Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1Δ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ρo mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.
{"title":"Aeration mitigates endoplasmic reticulum stress in <i>Saccharomyces cerevisiae</i> even without mitochondrial respiration.","authors":"Huong Thi Phuong, Yuki Ishiwata-Kimata, Yuki Nishi, Norie Oguchi, Hiroshi Takagi, Yukio Kimata","doi":"10.15698/mic2021.04.746","DOIUrl":"https://doi.org/10.15698/mic2021.04.746","url":null,"abstract":"<p><p><i>Saccharomyces cerevisiae</i> is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of <i>S. cerevisiae</i> on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of <i>HAC1</i> mRNA, which is promoted by the ER stress-sensor protein, Ire1. <i>HAC1</i>-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of <i>ire1</i>Δ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ρ<sup>o</sup> mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using <i>ero1</i>-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on <i>S. cerevisiae</i> cells even under fermentative conditions.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"8 4","pages":"77-86"},"PeriodicalIF":4.6,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25559178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-04DOI: 10.1101/2021.03.04.433786
Catalina-Andreea Romila, StJohn Townsend, M. Malecki, S. Kamrad, María Rodríguez-López, Olivia Hillson, Cristina Cotobal, M. Ralser, J. Bähler
Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ∼700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 51 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay for chronological lifespan to facilitate medium- to high-throughput ageing studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay, validating 33 genes not previously associated with cellular ageing. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.
{"title":"Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast","authors":"Catalina-Andreea Romila, StJohn Townsend, M. Malecki, S. Kamrad, María Rodríguez-López, Olivia Hillson, Cristina Cotobal, M. Ralser, J. Bähler","doi":"10.1101/2021.03.04.433786","DOIUrl":"https://doi.org/10.1101/2021.03.04.433786","url":null,"abstract":"Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ∼700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 51 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay for chronological lifespan to facilitate medium- to high-throughput ageing studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay, validating 33 genes not previously associated with cellular ageing. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"8 1","pages":"146 - 160"},"PeriodicalIF":4.6,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47081069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beards hanging from trees and colorful patches encrusting rocks are silent success stories of lichens, the fascinating life styles fungi can form with algae (Fig. 1). Lichens were show-cases to introduce the concept of symbiosis (as ‘Symbiotismus’ [1]). The self-support of symbiotic life styles is recognized as gear-shift of evolution and applied to a vast number of examples where continued interactions between species lead to metabolic or phenotypic novelty. Lichen symbioses are still outstanding for the structural longevity and occurrence in environments, some which are unsuitable for most other organisms. Lichens often form major components Arctic tundra, boreal forest floors, but also on lava fields, rock surfaces along coasts or in extremely high altitudes. The perseverance of lichens in such hostile places appears to be in striking contrast to observed ecological specialization and their lack in urban and trafficated places. The symbiosis is indeed very sensitive during physiologically active state but the puzzle of extremotolerance is solved when we consider poikilohydry: because lichens hardly possess structural or functional mechanisms to maintain and/or regulate water content, desiccation rapidly causes shut down of metabolism. Yet, in contrast to many other life forms, lichens cope extremely well with recurrent changes of water availability. Lichens have an outstanding ability to revitalize from dry stages. Lichens can endure extreme desiccation to water contents (below 0.1 g H2O g–1 dry weight (DW)), which causes ‘vitrification’, the transition of their cytoplasm to a ‘glassy’ state and cease of metabolism. To find out what reactions may occur at different levels of desiccation in lichens, Candotto Carniel et al. [2] used dynamic mechanical thermal analysis as for assessment of molecular mobility, while deand re-epoxidation of the xanthophyll cycle pigments served as a proxy to assess enzyme activity. At 20°C vitrification occurred between 0.12–0.08 g H2O g−1 DW and enzymes were active in a ‘rubbery’ state (0.17 g H2O g−1 DW) but not in a glassy state (0.03 g H2O g−1 DW). Therefore, desiccated tissues may appear to be ‘dry’ in the conventional sense, but subtle differences in water content will have substantial consequences on the types of (bio)chemical reactions that can occur, with downstream effects on longevity in the desiccated state. Lichen thalli must be flexible to retain shape integrity under poikilohydric conditions, which involve shrinking and swelling of the symbiotic structures. The photosynthetic partners in the majority of lichens, algae or cyanobacteria, are typically sheltered beneath coherent peripheral layers formed by fungal cells, which are tightly glued together in a common extracellular matrix by their gelatinizing outer cell walls. Spribille et al. [3] compiled current knowledge about the composition of involved polysaccharides and emphasized the important role of acidic polysaccharides in holding lichens toget
