Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.1.069
Seung-Hee Hong, Chang-Gu Lee, S. Jeong, Seong-Jik Park
Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 micro-m) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 degree Celcius was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.
{"title":"Synthesis of polysulfone beads impregnated withCa-sepiolite for phosphate removal","authors":"Seung-Hee Hong, Chang-Gu Lee, S. Jeong, Seong-Jik Park","doi":"10.12989/MWT.2020.11.1.069","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.1.069","url":null,"abstract":"Former studies revealed that sepiolite thermally treated at high temperature have high adsorption capacity for phosphate. However, its micron size (75 micro-m) limits its application to water treatment. In this study, we synthesized sepiolite impregnated polysulfone (PSf) beads to separate it easily from an aqueous solution. PSf beads with different sepiolite ratios were synthesized and their efficiencies were compared. The PSf beads with 30% impregnated sepiolite (30SPL-PSf bead) possessed the optimum sepiolite ratio for phosphate removal. Kinetic, equilibrium, and thermodynamic adsorption experiments were performed using the 30SPL-PSf bead. Equilibrium adsorption was achieved in 24 h, and the pseudo-first-order model was suitable for describing the phosphate adsorption at different reaction times. The Langmuir model was appropriate for describing the phosphate adsorption onto the 30SPL-PSf bead, and the maximum adsorption capacity of the 30SPL-PSf bead obtained from the model was 24.48 mg-PO4/g. Enthalpy and entropy increased during the phosphate adsorption onto the 30SPL-PSf bead, and Gibb's free energy at 35 degree Celcius was negative. An increase in the solution pH from 3 to 11 induced a decrease in the phosphate adsorption amount from 27.30 mg-PO4/g to 21.54 mg-PO4/g. The competitive anion influenced the phosphate adsorption onto the 30SPL-PSf bead was in the order of NO3- > SO42- > HCO3-. The phosphate breakthrough from the column packed with the 30SPL-PSf bead began after ~2000 min, reaching the influent concentration after ~8000 min. The adsorption amounts per unit mass of 30SPL-PSf and removal efficiency were 0.775 mg-PO4/g and 61.6%, respectively. This study demonstrates the adequate performance of 30SPL-PSf beads as a filter for phosphate removal from aqueous solutions.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.3.223
Jae-Ouk Jung, Mark Sibag, Bora Shind, Jinwoo Cho
Here magnetic iron oxide particles (MIOPs) were synthesized under atmospheric air and which size was controlled by regulating the flow rate of alkali addition and used for efficient removal of bovine serum albumin (BSA) from water. The MIOPs were characterized using field-emission scanning electron microscopy (FE-SEM), Fourier transformation-Infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). The results revealed a successful preparation of the MIOPs. The removal efficiency for BSA using MIOPs was found to be about 100% at lower concentrations (≥ 10 mg/L). The maximum adsorption of 64.7 mg/g for BSA was achieved as per the Langmuir adsorption model. In addition, microfiltration membrane for removal of BSA as model protein organic foulant is also studied. The effect of various MIOPs adsorbent sizes of 210, 680, and 1130 nm on the absorption capacity of BSA was investigated. Water permeability of the BSA integrated with the smallest size MIOPs membrane was increased by approximately 22% compared by the neat BSA membrane during dead-end filtration. Furthermore, the presence of small size MIOPs were also effective in increasing the permeate flux.
{"title":"Experimental investigation of organic fouling mitigation in membrane filtration and removal by magnetic iron oxide particles","authors":"Jae-Ouk Jung, Mark Sibag, Bora Shind, Jinwoo Cho","doi":"10.12989/MWT.2020.11.3.223","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.3.223","url":null,"abstract":"Here magnetic iron oxide particles (MIOPs) were synthesized under atmospheric air and which size was controlled by regulating the flow rate of alkali addition and used for efficient removal of bovine serum albumin (BSA) from water. The MIOPs were characterized using field-emission scanning electron microscopy (FE-SEM), Fourier transformation-Infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM). The results revealed a successful preparation of the MIOPs. The removal efficiency for BSA using MIOPs was found to be about 100% at lower concentrations (≥ 10 mg/L). The maximum adsorption of 64.7 mg/g for BSA was achieved as per the Langmuir adsorption model. In addition, microfiltration membrane for removal of BSA as model protein organic foulant is also studied. The effect of various MIOPs adsorbent sizes of 210, 680, and 1130 nm on the absorption capacity of BSA was investigated. Water permeability of the BSA integrated with the smallest size MIOPs membrane was increased by approximately 22% compared by the neat BSA membrane during dead-end filtration. Furthermore, the presence of small size MIOPs were also effective in increasing the permeate flux.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.6.399
S. Mahmoud, H. M. Al-solami, N. Alkenani, Alawiah M. Alhebshi, A. S. Alwabli, A. Bahieldin
{"title":"A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications","authors":"S. Mahmoud, H. M. Al-solami, N. Alkenani, Alawiah M. Alhebshi, A. S. Alwabli, A. Bahieldin","doi":"10.12989/MWT.2020.11.6.399","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.6.399","url":null,"abstract":"","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.1.025
H. Cho, Minjeong Lee, Jingyeong Shin, Eun-sik Kim, Young Mo Kim
The purpose of this study was to investigate the characteristics of lignin fractionated from waste wood (WW) using a two-step process of ethanol organosolv pretreatment followed by ultrafiltration with membranes of different molecular weight cut-offs (1, 5 and 20 kDa). The different permeates obtained were characterized by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The analysis by FT-IR and NMR of these lignins showed that the lignin core was successfully separated from WW. TGA curves confirmed that the thermal properties of lignin fractionated by ultrafiltration were almost identical to each other. The results from GPC confirmed that fractionating of lignin was achieved by ultrafiltration. For the membrane fractionation process, values of molecular weight decreased as the cut-offs used to obtain the fractions became smaller. As a result, fractionating lignin by a two-step process allowed separating different fractions of lignin of different molecular weights yielded high purity without interference from existing pollutants in WW. The two-step process offers the possibility of using fractionated WW as an untapped source of lignin.
