Pub Date : 2024-08-23DOI: 10.1016/j.micinf.2024.105408
Lisa R Bishop, Matthew F Starost, Joseph A Kovacs
CD4+ T cells are critical to control of Pneumocystis infection, and Cxcr6 has been shown to be upregulated in these cells during infection, but the roles of CD4 and Cxcr6 in this setting are undefined. To explore this, mice deficient in CD4 or Cxcr6 expression were utilized in a co-housing mouse model that mimics the natural route of Pneumocystis infection. Organism load and anti-Pneumocystis antibodies were assayed over time, and immunohistochemistry, flow cytometry, and quantitative PCR were used to characterize host immune responses during infection. CD4 was found to be necessary for clearance of Pneumocystis murina, though partial control was seen in it's absence; based on ThPOK expression, double negative T cells with T helper cell characteristics may be contributing to this control. Using a Cxcr6 deficient mouse expressing gfp, control of infection in the absence of Cxcr6 was similar to that in heterozygous control mice. It is noteworthy that gfp + cells were seen in the lungs with similar frequencies between the 2 strains. Interferon-ɣ and chemokine/ligands Cxcr3, Cxcl9, and Cxcl10 increased during P. murina infection in all models. Thus, CD4, but not Cxcr6, is needed for clearance of P. murina infection.
{"title":"CD4, but not Cxcr6, is necessary for control of Pneumocystis murina infection.","authors":"Lisa R Bishop, Matthew F Starost, Joseph A Kovacs","doi":"10.1016/j.micinf.2024.105408","DOIUrl":"10.1016/j.micinf.2024.105408","url":null,"abstract":"<p><p>CD4+ T cells are critical to control of Pneumocystis infection, and Cxcr6 has been shown to be upregulated in these cells during infection, but the roles of CD4 and Cxcr6 in this setting are undefined. To explore this, mice deficient in CD4 or Cxcr6 expression were utilized in a co-housing mouse model that mimics the natural route of Pneumocystis infection. Organism load and anti-Pneumocystis antibodies were assayed over time, and immunohistochemistry, flow cytometry, and quantitative PCR were used to characterize host immune responses during infection. CD4 was found to be necessary for clearance of Pneumocystis murina, though partial control was seen in it's absence; based on ThPOK expression, double negative T cells with T helper cell characteristics may be contributing to this control. Using a Cxcr6 deficient mouse expressing gfp, control of infection in the absence of Cxcr6 was similar to that in heterozygous control mice. It is noteworthy that gfp + cells were seen in the lungs with similar frequencies between the 2 strains. Interferon-ɣ and chemokine/ligands Cxcr3, Cxcl9, and Cxcl10 increased during P. murina infection in all models. Thus, CD4, but not Cxcr6, is needed for clearance of P. murina infection.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.micinf.2024.105407
Pingping Jia, Shize Peng, Yi Zhang, Jianyuan Zhao, Qianqian Zhao, Xiaoxiao Wu, Fangqi Shen, Kai Sun, Liyan Yu, Shan Cen
Tuberculosis (TB) is a high mortality infectious disease caused by Mycobacterium tuberculosis (Mtb), and often develops into latent infection. About 5~10% of latent infections turn into active tuberculosis when the host immune system becomes deficient. Therefore, exploring the latent infection mechanism of Mtb is pivotal for the prevention and treatment of tuberculosis. We first established the zebrafish latent infection model and the chronic infection model utilizing Mycobacterium marinum, which has the highly similar gene background to Mtb. Using the latent infection model, we characterized the gene expression profiles and found 462 genes expressed differentially in the latent period and chronic tuberculosis infection. These differentially expressed genes are involved in various biological processes including transcription, transcriptional regulation, organism development, and immune responses. Among them, nineteen immune-related genes were found to express differentially in the latent period. By analyzing immune related protein network, the genes in the center of the network, including Nos2b, TNFα, IL1, TNFβ, TLR1, TLR2, and TLR4b, displayed significant deferential expression in latent infection and chronic infection period of zebrafish, suggesting that these genes might play an important role in controlling latent infection of Mtb. Identifying immune biomarker related to the status of tuberculosis latent infection might lead to novel strategy for diagnosis and treatment.