{"title":"Lichens - growing greenhouses <i>en miniature</i>.","authors":"Martin Grube","doi":"10.15698/mic2021.03.743","DOIUrl":"https://doi.org/10.15698/mic2021.03.743","url":null,"abstract":"Beards hanging from trees and colorful patches encrusting rocks are silent success stories of lichens, the fascinating life styles fungi can form with algae (Fig. 1). Lichens were show-cases to introduce the concept of symbiosis (as ‘Symbiotismus’ [1]). The self-support of symbiotic life styles is recognized as gear-shift of evolution and applied to a vast number of examples where continued interactions between species lead to metabolic or phenotypic novelty. Lichen symbioses are still outstanding for the structural longevity and occurrence in environments, some which are unsuitable for most other organisms. Lichens often form major components Arctic tundra, boreal forest floors, but also on lava fields, rock surfaces along coasts or in extremely high altitudes. The perseverance of lichens in such hostile places appears to be in striking contrast to observed ecological specialization and their lack in urban and trafficated places. The symbiosis is indeed very sensitive during physiologically active state but the puzzle of extremotolerance is solved when we consider poikilohydry: because lichens hardly possess structural or functional mechanisms to maintain and/or regulate water content, desiccation rapidly causes shut down of metabolism. Yet, in contrast to many other life forms, lichens cope extremely well with recurrent changes of water availability. Lichens have an outstanding ability to revitalize from dry stages. Lichens can endure extreme desiccation to water contents (below 0.1 g H2O g–1 dry weight (DW)), which causes ‘vitrification’, the transition of their cytoplasm to a ‘glassy’ state and cease of metabolism. To find out what reactions may occur at different levels of desiccation in lichens, Candotto Carniel et al. [2] used dynamic mechanical thermal analysis as for assessment of molecular mobility, while deand re-epoxidation of the xanthophyll cycle pigments served as a proxy to assess enzyme activity. At 20°C vitrification occurred between 0.12–0.08 g H2O g−1 DW and enzymes were active in a ‘rubbery’ state (0.17 g H2O g−1 DW) but not in a glassy state (0.03 g H2O g−1 DW). Therefore, desiccated tissues may appear to be ‘dry’ in the conventional sense, but subtle differences in water content will have substantial consequences on the types of (bio)chemical reactions that can occur, with downstream effects on longevity in the desiccated state. Lichen thalli must be flexible to retain shape integrity under poikilohydric conditions, which involve shrinking and swelling of the symbiotic structures. The photosynthetic partners in the majority of lichens, algae or cyanobacteria, are typically sheltered beneath coherent peripheral layers formed by fungal cells, which are tightly glued together in a common extracellular matrix by their gelatinizing outer cell walls. Spribille et al. [3] compiled current knowledge about the composition of involved polysaccharides and emphasized the important role of acidic polysaccharides in holding lichens toget","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"8 3","pages":"65-68"},"PeriodicalIF":4.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25454214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vibrio cholerae, the causative agent of the diarrheal disease cholera, is a microbe capable of inhabiting two different ecosystems: chitinous surfaces in brackish, estuarine waters and the epithelial lining of the human gastrointestinal tract. V. cholerae defends against competitive microorganisms with a contact-dependent, contractile killing machine called the type VI secretion system (T6SS) in each of these niches. The T6SS resembles an inverted T4 bacteriophage tail and is used to deliver toxic effector proteins into neighboring cells. Pandemic strains of V. cholerae encode a unique set of T6SS effector proteins, which may play a role in pathogenesis or pandemic spread. In our recent study (Santoriello et al. (2020), Nat Commun, doi: 10.1038/s41467-020-20012-7), using genomic and molecular biology tools, we demonstrated that the T6SS island Auxiliary Cluster 3 (Aux3) is unique to pandemic strains of V. cholerae. We went on to show that Aux3 is related to a phage-like element circulating in environmental V. cholerae strains and that two genetic domestication events formed the pandemic Aux3 cluster during the evolution of the pandemic clone. Our findings support two main conclusions: (1) Aux3 evolution from phage-like element to T6SS cluster offers a snapshot of phage domestication in early T6SS evolution and (2) chromosomal maintenance of Aux3 was advantageous to the common ancestor of V. cholerae pandemic strains.
