Pub Date : 2024-12-15DOI: 10.1016/j.micinf.2024.105465
Stephanie Michael, Nicholas Liotta, Tongyi Fei, Matthew L Bendall, Douglas F Nixon, Nicholas Dopkins
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by impairment of the CF transmembrane conductance regulator (CFTR) via gene mutation. CFTR is expressed at the cellular membrane of epithelial cells and functions as an anion pump which maintains water and salt ion homeostasis. In pulmonary airways of CF patients, pathogens such as P. aeruginosa and subsequent uncontrolled inflammation damage the human airway epithelial cells (HAECs) and can be life-threatening. We previously identified that inhibiting endogenous retroelement (ERE) reverse transcriptase can hamper the inflammatory response to bacterial flagella in THP-1 cells. Here, we investigate how ERE expression is sensitive to HAEC repair and toll-like receptor 5 (TLR5) activation, a primary mechanism by which inflammation impacts disease outcome. Our results demonstrate that several human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs) fluctuate throughout the various stages of repair and that TLR5 activation further influences ERE expression. By considering the impact of the most common CF mutation F508del/F508del on ERE expression in unwounded HAECs, we also found that two specific EREs, L1FLnI_2p23.1c and HERVH_10p12.33, were downregulated in CF-derived HAECs. Collectively, we show that ERE expression in HAECs is sensitive to certain modalities reflective of CF pathogenesis, and specific EREs may be indicative of CF disease state and pathogenesis.
{"title":"Endogenous retroelement expression in modeled airway epithelial repair.","authors":"Stephanie Michael, Nicholas Liotta, Tongyi Fei, Matthew L Bendall, Douglas F Nixon, Nicholas Dopkins","doi":"10.1016/j.micinf.2024.105465","DOIUrl":"10.1016/j.micinf.2024.105465","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by impairment of the CF transmembrane conductance regulator (CFTR) via gene mutation. CFTR is expressed at the cellular membrane of epithelial cells and functions as an anion pump which maintains water and salt ion homeostasis. In pulmonary airways of CF patients, pathogens such as P. aeruginosa and subsequent uncontrolled inflammation damage the human airway epithelial cells (HAECs) and can be life-threatening. We previously identified that inhibiting endogenous retroelement (ERE) reverse transcriptase can hamper the inflammatory response to bacterial flagella in THP-1 cells. Here, we investigate how ERE expression is sensitive to HAEC repair and toll-like receptor 5 (TLR5) activation, a primary mechanism by which inflammation impacts disease outcome. Our results demonstrate that several human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs) fluctuate throughout the various stages of repair and that TLR5 activation further influences ERE expression. By considering the impact of the most common CF mutation F508del/F508del on ERE expression in unwounded HAECs, we also found that two specific EREs, L1FLnI_2p23.1c and HERVH_10p12.33, were downregulated in CF-derived HAECs. Collectively, we show that ERE expression in HAECs is sensitive to certain modalities reflective of CF pathogenesis, and specific EREs may be indicative of CF disease state and pathogenesis.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105465"},"PeriodicalIF":2.6,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142837495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1016/j.micinf.2024.105464
Jeremia M Coish, Lori A MacNeil, Adam J MacNeil
Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.