{"title":"Identification of immune-associated genes involved in latent Mycobacterium marinum infection.","authors":"Pingping Jia, Shize Peng, Yi Zhang, Jianyuan Zhao, Qianqian Zhao, Xiaoxiao Wu, Fangqi Shen, Kai Sun, Liyan Yu, Shan Cen","doi":"10.1016/j.micinf.2024.105407","DOIUrl":"10.1016/j.micinf.2024.105407","url":null,"abstract":"<p><p>Tuberculosis (TB) is a high mortality infectious disease caused by Mycobacterium tuberculosis (Mtb), and often develops into latent infection. About 5~10% of latent infections turn into active tuberculosis when the host immune system becomes deficient. Therefore, exploring the latent infection mechanism of Mtb is pivotal for the prevention and treatment of tuberculosis. We first established the zebrafish latent infection model and the chronic infection model utilizing Mycobacterium marinum, which has the highly similar gene background to Mtb. Using the latent infection model, we characterized the gene expression profiles and found 462 genes expressed differentially in the latent period and chronic tuberculosis infection. These differentially expressed genes are involved in various biological processes including transcription, transcriptional regulation, organism development, and immune responses. Among them, nineteen immune-related genes were found to express differentially in the latent period. By analyzing immune related protein network, the genes in the center of the network, including Nos2b, TNFα, IL1, TNFβ, TLR1, TLR2, and TLR4b, displayed significant deferential expression in latent infection and chronic infection period of zebrafish, suggesting that these genes might play an important role in controlling latent infection of Mtb. Identifying immune biomarker related to the status of tuberculosis latent infection might lead to novel strategy for diagnosis and treatment.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.micinf.2024.105405
André C Pereira, Bernat Pérez de Val, Mónica V Cunha
Mycobacterium caprae is linked to regular outbreaks of tuberculosis (TB) in geographically distinct caprine populations across Europe, namely Iberia where this ecovar may represent up to 8% of total animal TB cases, circulating in multi-host communities encompassing domestic ruminants and wildlife, representing severe financial losses. It also causes zoonotic human disease. In this work, we undertake the first phylodynamic and phylogeographic analyses of M. caprae to reconstruct past demography and transmission chains. First, we examined the worldwide diversity of M. caprae based on 229 unpublished and publicly available whole genome sequences, depicting Asian, Central-East European, and Iberian clades. Phylodynamic analyses of the SB0157 Iberian clade (n = 81) positioned the most recent common ancestor in goats, around 100 years ago. Host transition events were common between goats, wild boars, and humans, possibly resulting from mixed farming, extensive management, and close human proximity, facilitating interspecific transmission. We show the spread of M. caprae on multiple scales due to local and transnational animal trade, supporting historical and sustained cross-species transmission in Iberia. We highlight the value of intersecting genomic epidemiology with molecular ecology to resolve epidemiological links and show that an EU-official eradication program in goats is utterly needed to control TB in a multi-host scenario.