霍乱弧菌是腹泻病霍乱的病原体,是一种能够栖息于两种不同生态系统的微生物:咸淡水、河口水域的几丁质表面和人类胃肠道的上皮。霍乱弧菌在每个生态位中都有一种依赖于接触的、可收缩的杀戮机器,称为VI型分泌系统(T6SS),以抵御竞争微生物。T6SS类似于倒置的T4噬菌体尾巴,用于将毒性效应蛋白传递到邻近细胞中。霍乱弧菌大流行菌株编码一组独特的T6SS效应蛋白,该蛋白可能在发病或大流行传播中发挥作用。在我们最近的研究(Santoriello et al. (2020), Nat Commun, doi: 10.1038/s41467-020-20012-7)中,我们使用基因组和分子生物学工具证明了T6SS岛辅助簇3 (Aux3)是霍乱分枝杆菌大流行菌株所特有的。我们进一步证明,Aux3与环境霍乱弧菌菌株中循环的一种噬菌体样元素有关,并且在大流行克隆的进化过程中,两次遗传驯化事件形成了大流行Aux3集群。我们的研究结果支持两个主要结论:(1)Aux3从噬菌体样元素到T6SS簇的进化提供了早期T6SS进化中噬菌体驯化的简要描述;(2)Aux3的染色体维持有利于霍乱弧菌大流行菌株的共同祖先。
{"title":"When the pandemic opts for the lockdown: Secretion system evolution in the cholera bacterium.","authors":"Francis J Santoriello, Stefan Pukatzki","doi":"10.15698/mic2021.03.744","DOIUrl":"https://doi.org/10.15698/mic2021.03.744","url":null,"abstract":"<p><p><i>Vibrio cholerae</i>, the causative agent of the diarrheal disease cholera, is a microbe capable of inhabiting two different ecosystems: chitinous surfaces in brackish, estuarine waters and the epithelial lining of the human gastrointestinal tract. <i>V. cholerae</i> defends against competitive microorganisms with a contact-dependent, contractile killing machine called the type VI secretion system (T6SS) in each of these niches. The T6SS resembles an inverted T4 bacteriophage tail and is used to deliver toxic effector proteins into neighboring cells. Pandemic strains of <i>V. cholerae</i> encode a unique set of T6SS effector proteins, which may play a role in pathogenesis or pandemic spread. In our recent study (Santoriello <i>et al.</i> (2020), Nat Commun, doi: 10.1038/s41467-020-20012-7), using genomic and molecular biology tools, we demonstrated that the T6SS island Auxiliary Cluster 3 (Aux3) is unique to pandemic strains of <i>V. cholerae</i>. We went on to show that Aux3 is related to a phage-like element circulating in environmental <i>V. cholerae</i> strains and that two genetic domestication events formed the pandemic Aux3 cluster during the evolution of the pandemic clone. Our findings support two main conclusions: (1) Aux3 evolution from phage-like element to T6SS cluster offers a snapshot of phage domestication in early T6SS evolution and (2) chromosomal maintenance of Aux3 was advantageous to the common ancestor of <i>V. cholerae</i> pandemic strains.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"8 3","pages":"69-72"},"PeriodicalIF":4.6,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25454215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangfang Li, Peixi Qin, Lisha Ye, Nishith Gupta, Min Hu
SMAD proteins mediate TGF-β signaling and thereby regulate the metazoan development; however, they are poorly defined in Haemonchus contortus-a common blood-sucking parasitic nematode of small ruminants. Here, we characterized an R-SMAD family protein in H. contortus termed HcSMA2, which is closely related to Caenorhabditis elegans SMA2 (CeSMA2) involved in the bone morphogenetic protein (BMP) signaling. Hcsma2 is transcribed in all developmental stages of H. contortus but highly induced in the adult male worms. The RNA interference with Hcsma2 retarded the transition of infective L3 into L4 larvae. Besides, the bimolecular fluorescence complementation revealed the interaction of HcSMA2 with a TGF-β-activated-R-SMAD (HcDAF8). Together these results show a BMP-like receptor-regulated SMAD in H. contortus that is required for larval differentiation and underscore an adaptive functional repurposing of BMP-signaling in parasitic worms.