{"title":"The SARS-CoV-2 antibody-dependent enhancement façade.","authors":"Jeremia M Coish, Lori A MacNeil, Adam J MacNeil","doi":"10.1016/j.micinf.2024.105464","DOIUrl":"10.1016/j.micinf.2024.105464","url":null,"abstract":"<p><p>Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105464"},"PeriodicalIF":2.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1016/j.micinf.2024.105462
Eun-Jin Ha, Seung-Min Hong, Kang-Seuk Choi, Hyuk-Joon Kwon
The O1 and O2 serogroups of avian pathogenic E. coli (APEC) and human extraintestinal pathogenic E. coli (huExPEC) are closely related, but their evolutionary relationships need to be further elucidated. This study classified nineteen O1 and O2 APEC into rpoB sequence types (RSTs) and compared them with reference huExPEC using molecular prophage typing, virulence and antibiotic resistance gene profiling, and comparative genomics. Most O1:K1 and O2:K1 APEC (73.7 %) were classified as RST46-1 and RST47-9. RST47-9 is unique to Korean O1 APEC and likely derives from RST46-1 APEC. The six APEC showed high genome coverage/identity with the Korean RST46-1 huExPEC. Based on RST network and comparative genomics, we hypothesized that the O1 antigen first appeared in RST19-1 and O2 in RST24-1 E. coli in humans. Then, O1 and O2-antigen horizontally transferred to human RST46-1, where a unique K1 capsule (K1-cps) first appeared. The Korean APEC and huExPEC share evolutionary CRISPR spacers but differ in molecular antibiograms and prophage contents. Thus, RST46-1 huExPEC transmitted and evolved in poultry. The zoonotic risks remain unknown, but the substantial virulence of the RST46-1 APEC indicates that the reverse zoonotic risk of huExPEC in poultry is alarming.
{"title":"Evolution and zoonotic risk of O1:K1 and O2:K1 avian pathogenic Escherichia coli.","authors":"Eun-Jin Ha, Seung-Min Hong, Kang-Seuk Choi, Hyuk-Joon Kwon","doi":"10.1016/j.micinf.2024.105462","DOIUrl":"10.1016/j.micinf.2024.105462","url":null,"abstract":"<p><p>The O1 and O2 serogroups of avian pathogenic E. coli (APEC) and human extraintestinal pathogenic E. coli (huExPEC) are closely related, but their evolutionary relationships need to be further elucidated. This study classified nineteen O1 and O2 APEC into rpoB sequence types (RSTs) and compared them with reference huExPEC using molecular prophage typing, virulence and antibiotic resistance gene profiling, and comparative genomics. Most O1:K1 and O2:K1 APEC (73.7 %) were classified as RST46-1 and RST47-9. RST47-9 is unique to Korean O1 APEC and likely derives from RST46-1 APEC. The six APEC showed high genome coverage/identity with the Korean RST46-1 huExPEC. Based on RST network and comparative genomics, we hypothesized that the O1 antigen first appeared in RST19-1 and O2 in RST24-1 E. coli in humans. Then, O1 and O2-antigen horizontally transferred to human RST46-1, where a unique K1 capsule (K1-cps) first appeared. The Korean APEC and huExPEC share evolutionary CRISPR spacers but differ in molecular antibiograms and prophage contents. Thus, RST46-1 huExPEC transmitted and evolved in poultry. The zoonotic risks remain unknown, but the substantial virulence of the RST46-1 APEC indicates that the reverse zoonotic risk of huExPEC in poultry is alarming.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105462"},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1016/j.micinf.2024.105463
Shakyra Richardson, F N U Medhavi, Tayhlor Tanner, Stephanie Lundy, Yusuf Omosun, Joseph U Igietseme, Francis O Eko
We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3. Vaccine evaluation revealed that all routes of vaccine delivery induced a Th1-type antibody response after a prime boost or three-dose immunization regimen. Also, the intranasal and rectal mucosal and intramuscular systemic routes induced cross-reactive neutralizing antibodies against homologous and heterologous Cab strains. Irrespective of the route of immunization, the vaccine elicited a Th1-type cytokine response (IFN-γ/IL-4 >1) in immunized mice. Analysis of reduction in genital Cab burden as an index of protection showed that immunization induced substantial degrees of protection against infection, irrespective of route of delivery with the intranasal and rectal mucosal routes showing superior levels of protection 12 days postchallenge. Furthermore, there was correlation between the humoral and cellular immune response and protection was associated with the Cab-specific serum IgG antibody avidity and IFN-γ. Thus, while route of administration impacts vaccine efficacy, the rVCG-Pmp18.3-induced protective immunity against Cab respiratory infection can be accomplished by both mucosal and systemic immunization.
