A. Musolino, M. D. Suttle, L. Folco, A. J. King, G. Poggiali, H. C. Bates, J. R. Brucato, A. Brearley
Reckling Peak (RKP) 17085 is a newly classified Antarctic CM chondrite that preserves a complex alteration history characterized by mild aqueous alteration (CM2.7), overprinted by a short-lived thermal metamorphic event (heating stage III [<750°C]), and affected by low-grade terrestrial weathering. This meteorite contains abundant Fe-rich bands within the fine-grained matrix, composed of micron-scale Fe-oxyhydroxide minerals. They are interpreted as “alteration fronts” arising due to the dissolution and transport of Fe (typically <500 μm) before being abruptly deposited. This alteration texture is relatively rare among hydrated carbonaceous chondrites, with only five reported instances to date (Murchison, Murray, Allan Hills 81002, Miller Range 07687, and Northwest Africa 5958). Evidence from RKP 17085 suggests that early aqueous alteration operated as multiple geochemically isolated microenvironments, which moved outwards from local point sources within the matrix. Low permeability fine-grained rims on chondrules appear to have acted as barriers to fluid flow, controlling the migration of fluid across the parent body. Furthermore, the higher porosity regions within the altered fine-grained matrix represent either void space generated by the dehydration of hydrated minerals during post-hydration metamorphism and/or sites of ice accretion (water-ice or C-bearing ices) preserved within a mildly altered primitive matrix.
Reckling Peak(RKP)17085 是一块新分类的南极 CM 陨石,它保存了复杂的蚀变历史,其特征是轻度水蚀变(CM2.7),被短暂的热变质事件(加热阶段 III [<750°C])所覆盖,并受到低级陆地风化的影响。这块陨石的细粒基质中含有丰富的富铁带,由微米级的铁氧氢氧化物矿物组成。它们被解释为 "蚀变前沿",是由于铁(通常为 500 μm)在突然沉积前的溶解和迁移而产生的。这种蚀变纹理在水合碳质软玉中较为罕见,迄今为止仅有五例报道(默奇森、默里、艾伦山81002、米勒山脉07687和西北非5958)。来自 RKP 17085 的证据表明,早期的水蚀变是作为多个地球化学上孤立的微环境运作的,这些微环境从基质内的局部点源向外移动。软玉上的低渗透性细粒边缘似乎是流体流动的障碍,控制着流体在母体中的迁移。此外,蚀变细粒基质中孔隙率较高的区域要么是水化后变质过程中水合矿物脱水产生的空隙空间,要么是保留在轻度蚀变原始基质中的冰吸积点(水冰或含C冰)。
{"title":"Early fluid migration and alteration fronts in the CM chondrite Reckling Peak 17085","authors":"A. Musolino, M. D. Suttle, L. Folco, A. J. King, G. Poggiali, H. C. Bates, J. R. Brucato, A. Brearley","doi":"10.1111/maps.14261","DOIUrl":"https://doi.org/10.1111/maps.14261","url":null,"abstract":"<p>Reckling Peak (RKP) 17085 is a newly classified Antarctic CM chondrite that preserves a complex alteration history characterized by mild aqueous alteration (CM2.7), overprinted by a short-lived thermal metamorphic event (heating stage III [<750°C]), and affected by low-grade terrestrial weathering. This meteorite contains abundant Fe-rich bands within the fine-grained matrix, composed of micron-scale Fe-oxyhydroxide minerals. They are interpreted as “alteration fronts” arising due to the dissolution and transport of Fe (typically <500 μm) before being abruptly deposited. This alteration texture is relatively rare among hydrated carbonaceous chondrites, with only five reported instances to date (Murchison, Murray, Allan Hills 81002, Miller Range 07687, and Northwest Africa 5958). Evidence from RKP 17085 suggests that early aqueous alteration operated as multiple geochemically isolated microenvironments, which moved outwards from local point sources within the matrix. Low permeability fine-grained rims on chondrules appear to have acted as barriers to fluid flow, controlling the migration of fluid across the parent body. Furthermore, the higher porosity regions within the altered fine-grained matrix represent either void space generated by the dehydration of hydrated minerals during post-hydration metamorphism and/or sites of ice accretion (water-ice or C-bearing ices) preserved within a mildly altered primitive matrix.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 11","pages":"3021-3043"},"PeriodicalIF":2.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher J.-K. Yen, Paul K. Carpenter, Cécile Deligny, Alexander Nemchin, Renaud Merle, Anthony J. Irving, Kunihiko Nishiizumi, Marc W. Caffee, A. J. Timothy Jull, Martin Whitehouse, Bradley L. Jolliff
Northwest Africa (NWA) 12384 is a lunar polymict breccia composed almost entirely of basaltic components. The clast content includes low- to very-low-Ti volcanic picritic glass, basaltic vitrophyre, and crystalline pigeonite basalt—an assemblage of volcanic materials that can be tested for petrogenetic relationships. We present the inferred history of select mare components of NWA 12384 as suggested by texture, mineralogy, and petrography, and compare them to Apollo samples and other lunar meteorites. In addition, we used the volcanic glasses in the breccia as a primary composition for crystallization modeling and comparison to the lithic clast compositions. We find that the mafic clasts in NWA 12384 cannot be derived from the picritic glass through a common liquid line of descent because of higher Ti content, though they may have crystallized from a separate, common liquid line of descent. These clasts could represent local source-region heterogeneity or differential assimilation of more Ti-rich material. Pb-Pb SIMS analyses of a large basalt clast in NWA 12384 reveal an age of 3044 ± 41 Ma (2σ), which is used together with the chemical data and 4π cosmic ray exposure age of less than 20 kyr and terrestrial age of between 3.1 and 17.3 kyr to constrain the possible locations of provenance for this meteorite.