{"title":"A novel BR-SMAD is required for larval development in barber's pole worm <i>Haemonchus contortus</i>.","authors":"Fangfang Li, Peixi Qin, Lisha Ye, Nishith Gupta, Min Hu","doi":"10.15698/mic2021.02.742","DOIUrl":"https://doi.org/10.15698/mic2021.02.742","url":null,"abstract":"<p><p>SMAD proteins mediate TGF-β signaling and thereby regulate the metazoan development; however, they are poorly defined in <i>Haemonchus contortus</i>-a common blood-sucking parasitic nematode of small ruminants. Here, we characterized an R-SMAD family protein in <i>H. contortus</i> termed <i>Hc</i>SMA2, which is closely related to <i>Caenorhabditis elegans</i> SMA2 (<i>Ce</i>SMA2) involved in the bone morphogenetic protein (BMP) signaling. <i>Hcsma2</i> is transcribed in all developmental stages of <i>H. contortus</i> but highly induced in the adult male worms. The RNA interference with <i>Hcsma2</i> retarded the transition of infective L3 into L4 larvae. Besides, the bimolecular fluorescence complementation revealed the interaction of <i>Hc</i>SMA2 with a TGF-β-activated-R-SMAD (<i>Hc</i>DAF8). Together these results show a BMP-like receptor-regulated SMAD in <i>H. contortus</i> that is required for larval differentiation and underscore an adaptive functional repurposing of BMP-signaling in parasitic worms.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"8 2","pages":"57-64"},"PeriodicalIF":4.6,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25342912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Professional phagocytes represent a critical node in innate immunity and tissue homeostasis through their specialized ability to eat, drink, and digest material from the extracellular milieu. The degradative and microbicidal functions of phagocytes rely on the fusion of lysosomes with endosomal compartments such as phagosomes, resulting in the digestion and recycling of internalized prey and debris. Despite these efforts, several particularly dangerous infections result from a class of tenacious pathogens that resist digestion, often surviving and even proliferating within the confines of the phagosomal membrane. One such example, Candida albicans, is a commensal polymorphic fungus that colonizes ~50% of the population and can cause life-threatening infections in immunocompromised patients. Not only can C. albicans survive within phagosomes, but its ingestion by macropahges triggers a yeast-to-hyphal transition promoting rapid intraphagosomal growth (several microns per hour) while imposing a substantial mechanical burden on the phagosomal membrane surrounding the fungus. Preservation of membrane integrity is essential to maintain the hostile internal environment of the phagosome, a functionality of degradative enzymes and oxidative stress. Yet, biological membranes such as phagosomes have a limited capacity to stretch. Using C. albicans as a model intracellular pathogen, our recent work reveals a mechanism by which phagosomes respond to intraphagosomal growth of pathogens by expanding their surface area, and as a result, maintain the integrity of the phagosomal membrane. We hypothesized that this expansion would be facilitated by the delivery and fusion of membrane from extraneous sources with the phagosome. Consistently, macrophages respond to the yeast-to-hyphal transition through a stretch-induced release of phagosomal calcium, leading to recruitment and insertion of lysosomes that accommodate the expansion of the phagolysosome and preserve its integrity. Below, we discuss this calcium-dependent mechanism of lysosome insertion as a means of avoiding phagosomal rupture. Further, we examine the implications of membrane integrity on the delicate balance between the host and pathogen by focusing on fungal stress responses, nutrient acquisition, inflammasome activation, and cell death.