{"title":"Role of route of delivery on Chlamydia abortus vaccine-induced immune responses and genital tract immunity in mice.","authors":"Shakyra Richardson, F N U Medhavi, Tayhlor Tanner, Stephanie Lundy, Yusuf Omosun, Joseph U Igietseme, Francis O Eko","doi":"10.1016/j.micinf.2024.105463","DOIUrl":"10.1016/j.micinf.2024.105463","url":null,"abstract":"<p><p>We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3. Vaccine evaluation revealed that all routes of vaccine delivery induced a Th1-type antibody response after a prime boost or three-dose immunization regimen. Also, the intranasal and rectal mucosal and intramuscular systemic routes induced cross-reactive neutralizing antibodies against homologous and heterologous Cab strains. Irrespective of the route of immunization, the vaccine elicited a Th1-type cytokine response (IFN-γ/IL-4 >1) in immunized mice. Analysis of reduction in genital Cab burden as an index of protection showed that immunization induced substantial degrees of protection against infection, irrespective of route of delivery with the intranasal and rectal mucosal routes showing superior levels of protection 12 days postchallenge. Furthermore, there was correlation between the humoral and cellular immune response and protection was associated with the Cab-specific serum IgG antibody avidity and IFN-γ. Thus, while route of administration impacts vaccine efficacy, the rVCG-Pmp18.3-induced protective immunity against Cab respiratory infection can be accomplished by both mucosal and systemic immunization.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105463"},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.micinf.2024.105461
Jinsoo Kim, Suyeon Kim, Sangkyu Park, Dongbum Kim, Minyoung Kim, Kyeongbin Baek, Bo Min Kang, Ha-Eun Shin, Myeong-Heon Lee, Younghee Lee, Hyung-Joo Kwon
SARS-CoV-2 mutations have resulted in the emergence of multiple concerning variants, with Omicron being the dominant strain presently. Therefore, we developed a monoclonal antibody (mAb) against the spike (S) protein of SARS-CoV-2 Omicron for therapeutic applications. We established the 1E3H12 mAb, recognizing the receptor binding domain (RBD) of the Omicron S protein, and found that the 1E3H12 mAb can efficiently recognize the Omicron S protein with weak affinity to the Alpha, Beta, and Mu variants, but not to the parental strain and Delta variant. Based on in vitro assays, the mAb demonstrated neutralizing activity against Omicron BA.1, BA.4/5, BQ.1.1, and XBB. A humanized antibody was further produced and proved to have neutralizing activity. To verify the potential limitations of the 1E3H12 mAb due to viral escape of SARS-CoV-2 Omicron variants, we analyzed the emergence of variants by whole genome deep sequencing after serial passage in cell culture. The results showed a few unique S protein mutations in the genome associated with resistance to the mAb. These findings suggest that this antibody not only contributes to the therapeutic arsenal against COVID-19 but also addresses the ongoing challenge of antibody resistance among the evolving subvariants of SARS-CoV-2 Omicron.