{"title":"Phylogenetic analysis of Mycobacterium caprae highlights past and present epidemiological links at the Iberian Peninsula scale.","authors":"André C Pereira, Bernat Pérez de Val, Mónica V Cunha","doi":"10.1016/j.micinf.2024.105405","DOIUrl":"10.1016/j.micinf.2024.105405","url":null,"abstract":"<p><p>Mycobacterium caprae is linked to regular outbreaks of tuberculosis (TB) in geographically distinct caprine populations across Europe, namely Iberia where this ecovar may represent up to 8% of total animal TB cases, circulating in multi-host communities encompassing domestic ruminants and wildlife, representing severe financial losses. It also causes zoonotic human disease. In this work, we undertake the first phylodynamic and phylogeographic analyses of M. caprae to reconstruct past demography and transmission chains. First, we examined the worldwide diversity of M. caprae based on 229 unpublished and publicly available whole genome sequences, depicting Asian, Central-East European, and Iberian clades. Phylodynamic analyses of the SB0157 Iberian clade (n = 81) positioned the most recent common ancestor in goats, around 100 years ago. Host transition events were common between goats, wild boars, and humans, possibly resulting from mixed farming, extensive management, and close human proximity, facilitating interspecific transmission. We show the spread of M. caprae on multiple scales due to local and transnational animal trade, supporting historical and sustained cross-species transmission in Iberia. We highlight the value of intersecting genomic epidemiology with molecular ecology to resolve epidemiological links and show that an EU-official eradication program in goats is utterly needed to control TB in a multi-host scenario.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.
{"title":"LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis.","authors":"Gulinazi Yesitayi, Qi Wang, Mengmeng Wang, Mierxiati Ainiwan, Kaisaierjiang Kadier, Aliya Aizitiaili, Yitong Ma, Xiang Ma","doi":"10.1016/j.micinf.2024.105406","DOIUrl":"10.1016/j.micinf.2024.105406","url":null,"abstract":"<p><p>Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.micinf.2024.105404
Thomas Belcher, Loïc Coutte, Anne-Sophie Debrie, Valentin Sencio, François Trottein, Camille Locht, Stephane Cauchi
Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17-/- mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.
{"title":"Pertussis toxin-dependent and -independent protection by Bordetella pertussis against influenza.","authors":"Thomas Belcher, Loïc Coutte, Anne-Sophie Debrie, Valentin Sencio, François Trottein, Camille Locht, Stephane Cauchi","doi":"10.1016/j.micinf.2024.105404","DOIUrl":"10.1016/j.micinf.2024.105404","url":null,"abstract":"<p><p>Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17<sup>-/-</sup> mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avian influenza viruses crossing the host barrier to infect humans have caused great panic in human society and seriously threatened public health. Herein, we revealed that knockdown of SRSF7 significantly down-regulated influenza virus titers and viral protein expression. We further observed for the first time that human SRSF7, but not avian SRSF7, significantly inhibited polymerase activity (PB2627E). Molecular mapping demonstrated that amino acids 206 to 228 of human SRSF7 play a decisive role in regulating the polymerase activity, which contains the amino acid motif absent in avian SRSF7. Importantly, our results illustrated that the PB2627K-encoding influenza virus induces SRSF7 protein degradation more strongly via the lysosome pathway and not via the proteasome pathway. Functional enrichment analysis of SRSF7-related KEGG pathways indicated that SRSF7 is closely related to cell growth and death. Lastly, our results showed that knocking down SRSF7 interferes with normal polymerase activity. Taken together, our results advance our understanding of interspecies transmission and our findings point out new targets for the development of drugs preventing or treating influenza virus infection.