{"title":"Maintaining phagosome integrity during fungal infection: do or die?","authors":"Mabel Yang, Glenn F W Walpole, Johannes Westman","doi":"10.15698/mic2020.12.738","DOIUrl":"https://doi.org/10.15698/mic2020.12.738","url":null,"abstract":"<p><p>Professional phagocytes represent a critical node in innate immunity and tissue homeostasis through their specialized ability to eat, drink, and digest material from the extracellular milieu. The degradative and microbicidal functions of phagocytes rely on the fusion of lysosomes with endosomal compartments such as phagosomes, resulting in the digestion and recycling of internalized prey and debris. Despite these efforts, several particularly dangerous infections result from a class of tenacious pathogens that resist digestion, often surviving and even proliferating within the confines of the phagosomal membrane. One such example, <i>Candida albicans,</i> is a commensal polymorphic fungus that colonizes ~50% of the population and can cause life-threatening infections in immunocompromised patients. Not only can <i>C. albicans</i> survive within phagosomes, but its ingestion by macropahges triggers a yeast-to-hyphal transition promoting rapid intraphagosomal growth (several microns per hour) while imposing a substantial mechanical burden on the phagosomal membrane surrounding the fungus. Preservation of membrane integrity is essential to maintain the hostile internal environment of the phagosome, a functionality of degradative enzymes and oxidative stress. Yet, biological membranes such as phagosomes have a limited capacity to stretch. Using <i>C. albicans</i> as a model intracellular pathogen, our recent work reveals a mechanism by which phagosomes respond to intraphagosomal growth of pathogens by expanding their surface area, and as a result, maintain the integrity of the phagosomal membrane. We hypothesized that this expansion would be facilitated by the delivery and fusion of membrane from extraneous sources with the phagosome. Consistently, macrophages respond to the yeast-to-hyphal transition through a stretch-induced release of phagosomal calcium, leading to recruitment and insertion of lysosomes that accommodate the expansion of the phagolysosome and preserve its integrity. Below, we discuss this calcium-dependent mechanism of lysosome insertion as a means of avoiding phagosomal rupture. Further, we examine the implications of membrane integrity on the delicate balance between the host and pathogen by focusing on fungal stress responses, nutrient acquisition, inflammasome activation, and cell death.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 12","pages":"323-325"},"PeriodicalIF":4.6,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38387172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rate at which antibiotics are discovered and developed has stagnated; meanwhile, antibacterial resistance continually increases and leads to a plethora of untreatable and deadly infections worldwide. Therefore, there is a critical need to develop new antimicrobial strategies to combat this alarming reality. One approach is to understand natural antimicrobial defense mechanisms that higher-level organisms employ in order to kill bacteria, potentially leading to novel antibiotic therapeutic approaches. Mammalian histones have long been reported to have antibiotic activity, with the first observation of their antibacterial properties reported in 1942. However, there have been doubts about whether histones could truly have any such role in the animal, predominantly based on two issues: they are found in the nucleus (so are not in a position to encounter bacteria), and their antibiotic activity in vitro has been relatively weak in physiological conditions. More recent studies have addressed both sets of concerns. Histones are released from cells as part of neutrophil extracellular traps (NETs) and are thus able to encounter extracellular bacteria. Histones are also present intracellularly in the cytoplasm attached to lipid droplets, positioning them to encounter cytosolic bacteria. Our recent work (Doolin et al., 2020, Nat Commun), which is discussed here, shows that histones have synergistic antimicrobial activities when they are paired with antimicrobial peptides (AMPs), which form pores in bacterial membranes and co-localize with histones in NETs. The work demonstrates that histones enhance AMP-mediated pores, impair bacterial membrane recovery, depolarize the bacterial proton gradient, and enter the bacterial cytoplasm, where they restructure the chromosome and inhibit transcription. Here, we examine potential mechanisms that are responsible for these outcomes.