SARS-CoV-2 基因突变导致了多种有关变异株的出现,其中 Omicron 是目前的优势变异株。因此,我们开发了一种针对 SARS-CoV-2 Omicron 的尖峰(S)蛋白的单克隆抗体(mAb),用于治疗。我们建立了 1E3H12 mAb,它能识别 Omicron S 蛋白的受体结合域(RBD),并发现 1E3H12 mAb 能有效识别 Omicron S 蛋白,对 Alpha、Beta 和 Mu 变种有弱亲和力,但对亲本株和 Delta 变种没有亲和力。根据体外试验,该 mAb 对 Omicron BA.1、BA.4/5、BQ.1.1 和 XBB 具有中和活性。进一步生产的人源化抗体也被证明具有中和活性。为了验证 1E3H12 mAb 因 SARS-CoV-2 Omicron 变体的病毒逃逸而可能存在的局限性,我们通过全基因组深度测序分析了在细胞培养中连续培养后出现的变体。结果显示,基因组中有一些独特的 S 蛋白突变与对 mAb 的耐药性有关。这些研究结果表明,该抗体不仅有助于COVID-19的治疗,而且还能解决SARS-CoV-2 Omicron不断演变的亚变异体对抗体产生耐药性这一难题。
{"title":"Production of a monoclonal antibody targeting the SARS-CoV-2 Omicron spike protein and analysis of SARS-CoV-2 Omicron mutations related to monoclonal antibody resistance.","authors":"Jinsoo Kim, Suyeon Kim, Sangkyu Park, Dongbum Kim, Minyoung Kim, Kyeongbin Baek, Bo Min Kang, Ha-Eun Shin, Myeong-Heon Lee, Younghee Lee, Hyung-Joo Kwon","doi":"10.1016/j.micinf.2024.105461","DOIUrl":"10.1016/j.micinf.2024.105461","url":null,"abstract":"<p><p>SARS-CoV-2 mutations have resulted in the emergence of multiple concerning variants, with Omicron being the dominant strain presently. Therefore, we developed a monoclonal antibody (mAb) against the spike (S) protein of SARS-CoV-2 Omicron for therapeutic applications. We established the 1E3H12 mAb, recognizing the receptor binding domain (RBD) of the Omicron S protein, and found that the 1E3H12 mAb can efficiently recognize the Omicron S protein with weak affinity to the Alpha, Beta, and Mu variants, but not to the parental strain and Delta variant. Based on in vitro assays, the mAb demonstrated neutralizing activity against Omicron BA.1, BA.4/5, BQ.1.1, and XBB. A humanized antibody was further produced and proved to have neutralizing activity. To verify the potential limitations of the 1E3H12 mAb due to viral escape of SARS-CoV-2 Omicron variants, we analyzed the emergence of variants by whole genome deep sequencing after serial passage in cell culture. The results showed a few unique S protein mutations in the genome associated with resistance to the mAb. These findings suggest that this antibody not only contributes to the therapeutic arsenal against COVID-19 but also addresses the ongoing challenge of antibody resistance among the evolving subvariants of SARS-CoV-2 Omicron.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105461"},"PeriodicalIF":2.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.micinf.2024.105460
Laura Reiche, Benedikt Plaack, Maike Lehmkuhl, Vivien Weyers, Joel Gruchot, Daniel Picard, Hervé Perron, Marc Remke, Christiane Knobbe-Thomsen, Guido Reifenberger, Patrick Küry, David Kremer
Gliomas are the most common parenchymal tumors of the central nervous system (CNS). With regard to their still unclear etiology, several recent studies have provided evidence of a new category of pathogenic elements called human endogenous retroviruses (HERVs) which seem to contribute to the evolution and progression of many neurological diseases such as amyotrophic lateral sclerosis (ALS), schizophrenia, chronic inflammatory polyneuropathy (CIDP) and, particularly, multiple sclerosis (MS). In these diseases, HERVs exert effects on cellular processes such as inflammation, proliferation, and migration. In previous studies, we demonstrated that in MS, the human endogenous retrovirus type-W envelope protein (HERV-W ENV) interferes with lesion repair through the activation of microglia (MG), the innate myeloid immune cells of the CNS. Here, we now show that HERV-W ENV is also present in the microglial cells (MG) of the tumor microenvironment (TME) in gliomas. It modulates the behavior of glioblastoma (GBM) cell lines in GBM/MG cocultures by altering their gene expression, secreted cytokines, morphology, proliferation, and migration properties and could thereby contribute to key tumor properties.