{"title":"Lignin fractionation from waste wood using organosolv treatmentcombined with membrane filtration","authors":"H. Cho, Minjeong Lee, Jingyeong Shin, Eun-sik Kim, Young Mo Kim","doi":"10.12989/MWT.2020.11.1.025","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.1.025","url":null,"abstract":"The purpose of this study was to investigate the characteristics of lignin fractionated from waste wood (WW) using a two-step process of ethanol organosolv pretreatment followed by ultrafiltration with membranes of different molecular weight cut-offs (1, 5 and 20 kDa). The different permeates obtained were characterized by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The analysis by FT-IR and NMR of these lignins showed that the lignin core was successfully separated from WW. TGA curves confirmed that the thermal properties of lignin fractionated by ultrafiltration were almost identical to each other. The results from GPC confirmed that fractionating of lignin was achieved by ultrafiltration. For the membrane fractionation process, values of molecular weight decreased as the cut-offs used to obtain the fractions became smaller. As a result, fractionating lignin by a two-step process allowed separating different fractions of lignin of different molecular weights yielded high purity without interference from existing pollutants in WW. The two-step process offers the possibility of using fractionated WW as an untapped source of lignin.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66493832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.1.079
Wonyoung Choi, Jaecheul Yu, Jeongmi Kim, Soyeon Jeong, L. C. Direstiyani, Taeho Lee
A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.
{"title":"The effectiveness of step feeding strategies in sequencing batch reactor for a single-stage deammonification of high strength ammonia wastewater","authors":"Wonyoung Choi, Jaecheul Yu, Jeongmi Kim, Soyeon Jeong, L. C. Direstiyani, Taeho Lee","doi":"10.12989/MWT.2020.11.1.079","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.1.079","url":null,"abstract":"A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.5.363
Jehad Saleh, E. Ali, J. Orfi, A. Najib
{"title":"Water cost analysis of different membrane distillation process configurations for brackish water desalination","authors":"Jehad Saleh, E. Ali, J. Orfi, A. Najib","doi":"10.12989/MWT.2020.11.5.363","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.5.363","url":null,"abstract":"","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66495276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.1.001
Ijung Kim, Tongren Zhu, C. Jeon, D. Lawler
An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.
{"title":"Detachment of nanoparticles in granular media filtration","authors":"Ijung Kim, Tongren Zhu, C. Jeon, D. Lawler","doi":"10.12989/MWT.2020.11.1.001","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.1.001","url":null,"abstract":"An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66493427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.1.059
K. Kang, Junghyeon Kim, Hyeonjin Jeon, Kyoungwoo Kim, I. Byun
The study objective was to evaluate the enhanced removal of high concentrations of phosphorus from synthetic wastewater (solely phosphorus-containing) and real wastewater (pig manure) by using carbon nanotube (CNT)-coated steel slag. Generally, phosphorus removal by steel slag is attributed to Ca2+ eluted from the slag. However, in this study, CNT was used to control the excess release of Ca2+ from steel slag and increase the phosphorus removal. The phosphorus removal rate by the uncoated steel slag was lower than that of the CNT-coated steel slag, even though the Ca2+ concentrations were higher in the solution containing the uncoated steel slag. Therefore, the phosphorus removal could be attributed to both precipitation with Ca2+ eluted from steel slag in aqueous solution and adsorption onto the surface of the CNT-coated steel slag. Furthermore, the protons released from the CNT surface by exchanging with divalent cations acted to reduce the pH increase of the solution, which is attributed to the OH- eluted from the steel slag. The adsorption isotherm and kinetics of the CNT-coated steel slags followed the Freundlich isotherm and pseudo-second-order model, respectively. The maximum adsorption capacity of the uncoated and CNT-coated steel slags was 6.127 and 9.268 mg P g-1 slag, respectively. In addition, phosphorus from pig manure was more effectively removed by the CNT-coated steel slag than by the uncoated slag. Over 24 hours, the PO4-P removal in pig manure was 12.3% higher by the CNT-coated slag. This CNT-coated steel slag can be used to remove both phosphorus and metals and has potential applications in high phosphorus-containing wastewater like pig manure.