抗生素的发现和开发速度停滞不前;与此同时,抗菌素耐药性不断增加,导致世界范围内出现大量无法治疗和致命的感染。因此,迫切需要制定新的抗微生物战略来应对这一令人震惊的现实。一种方法是了解高级生物为了杀死细菌而采用的天然抗菌防御机制,这可能会导致新的抗生素治疗方法。哺乳动物组蛋白长期以来一直被报道具有抗生素活性,1942年首次观察到它们的抗菌特性。然而,对于组蛋白在动物体内是否真的具有这样的作用一直存在怀疑,主要基于两个问题:组蛋白存在于细胞核中(因此无法与细菌接触),以及它们在体外的抗生素活性在生理条件下相对较弱。最近的研究解决了这两种问题。组蛋白作为中性粒细胞胞外陷阱(NETs)的一部分从细胞中释放出来,因此能够遇到胞外细菌。组蛋白也存在于细胞内的细胞质中,附着在脂滴上,使它们能够遇到胞质细菌。我们最近的研究(Doolin et al., 2020, Nat comm)表明,当组蛋白与抗菌肽(抗菌肽在细菌膜上形成孔,并在NETs中与组蛋白共定位)结合时,组蛋白具有协同抗菌活性。研究表明,组蛋白增强amp介导的孔隙,损害细菌膜恢复,使细菌质子梯度去极化,并进入细菌细胞质,在那里它们重组染色体并抑制转录。在这里,我们研究了导致这些结果的潜在机制。
{"title":"A novel antibacterial strategy: histone and antimicrobial peptide synergy.","authors":"Leora Duong, Steven P Gross, Albert Siryaporn","doi":"10.15698/mic2020.11.736","DOIUrl":"https://doi.org/10.15698/mic2020.11.736","url":null,"abstract":"<p><p>The rate at which antibiotics are discovered and developed has stagnated; meanwhile, antibacterial resistance continually increases and leads to a plethora of untreatable and deadly infections worldwide. Therefore, there is a critical need to develop new antimicrobial strategies to combat this alarming reality. One approach is to understand natural antimicrobial defense mechanisms that higher-level organisms employ in order to kill bacteria, potentially leading to novel antibiotic therapeutic approaches. Mammalian histones have long been reported to have antibiotic activity, with the first observation of their antibacterial properties reported in 1942. However, there have been doubts about whether histones could truly have any such role in the animal, predominantly based on two issues: they are found in the nucleus (so are not in a position to encounter bacteria), and their antibiotic activity <i>in vitro</i> has been relatively weak in physiological conditions. More recent studies have addressed both sets of concerns. Histones are released from cells as part of neutrophil extracellular traps (NETs) and are thus able to encounter extracellular bacteria. Histones are also present intracellularly in the cytoplasm attached to lipid droplets, positioning them to encounter cytosolic bacteria. Our recent work (Doolin et al., 2020, Nat Commun), which is discussed here, shows that histones have synergistic antimicrobial activities when they are paired with antimicrobial peptides (AMPs), which form pores in bacterial membranes and co-localize with histones in NETs. The work demonstrates that histones enhance AMP-mediated pores, impair bacterial membrane recovery, depolarize the bacterial proton gradient, and enter the bacterial cytoplasm, where they restructure the chromosome and inhibit transcription. Here, we examine potential mechanisms that are responsible for these outcomes.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 11","pages":"309-311"},"PeriodicalIF":4.6,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38575631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is well established that intracellular pathogens mobilise signalling pathways to manipulate gene expression of their host cell to promote their own survival. Surprisingly, there is evidence that specific host signalling molecules are likewise activated in a-nucleated erythrocytes in response to infection with malaria parasites. In this paper (Adderley et al., Nature Communications 2020), we report the system-wide assessment of host erythrocyte signalling during the course of infection with Plasmodium falciparum. This was achieved through the use of antibody microarrays containing >800 antibodies directed against human signalling proteins, which enabled us to interrogate the status of host erythrocyte signalling pathways at the ring, trophozoite and schizont stages of parasite development. This not only confirmed the pre-existing fragmentary data on the activation of a host erythrocyte PAK-MEK pathway, but also identified dynamic changes to many additional signalling elements, with trophozoite-infected erythrocytes displaying the largest mobilisation of host cell signalling. This study generated a comprehensive dataset on the modulation of host erythrocyte signalling during infection with P. falciparum, and provides the proof of principle that human protein kinases activated by Plasmodium infection represent attractive targets for antimalarial intervention.