胶质瘤是中枢神经系统(CNS)最常见的实质性肿瘤。关于神经胶质瘤尚不明确的病因,最近的一些研究提供了证据,证明有一类新的致病因子被称为人类内源性逆转录病毒(HERVs),它们似乎是许多神经系统疾病(如肌萎缩性脊髓侧索硬化症(ALS)、精神分裂症、慢性炎症性多发性神经病(CIDP),尤其是多发性硬化症(MS))演变和发展的诱因。在这些疾病中,HERVs 对炎症、增殖和迁移等细胞过程产生影响。在之前的研究中,我们证实在多发性硬化症中,人类内源性逆转录病毒 W 型包膜蛋白(HERV-W ENV)通过激活中枢神经系统的先天性髓系免疫细胞小胶质细胞(MG)干扰病变修复。现在,我们发现 HERV-W ENV 也存在于胶质瘤中肿瘤微环境(TME)的小胶质细胞(MG)中。它通过改变胶质母细胞瘤(GBM)细胞系的基因表达、分泌细胞因子、形态、增殖和迁移特性,调节胶质母细胞瘤(GBM)细胞系在GBM/MG共培养物中的行为,并可能因此导致关键的肿瘤特性。
{"title":"HERV-W envelope protein is present in microglial cells of the human glioma tumor microenvironment and differentially modulates neoplastic cell behavior.","authors":"Laura Reiche, Benedikt Plaack, Maike Lehmkuhl, Vivien Weyers, Joel Gruchot, Daniel Picard, Hervé Perron, Marc Remke, Christiane Knobbe-Thomsen, Guido Reifenberger, Patrick Küry, David Kremer","doi":"10.1016/j.micinf.2024.105460","DOIUrl":"10.1016/j.micinf.2024.105460","url":null,"abstract":"<p><p>Gliomas are the most common parenchymal tumors of the central nervous system (CNS). With regard to their still unclear etiology, several recent studies have provided evidence of a new category of pathogenic elements called human endogenous retroviruses (HERVs) which seem to contribute to the evolution and progression of many neurological diseases such as amyotrophic lateral sclerosis (ALS), schizophrenia, chronic inflammatory polyneuropathy (CIDP) and, particularly, multiple sclerosis (MS). In these diseases, HERVs exert effects on cellular processes such as inflammation, proliferation, and migration. In previous studies, we demonstrated that in MS, the human endogenous retrovirus type-W envelope protein (HERV-W ENV) interferes with lesion repair through the activation of microglia (MG), the innate myeloid immune cells of the CNS. Here, we now show that HERV-W ENV is also present in the microglial cells (MG) of the tumor microenvironment (TME) in gliomas. It modulates the behavior of glioblastoma (GBM) cell lines in GBM/MG cocultures by altering their gene expression, secreted cytokines, morphology, proliferation, and migration properties and could thereby contribute to key tumor properties.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105460"},"PeriodicalIF":2.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.micinf.2024.105440
Mariana Lucy Mesquita Ramos, Azuil Barrinha, Glauber Ribeiro de Sousa Araújo, Vinicius Alves, Iara Bastos de Andrade, Dario Corrêa-Junior, Maria Cristina Machado Motta, Rodrigo Almeida-Paes, Susana Frases
Sporothrix brasiliensis is the main agent of sporotrichosis in Brazil, with few therapeutic options. This study aimed to investigate the in vitro efficacy of photodynamic therapy using a diode laser (InGaAIP) in combination with the photosensitizer methylene blue against S. brasiliensis yeasts. Additionally, we evaluated the underexplored mitochondrial activity of S. brasiliensis and the impact of laser treatment on the fungal mitochondrial aspects post-treatment. Three strains of S. brasiliensis were used, including a non-wild-type strain to itraconazole. Yeast viability was determined by counting colony-forming units. For a comprehensive analysis of irradiated versus non-irradiated cells, we assessed combined therapy with itraconazole, scanning electron microscopy of cells, and mitochondrial activity. The latter included high-resolution respirometry, membrane potential analysis, and reactive oxygen species production. Methylene blue combined with photodynamic therapy inhibited the growth of the isolates, including the non-wild-type strain to itraconazole. Photodynamic therapy induced the production of reactive oxygen species, which negatively affected mitochondrial function, resulting in decreased membrane potential and cell death. Photodynamic therapy altered the ultrastructure and mitochondrial physiology of S. brasiliensis, suggesting a new therapeutic approach for sporotrichosis caused by this species.