{"title":"Host-specific SRSF7 regulates polymerase activity and replication of influenza A virus.","authors":"Lingcai Zhao, Shengmin Li, Lulu Deng, Yijia Zhang, Chenfeng Jiang, Yurong Wei, Jun Xia, Jihui Ping","doi":"10.1016/j.micinf.2024.105401","DOIUrl":"10.1016/j.micinf.2024.105401","url":null,"abstract":"<p><p>Avian influenza viruses crossing the host barrier to infect humans have caused great panic in human society and seriously threatened public health. Herein, we revealed that knockdown of SRSF7 significantly down-regulated influenza virus titers and viral protein expression. We further observed for the first time that human SRSF7, but not avian SRSF7, significantly inhibited polymerase activity (PB2<sub>627</sub>E). Molecular mapping demonstrated that amino acids 206 to 228 of human SRSF7 play a decisive role in regulating the polymerase activity, which contains the amino acid motif absent in avian SRSF7. Importantly, our results illustrated that the PB2<sub>627</sub>K-encoding influenza virus induces SRSF7 protein degradation more strongly via the lysosome pathway and not via the proteasome pathway. Functional enrichment analysis of SRSF7-related KEGG pathways indicated that SRSF7 is closely related to cell growth and death. Lastly, our results showed that knocking down SRSF7 interferes with normal polymerase activity. Taken together, our results advance our understanding of interspecies transmission and our findings point out new targets for the development of drugs preventing or treating influenza virus infection.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
{"title":"Biomolecular condensates with liquid properties formed during viral infections.","authors":"Damien Glon, Benjamin Léonardon, Ariane Guillemot, Aurélie Albertini, Cécile Lagaudrière-Gesbert, Yves Gaudin","doi":"10.1016/j.micinf.2024.105402","DOIUrl":"10.1016/j.micinf.2024.105402","url":null,"abstract":"<p><p>During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.micinf.2024.105403
Alexander Swidsinski, Rudolf Amann, Alexander Guschin, Sonja Swidsinski, Vera Loening-Baucke, Werner Mendling, Jack D Sobel, Ronald F Lamont, Mario Vaneechoutte, Pedro Vieira Baptista, Catriona S Bradshaw, Igor Yu Kogan, Аlevtina M Savicheva, Oleg V Mitrokhin, Nadezhda W Swidsinski, Gennadiy T Sukhikh, Tatjana V Priputnevich, Inna A Apolikhina, Yvonne Dörffel
The manuscript disputes the exclusive mono-infectious way of thinking, which presumes that for every infection only one pathogen is responsible and sufficient, when infectious vectors, close contact and reduced immunity meet. In situations involving heavily colonized anatomical sites such an approach often ends in insoluble contradictions. Upon critical reflection and evaluation of 20 years research on spatial organization of vaginal microbiota it is apparent, that in some situations, pathogens may act and operate in permanent, structurally organized consortia, whereas its individual components may be innocuous and innocent, failing to express any pathogenic effect. In these cases, consortia are the true pathogens responsible for many infectious conditions, which usually remain unrecognized as long as improperly diagnosed. The structure of such consortia can be unraveled using ribosomal fluorescence in situ hybridization (FISH). FISH methodology, that not only offers an ex vivo opportunity to recognize bacterial species, but provides unique physical insight into their specific role in the pathogenesis of polymicrobial infections. Ribosomal FISH technique applied to both, women with bacterial vaginosis (BV) and their male partners, has added significantly to our understanding of the pathogenesis of this condition and contributed to appreciating the mechanisms of polymicrobial, community-based infection, potentially leading to therapeutic advances.