众所周知,细胞内病原体通过信号通路操纵宿主细胞的基因表达,从而促进自身的生存。令人惊讶的是,有证据表明,特定的宿主信号分子同样在a核红细胞中被激活,以响应疟疾寄生虫的感染。在这篇论文中(Adderley et al., Nature Communications 2020),我们报告了恶性疟原虫感染过程中宿主红细胞信号传导的全系统评估。这是通过使用含有超过800种针对人类信号蛋白抗体的抗体微阵列来实现的,这使我们能够在寄生虫发育的环、滋养体和分裂体阶段询问宿主红细胞信号通路的状态。这不仅证实了宿主红细胞PAK-MEK通路激活的先前存在的零碎数据,而且还确定了许多其他信号元件的动态变化,滋养体感染的红细胞显示出最大的宿主细胞信号动员。本研究生成了恶性疟原虫感染期间宿主红细胞信号调节的综合数据集,并提供了由疟原虫感染激活的人蛋白激酶代表抗疟疾干预有吸引力的靶点的原理证明。
{"title":"Erythrocyte phospho-signalling is dynamically altered during infection with <i>Plasmodium falciparum</i>.","authors":"Jack D Adderley, Christian Doerig","doi":"10.15698/mic2020.10.733","DOIUrl":"https://doi.org/10.15698/mic2020.10.733","url":null,"abstract":"<p><p>It is well established that intracellular pathogens mobilise signalling pathways to manipulate gene expression of their host cell to promote their own survival. Surprisingly, there is evidence that specific host signalling molecules are likewise activated in a-nucleated erythrocytes in response to infection with malaria parasites. In this paper (Adderley <i>et al.</i>, Nature Communications 2020), we report the system-wide assessment of host erythrocyte signalling during the course of infection with <i>Plasmodium falciparum</i>. This was achieved through the use of antibody microarrays containing >800 antibodies directed against human signalling proteins, which enabled us to interrogate the status of host erythrocyte signalling pathways at the ring, trophozoite and schizont stages of parasite development. This not only confirmed the pre-existing fragmentary data on the activation of a host erythrocyte PAK-MEK pathway, but also identified dynamic changes to many additional signalling elements, with trophozoite-infected erythrocytes displaying the largest mobilisation of host cell signalling. This study generated a comprehensive dataset on the modulation of host erythrocyte signalling during infection with <i>P. falciparum</i>, and provides the proof of principle that human protein kinases activated by <i>Plasmodium</i> infection represent attractive targets for antimalarial intervention.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 10","pages":"286-288"},"PeriodicalIF":4.6,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517008/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We demonstrate that plasma membrane biosynthesis and vacuole formation require DNA replication in Enterococcus faecalis protoplasts. The replication inhibitor novobiocin inhibited not only DNA replication but also cell enlargement (plasma membrane biosynthesis) and vacuole formation during the enlargement of the E. faecalis protoplasts. After novobiocin treatment prior to vacuole formation, the cell size of E. faecalis protoplasts was limited to 6 μm in diameter and the cells lacked vacuoles. When novobiocin was added after vacuole formation, E. faecalis protoplasts grew with vacuole enlargement; after novobiocin removal, protoplasts were enlarged again. Although cell size distribution of the protoplasts was similar following the 24 h and 48 h novobiocin treatments, after 72 h of novobiocin treatment there was a greater number of smaller sized protoplasts, suggesting that extended novobiocin treatment may inhibit the re-enlargement of E. faecalis protoplasts after novobiocin removal. Our findings demonstrate that novobiocin can control the enlargement of E. faecalis protoplasts due to inhibition of DNA replication.