巴西孢子丝菌(Sporothrix brasiliensis)是巴西孢子丝菌病的主要病原体,治疗方法很少。本研究旨在探讨使用二极管激光器(InGaAIP)结合光敏剂亚甲基蓝对巴西孢子丝菌酵母进行光动力疗法的体外疗效。此外,我们还评估了尚未充分探索的巴西酵母菌线粒体活性以及激光治疗对治疗后真菌线粒体方面的影响。我们使用了三种 S. brasiliensis 菌株,包括一种对伊曲康唑不耐受的非野生型菌株。通过计数菌落形成单位来确定酵母的活力。为了全面分析辐照与非辐照细胞,我们评估了伊曲康唑联合疗法、细胞扫描电子显微镜和线粒体活性。后者包括高分辨率呼吸测定、膜电位分析和活性氧生成。亚甲蓝与光动力疗法相结合抑制了分离菌株的生长,包括对伊曲康唑的非野生型菌株。光动力疗法诱导产生活性氧,对线粒体功能产生负面影响,导致膜电位降低和细胞死亡。光动力疗法改变了巴西孢子虫的超微结构和线粒体生理机能,为治疗该物种引起的孢子丝虫病提供了一种新的治疗方法。
{"title":"Photodynamic therapy reduces viability, enhances itraconazole activity, and impairs mitochondrial physiology of Sporothrix brasiliensis.","authors":"Mariana Lucy Mesquita Ramos, Azuil Barrinha, Glauber Ribeiro de Sousa Araújo, Vinicius Alves, Iara Bastos de Andrade, Dario Corrêa-Junior, Maria Cristina Machado Motta, Rodrigo Almeida-Paes, Susana Frases","doi":"10.1016/j.micinf.2024.105440","DOIUrl":"10.1016/j.micinf.2024.105440","url":null,"abstract":"<p><p>Sporothrix brasiliensis is the main agent of sporotrichosis in Brazil, with few therapeutic options. This study aimed to investigate the in vitro efficacy of photodynamic therapy using a diode laser (InGaAIP) in combination with the photosensitizer methylene blue against S. brasiliensis yeasts. Additionally, we evaluated the underexplored mitochondrial activity of S. brasiliensis and the impact of laser treatment on the fungal mitochondrial aspects post-treatment. Three strains of S. brasiliensis were used, including a non-wild-type strain to itraconazole. Yeast viability was determined by counting colony-forming units. For a comprehensive analysis of irradiated versus non-irradiated cells, we assessed combined therapy with itraconazole, scanning electron microscopy of cells, and mitochondrial activity. The latter included high-resolution respirometry, membrane potential analysis, and reactive oxygen species production. Methylene blue combined with photodynamic therapy inhibited the growth of the isolates, including the non-wild-type strain to itraconazole. Photodynamic therapy induced the production of reactive oxygen species, which negatively affected mitochondrial function, resulting in decreased membrane potential and cell death. Photodynamic therapy altered the ultrastructure and mitochondrial physiology of S. brasiliensis, suggesting a new therapeutic approach for sporotrichosis caused by this species.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105440"},"PeriodicalIF":2.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.micinf.2024.105439
Angela Silvano, Javier Sotillo, Marta Cecchi, Alex Loukas, Mireille Ouedraogo, Astrid Parenti, Fabrizio Bruschi, Maria Gabriella Torcia, Valentina D Mangano
Urogenital schistosomiasis caused by Schistosoma haematobium is a major cause of disability in endemic areas. Despite its socio-economic burden, no vaccine exists and the parasite's immunobiology remains underexplored. Genome annotation has revealed over 40 different genes encoding tetraspanins, transmembrane proteins with known immunomodulatory properties in other plathelminthes. This study investigated the role of Sh-TSP-2, Sh-TSP-6 and Sh-TSP-23, which are expressed in the parasite's tegument and extracellular vesicles (EVs). Immature dendritic cells (DCs) from unexposed healthy donors were stimulated with these proteins to evaluate maturation maker expression and cytokine production. Also, pre-activated T CD4+ cells were stimulated with the DCs supernatant to assess cytokine gene expression. Sh-TSP-2 and Sh-TSP-6 induced maturation markers and cytokine production in DCs: Sh-TSP-2 increased