.
{"title":"Exploring the Therapeutic Potential of 1,3-Thiazole: A Decade Overview.","authors":"Ajit Manchare, Swapnali Parit, Mukta Lele, Navnath Hatvate","doi":"10.2174/0115734064365060250116103320","DOIUrl":"https://doi.org/10.2174/0115734064365060250116103320","url":null,"abstract":"<p><p>The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule. The focus of this review revolves around the strategic incorporation of heterocycles, particularly thiazole derivatives. Thiazole derivatives, due to their unique structural features, are explored in depth within this review paper. The paper comprehensively outlines diverse hybridization strategies of thiazole derivatives, highlighting their vibrant biological activities mainly in the last decade, 2014-2024. By presenting an extensive overview, the review aims to provide valuable insights into the potential of thiazole derivatives as promising candidates for drug development. The insights garnered from this paper are expected to offer valuable guidance for future drug design endeavors, providing a foundation for developing novel and effective drugs to combat lifestyle diseases and microbial resistance.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.2174/0115734064309469240806104435
Aniqa Moveed, Shagufta Parveen, Nusrat Shafiq, Awais Ali, Maryam Rashid, Mohammed Bourhia, Fouad Msanda, Ahmad Mohammad Salamatullah, Simone Brogi
Background: The rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.
Methods: This article describes the pharmacophore-based structure-activity relationship (3DQSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds' electrostatic patterns, were mapped to screen phytochemicals. The 3D-QSAR model generates pharmacophore-based descriptors and alignment of active compounds. Further, docking studies were performed on the active compounds to check out their binding affinity with the active site of the target proteins. It was further validated by applying molecular simulations, and the results were found to be accurate. The geometrical optimization and energy gap of the hit compound were calculated by the density functional theory (DFT). Then, ADMET was performed on this hit compound for drug-like features and toxicity.
Result: Out of 59 compounds, eight ligands were found active after the 3D-QSAR study. After that, molecular docking was performed on the active compounds F72, F52, F54, F29, F37, F38, F25, and F29, which were recognized as potential targets, and the docking results showed that compound F52 (also an FDA-approved drug) was the best hit. F52 was found to be the best hit against liver cancer cell lines HCC and HepG2.
Conclusion: This study would be helpful for early drug discovery optimization and lead identification.
{"title":"Natural Compounds from Alhagi maurorum as Potential HCC and HepG2 Inhibitors: An Integrated Study using Pharmacophore Development, Molecular Docking, MD Simulation, and DFT Approaches.","authors":"Aniqa Moveed, Shagufta Parveen, Nusrat Shafiq, Awais Ali, Maryam Rashid, Mohammed Bourhia, Fouad Msanda, Ahmad Mohammad Salamatullah, Simone Brogi","doi":"10.2174/0115734064309469240806104435","DOIUrl":"https://doi.org/10.2174/0115734064309469240806104435","url":null,"abstract":"<p><strong>Background: </strong>The rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.</p><p><strong>Methods: </strong>This article describes the pharmacophore-based structure-activity relationship (3DQSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds' electrostatic patterns, were mapped to screen phytochemicals. The 3D-QSAR model generates pharmacophore-based descriptors and alignment of active compounds. Further, docking studies were performed on the active compounds to check out their binding affinity with the active site of the target proteins. It was further validated by applying molecular simulations, and the results were found to be accurate. The geometrical optimization and energy gap of the hit compound were calculated by the density functional theory (DFT). Then, ADMET was performed on this hit compound for drug-like features and toxicity.</p><p><strong>Result: </strong>Out of 59 compounds, eight ligands were found active after the 3D-QSAR study. After that, molecular docking was performed on the active compounds F72, F52, F54, F29, F37, F38, F25, and F29, which were recognized as potential targets, and the docking results showed that compound F52 (also an FDA-approved drug) was the best hit. F52 was found to be the best hit against liver cancer cell lines HCC and HepG2.</p><p><strong>Conclusion: </strong>This study would be helpful for early drug discovery optimization and lead identification.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}