{"title":"Novobiocin inhibits membrane synthesis and vacuole formation of <i>Enterococcus faecalis</i> protoplasts.","authors":"Rintaro Tsuchikado, Satoshi Kami, Sawako Takahashi, Hiromi Nishida","doi":"10.15698/mic2020.11.735","DOIUrl":"https://doi.org/10.15698/mic2020.11.735","url":null,"abstract":"<p><p>We demonstrate that plasma membrane biosynthesis and vacuole formation require DNA replication in <i>Enterococcus faecalis</i> protoplasts. The replication inhibitor novobiocin inhibited not only DNA replication but also cell enlargement (plasma membrane biosynthesis) and vacuole formation during the enlargement of the <i>E. faecalis</i> protoplasts. After novobiocin treatment prior to vacuole formation, the cell size of <i>E. faecalis</i> protoplasts was limited to 6 μm in diameter and the cells lacked vacuoles. When novobiocin was added after vacuole formation, <i>E. faecalis</i> protoplasts grew with vacuole enlargement; after novobiocin removal, protoplasts were enlarged again. Although cell size distribution of the protoplasts was similar following the 24 h and 48 h novobiocin treatments, after 72 h of novobiocin treatment there was a greater number of smaller sized protoplasts, suggesting that extended novobiocin treatment may inhibit the re-enlargement of <i>E. faecalis</i> protoplasts after novobiocin removal. Our findings demonstrate that novobiocin can control the enlargement of <i>E. faecalis</i> protoplasts due to inhibition of DNA replication.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 11","pages":"300-308"},"PeriodicalIF":4.6,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38568210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alissa D Clear, Glenn M Manthey, Olivia Lewis, Isabelle Y Lopez, Rossana Rico, Shannon Owens, M Cristina Negritto, Elise W Wolf, Jason Xu, Nikola Kenjić, J Jefferson P Perry, Aaron W Adamson, Susan L Neuhausen, Adam M Bailis
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
{"title":"Variants of the human <i>RAD52</i> gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast.","authors":"Alissa D Clear, Glenn M Manthey, Olivia Lewis, Isabelle Y Lopez, Rossana Rico, Shannon Owens, M Cristina Negritto, Elise W Wolf, Jason Xu, Nikola Kenjić, J Jefferson P Perry, Aaron W Adamson, Susan L Neuhausen, Adam M Bailis","doi":"10.15698/mic2020.10.732","DOIUrl":"https://doi.org/10.15698/mic2020.10.732","url":null,"abstract":"<p><p>RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, <i>HsRAD52</i> in <i>rad52</i> mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that <i>HsRAD52</i> supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of <i>HsRAD52</i>, one of which suppresses the pathogenicity of <i>BRCA2</i> mutations, were unable to suppress the IR sensitivity and HRR defects of <i>rad52</i> mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 10","pages":"270-285"},"PeriodicalIF":4.6,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}