CD80 and CD83 levels and the concentration of both pro-inflammatory (IL-6, TNF) and regulatory (IL-10) cytokines, while Sh-TSP-6 increased the production of IL-6. Moreover, supernatants from Sh-TSP-2 stimulated DCs induced the expression of Th1 (IFNɣ) and regulatory (IL-10) cytokines in CD4+ T cells, while Sh-TSP-6 induced Th2 (IL-4, IL-13) cytokine expression. These results provide evidence that S. haematobium tetraspanins modulate the response of human DCs and CD4+ T cells in vitro, and support Sh-TSP-2 as a promising vaccine candidate.
{"title":"Schistosoma heamatobium tetraspanins TSP-2 and TSP-6 induce Dendritic Cells maturation, cytokine production and T helper cells differentiation in vitro.","authors":"Angela Silvano, Javier Sotillo, Marta Cecchi, Alex Loukas, Mireille Ouedraogo, Astrid Parenti, Fabrizio Bruschi, Maria Gabriella Torcia, Valentina D Mangano","doi":"10.1016/j.micinf.2024.105439","DOIUrl":"10.1016/j.micinf.2024.105439","url":null,"abstract":"<p><p>Urogenital schistosomiasis caused by Schistosoma haematobium is a major cause of disability in endemic areas. Despite its socio-economic burden, no vaccine exists and the parasite's immunobiology remains underexplored. Genome annotation has revealed over 40 different genes encoding tetraspanins, transmembrane proteins with known immunomodulatory properties in other plathelminthes. This study investigated the role of Sh-TSP-2, Sh-TSP-6 and Sh-TSP-23, which are expressed in the parasite's tegument and extracellular vesicles (EVs). Immature dendritic cells (DCs) from unexposed healthy donors were stimulated with these proteins to evaluate maturation maker expression and cytokine production. Also, pre-activated T CD4<sup>+</sup> cells were stimulated with the DCs supernatant to assess cytokine gene expression. Sh-TSP-2 and Sh-TSP-6 induced maturation markers and cytokine production in DCs: Sh-TSP-2 increased CD80 and CD83 levels and the concentration of both pro-inflammatory (IL-6, TNF) and regulatory (IL-10) cytokines, while Sh-TSP-6 increased the production of IL-6. Moreover, supernatants from Sh-TSP-2 stimulated DCs induced the expression of Th1 (IFNɣ) and regulatory (IL-10) cytokines in CD4<sup>+</sup> T cells, while Sh-TSP-6 induced Th2 (IL-4, IL-13) cytokine expression. These results provide evidence that S. haematobium tetraspanins modulate the response of human DCs and CD4<sup>+</sup> T cells in vitro, and support Sh-TSP-2 as a promising vaccine candidate.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105439"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.micinf.2024.105438
Josephine E Humphries, Steven D Melvin, Chantal Lanctôt, Hamish McCallum, David Newell, Laura F Grogan
The fungal disease chytridiomycosis (causative agent Batrachochytrium dendrobatidis [Bd]) is a primary contributor to amphibian species declines. The morphological and physiological reorganization that occurs during amphibian metamorphosis likely increases the vulnerability of metamorphs to Bd. To address this, we exposed pro-metamorphic tadpoles of Fleay's barred frog (Mixophyes fleayi) to Bd and sampled skin and liver sections from control and exposed animals throughout metamorphosis (Gosner stages 40, 42 and 45). We used an untargeted metabolomics approach to assess the metabolic impacts of Bd infection during the critical metamorphic stages, extracting metabolites from sampled tissues and analysing them via Nuclear Magnetic Resonance spectrometry. Most exposed animals became moribund at Gosner stage 45, while a subset seemingly