研究了碳纳米管(CNT)包覆钢渣对合成废水(纯含磷)和真实废水(猪粪)中高浓度磷的强化去除效果。一般来说,钢渣除磷是由于从钢渣中洗脱出Ca2+。然而,在本研究中,碳纳米管被用于控制钢渣中Ca2+的过量释放,提高除磷率。未包覆钢渣溶液中的Ca2+浓度较高,但其除磷率低于包覆碳纳米管钢渣。因此,除磷可以归因于钙离子在水溶液中从钢渣中洗脱后的沉淀和碳纳米管涂层钢渣表面的吸附。此外,碳纳米管表面通过与二价阳离子交换释放的质子减少了溶液pH的增加,这是由于从钢渣中洗脱的OH-造成的。碳纳米管包覆钢渣的吸附等温线和动力学分别符合Freundlich等温线和伪二阶模型。未包覆和碳纳米管包覆钢渣的最大吸附量分别为6.127和9.268 mg P g-1。此外,涂覆碳纳米管的钢渣比未涂覆碳纳米管的钢渣更有效地去除猪粪中的磷。在24小时内,碳纳米管包覆渣对猪粪中PO4-P的去除率提高了12.3%。这种碳纳米管涂层的钢渣可用于除磷和除金属,并且在猪粪等高含磷废水中具有潜在的应用前景。
{"title":"Performance of carbon nanotube-coated steel slag for high concentrations of phosphorus from pig manure","authors":"K. Kang, Junghyeon Kim, Hyeonjin Jeon, Kyoungwoo Kim, I. Byun","doi":"10.12989/MWT.2020.11.1.059","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.1.059","url":null,"abstract":"The study objective was to evaluate the enhanced removal of high concentrations of phosphorus from synthetic wastewater (solely phosphorus-containing) and real wastewater (pig manure) by using carbon nanotube (CNT)-coated steel slag. Generally, phosphorus removal by steel slag is attributed to Ca2+ eluted from the slag. However, in this study, CNT was used to control the excess release of Ca2+ from steel slag and increase the phosphorus removal. The phosphorus removal rate by the uncoated steel slag was lower than that of the CNT-coated steel slag, even though the Ca2+ concentrations were higher in the solution containing the uncoated steel slag. Therefore, the phosphorus removal could be attributed to both precipitation with Ca2+ eluted from steel slag in aqueous solution and adsorption onto the surface of the CNT-coated steel slag. Furthermore, the protons released from the CNT surface by exchanging with divalent cations acted to reduce the pH increase of the solution, which is attributed to the OH- eluted from the steel slag. The adsorption isotherm and kinetics of the CNT-coated steel slags followed the Freundlich isotherm and pseudo-second-order model, respectively. The maximum adsorption capacity of the uncoated and CNT-coated steel slags was 6.127 and 9.268 mg P g-1 slag, respectively. In addition, phosphorus from pig manure was more effectively removed by the CNT-coated steel slag than by the uncoated slag. Over 24 hours, the PO4-P removal in pig manure was 12.3% higher by the CNT-coated slag. This CNT-coated steel slag can be used to remove both phosphorus and metals and has potential applications in high phosphorus-containing wastewater like pig manure.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.2.141
Dae-Keun Seo, Yeong-Kwan Kim
{"title":"Assessing the removal efficiency of Synedra sp. through analysis of field data from water treatment plants","authors":"Dae-Keun Seo, Yeong-Kwan Kim","doi":"10.12989/MWT.2020.11.2.141","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.2.141","url":null,"abstract":"","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/MWT.2020.11.3.195
Muhamad Najmi Bin Zol, Muhammad Firdaus Bin Shuhaimi, Jimin Yu, Yejee Lim, J. Choe, S. Bae, Han S. Kim
{"title":"Immobilization of oxidative enzymes onto Cu-activated zeolite to catalyze 4-chlorophenol decomposition","authors":"Muhamad Najmi Bin Zol, Muhammad Firdaus Bin Shuhaimi, Jimin Yu, Yejee Lim, J. Choe, S. Bae, Han S. Kim","doi":"10.12989/MWT.2020.11.3.195","DOIUrl":"https://doi.org/10.12989/MWT.2020.11.3.195","url":null,"abstract":"","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66494761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}