该手稿对单一感染的思维方式提出了质疑,这种思维方式假定,当感染载体、密切接触和免疫力下降同时存在时,只有一种病原体对每一种感染负责并足以造成感染。在涉及大量定植的解剖部位时,这种方法往往会导致无法解决的矛盾。经过对 20 年来有关阴道微生物群空间组织的研究进行批判性思考和评估后发现,在某些情况下,病原体可能会在永久性、结构性组织的菌群中活动,而菌群中的单个成分可能是无害和无辜的,不会产生任何致病作用。在这种情况下,联合体是导致许多感染性疾病的真正病原体,而这些疾病通常由于诊断不当而一直未被发现。利用核糖体荧光原位杂交(FISH)技术,可以揭示这类联合体的结构。核糖体荧光原位杂交(FISH)方法不仅能在体外识别细菌种类,还能通过独特的物理方法了解细菌在多微生物感染发病机制中的具体作用。将核糖体 FISH 技术应用于患有细菌性阴道病(BV)的女性及其男性伴侣,大大加深了我们对这种病症发病机制的了解,并有助于认识多微生物群感染的机制,从而有可能推动治疗方法的进步。
{"title":"Polymicrobial consortia in the pathogenesis of biofilm vaginosis visualized by FISH. Historic review outlining the basic principles of the polymicrobial infection theory.","authors":"Alexander Swidsinski, Rudolf Amann, Alexander Guschin, Sonja Swidsinski, Vera Loening-Baucke, Werner Mendling, Jack D Sobel, Ronald F Lamont, Mario Vaneechoutte, Pedro Vieira Baptista, Catriona S Bradshaw, Igor Yu Kogan, Аlevtina M Savicheva, Oleg V Mitrokhin, Nadezhda W Swidsinski, Gennadiy T Sukhikh, Tatjana V Priputnevich, Inna A Apolikhina, Yvonne Dörffel","doi":"10.1016/j.micinf.2024.105403","DOIUrl":"10.1016/j.micinf.2024.105403","url":null,"abstract":"<p><p>The manuscript disputes the exclusive mono-infectious way of thinking, which presumes that for every infection only one pathogen is responsible and sufficient, when infectious vectors, close contact and reduced immunity meet. In situations involving heavily colonized anatomical sites such an approach often ends in insoluble contradictions. Upon critical reflection and evaluation of 20 years research on spatial organization of vaginal microbiota it is apparent, that in some situations, pathogens may act and operate in permanent, structurally organized consortia, whereas its individual components may be innocuous and innocent, failing to express any pathogenic effect. In these cases, consortia are the true pathogens responsible for many infectious conditions, which usually remain unrecognized as long as improperly diagnosed. The structure of such consortia can be unraveled using ribosomal fluorescence in situ hybridization (FISH). FISH methodology, that not only offers an ex vivo opportunity to recognize bacterial species, but provides unique physical insight into their specific role in the pathogenesis of polymicrobial infections. Ribosomal FISH technique applied to both, women with bacterial vaginosis (BV) and their male partners, has added significantly to our understanding of the pathogenesis of this condition and contributed to appreciating the mechanisms of polymicrobial, community-based infection, potentially leading to therapeutic advances.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.
{"title":"miR-190 restores the innate immune homeostasis of Drosophila by directly inhibiting Tab2 in Imd pathway.","authors":"Xiaolong Yao, Yuqing He, Canhe Zhu, Shangmin Yang, Jing Wu, Fei Ma, Ping Jin","doi":"10.1016/j.micinf.2024.105399","DOIUrl":"10.1016/j.micinf.2024.105399","url":null,"abstract":"<p><p>The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.micinf.2024.105400
Luis A Arteaga-Blanco, Jairo R Temerozo, Lucas P S Tiné, Luíza Dantas-Pereira, Carolina Q Sacramento, Natalia Fintelman-Rodrigues, Beatriz M Toja, Suelen Silva Gomes Dias, Caroline S de Freitas, Camila Couto Espírito-Santo, Ygor P Silva, Rudimar L Frozza, Patrícia T Bozza, Rubem F S Menna-Barreto, Thiago Moreno L Souza, Dumith Chequer Bou-Habib
Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.
{"title":"Extracellular vesicles from primary human macrophages stimulated with VIP or PACAP mediate anti-SARS-CoV-2 activities in monocytes through NF-κB signaling pathway.","authors":"Luis A Arteaga-Blanco, Jairo R Temerozo, Lucas P S Tiné, Luíza Dantas-Pereira, Carolina Q Sacramento, Natalia Fintelman-Rodrigues, Beatriz M Toja, Suelen Silva Gomes Dias, Caroline S de Freitas, Camila Couto Espírito-Santo, Ygor P Silva, Rudimar L Frozza, Patrícia T Bozza, Rubem F S Menna-Barreto, Thiago Moreno L Souza, Dumith Chequer Bou-Habib","doi":"10.1016/j.micinf.2024.105400","DOIUrl":"10.1016/j.micinf.2024.105400","url":null,"abstract":"<p><p>Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}