cleared their infections. Metabolite abundance varied throughout development, with Gosner stage 45 samples distinct from previous stages. Clinically infected animals at Gosner stage 45 exhibited profound metabolic dysregulation (e.g., upregulation of amino acid biosynthesis and degradation) in comparison to uninfected groups (negative controls and 'cleared' animals). Despite showing parallels with previous metabolomic analyses of Bd-infected adult frogs, we identified variations in our results that could be attributed to the dramatic changes that characterise metamorphosis and may be driving the heightened vulnerability observed in metamorphic amphibians.
{"title":"Chytridiomycosis disrupts metabolic responses in amphibians at metamorphic climax.","authors":"Josephine E Humphries, Steven D Melvin, Chantal Lanctôt, Hamish McCallum, David Newell, Laura F Grogan","doi":"10.1016/j.micinf.2024.105438","DOIUrl":"10.1016/j.micinf.2024.105438","url":null,"abstract":"<p><p>The fungal disease chytridiomycosis (causative agent Batrachochytrium dendrobatidis [Bd]) is a primary contributor to amphibian species declines. The morphological and physiological reorganization that occurs during amphibian metamorphosis likely increases the vulnerability of metamorphs to Bd. To address this, we exposed pro-metamorphic tadpoles of Fleay's barred frog (Mixophyes fleayi) to Bd and sampled skin and liver sections from control and exposed animals throughout metamorphosis (Gosner stages 40, 42 and 45). We used an untargeted metabolomics approach to assess the metabolic impacts of Bd infection during the critical metamorphic stages, extracting metabolites from sampled tissues and analysing them via Nuclear Magnetic Resonance spectrometry. Most exposed animals became moribund at Gosner stage 45, while a subset seemingly cleared their infections. Metabolite abundance varied throughout development, with Gosner stage 45 samples distinct from previous stages. Clinically infected animals at Gosner stage 45 exhibited profound metabolic dysregulation (e.g., upregulation of amino acid biosynthesis and degradation) in comparison to uninfected groups (negative controls and 'cleared' animals). Despite showing parallels with previous metabolomic analyses of Bd-infected adult frogs, we identified variations in our results that could be attributed to the dramatic changes that characterise metamorphosis and may be driving the heightened vulnerability observed in metamorphic amphibians.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105438"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.micinf.2024.105436
Natália Cristina Gomes-da-Silva, Álefe Roger Silva França, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Elaine Cruz Rosas, Luana Barbosa Corrêa, Carolline M A Lorentino, André L S Santos, Eduardo Ricci-Junior, Ralph Santos-Oliveira
This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.
{"title":"Nano-enhanced benzylpenicillin: Bridging antibacterial action with anti-inflammatory potential against antibiotic-resistant bacteria.","authors":"Natália Cristina Gomes-da-Silva, Álefe Roger Silva França, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Elaine Cruz Rosas, Luana Barbosa Corrêa, Carolline M A Lorentino, André L S Santos, Eduardo Ricci-Junior, Ralph Santos-Oliveira","doi":"10.1016/j.micinf.2024.105436","DOIUrl":"10.1016/j.micinf.2024.105436","url":null,"abstract":"<p><p>This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105436"},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}