{"title":"Petrology and chronology of mare components in lunar basaltic breccia meteorite Northwest Africa 12384","authors":"Christopher J.-K. Yen, Paul K. Carpenter, Cécile Deligny, Alexander Nemchin, Renaud Merle, Anthony J. Irving, Kunihiko Nishiizumi, Marc W. Caffee, A. J. Timothy Jull, Martin Whitehouse, Bradley L. Jolliff","doi":"10.1111/maps.14260","DOIUrl":"https://doi.org/10.1111/maps.14260","url":null,"abstract":"<p>Northwest Africa (NWA) 12384 is a lunar polymict breccia composed almost entirely of basaltic components. The clast content includes low- to very-low-Ti volcanic picritic glass, basaltic vitrophyre, and crystalline pigeonite basalt—an assemblage of volcanic materials that can be tested for petrogenetic relationships. We present the inferred history of select mare components of NWA 12384 as suggested by texture, mineralogy, and petrography, and compare them to Apollo samples and other lunar meteorites. In addition, we used the volcanic glasses in the breccia as a primary composition for crystallization modeling and comparison to the lithic clast compositions. We find that the mafic clasts in NWA 12384 cannot be derived from the picritic glass through a common liquid line of descent because of higher Ti content, though they may have crystallized from a separate, common liquid line of descent. These clasts could represent local source-region heterogeneity or differential assimilation of more Ti-rich material. Pb-Pb SIMS analyses of a large basalt clast in NWA 12384 reveal an age of 3044 ± 41 Ma (2<i>σ</i>), which is used together with the chemical data and 4π cosmic ray exposure age of less than 20 kyr and terrestrial age of between 3.1 and 17.3 kyr to constrain the possible locations of provenance for this meteorite.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 11","pages":"2998-3020"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin R. Lee, Luke Daly, Jennika Greer, Sammy Griffin, Cameron J. Floyd, Levi Tegg, Julie Cairney
Many of the CM carbonaceous chondrites are regolith breccias and so should have abundant evidence for collisional processing. The constituent clasts of these fragmental rocks frequently display compactional petrofabrics; yet, olivine microstructures show that most CMs are unshocked. To better understand the reasons for this contradiction, we have sought other evidence for hypervelocity impact processing of CM chondrites using the Cold Bokkeveld meteorite. We find that this regolith breccia contains rare particles of vesicular shock melt that are close in chemical composition to bulk CM chondrite. Transmission electron microscopy of a melt bead shows that it is composed of silicate glass with inclusions of pentlandite, pyrrhotite, and wüstite. Characterization of shards of another bead by atom probe tomography reveals nanoscale clusters of sulfur that represent sulfide inclusions arrested at an early stage of growth. These glass particles are mineralogically comparable to micrometeoroid impact melt described from the Cb-type asteroid Ryugu and melt that has been experimentally produced by pulsed laser irradiation of CM targets. The glass could have formed by in situ shock-melting, but petrographic evidence is more consistent with an origin as ballistic ejecta from a distal impact. The scarcity of melt in this meteorite, and CM chondrites more broadly, is consistent with the explosive fragmentation of hydrous asteroids following energetic collisions. Cold Bokkeveld's parent body is likely to be a second-generation asteroid that was constructed from the debris of one or more earlier bodies, and only a small proportion of the reaccreted material had been highly shocked and melted.
许多CM碳质闪长岩都是碎屑岩,因此应该有大量碰撞加工的证据。这些碎屑岩的组成碎块经常显示出压实岩性;然而,橄榄石的微观结构显示,大多数CM是未受冲击的。为了更好地理解这一矛盾的原因,我们利用 Cold Bokkeveld 陨石寻找 CM 软骨超高速撞击加工的其他证据。我们发现,这块碎屑岩含有罕见的泡状冲击熔体颗粒,其化学成分与块状CM软玉很接近。对一颗熔珠的透射电子显微镜观察表明,它是由硅酸盐玻璃组成的,其中夹杂着彭特兰石、黄铁矿和黑钨矿。通过原子探针断层扫描法对另一颗珠子的碎片进行表征,发现了纳米级的硫磺团块,这代表了在生长早期阶段被截获的硫化物包裹体。这些玻璃微粒在矿物学上可与 Cb 型小行星龙宫的微流星体撞击熔体以及通过脉冲激光照射 CM 目标实验产生的熔体相媲美。这些玻璃可能是在原地冲击熔化形成的,但岩石学证据表明,它们更像是来自远端撞击的弹道抛射物。这块陨石以及更广泛的 CM 软骨中熔体的稀少与含水小行星在高能碰撞后的爆炸性碎裂是一致的。Cold Bokkeveld 的母体很可能是第二代小行星,由一个或多个早期天体的碎片构成,只有一小部分重新生成的物质经过高度震荡和熔化。
{"title":"Shock melt in the Cold Bokkeveld CM2 carbonaceous chondrite and the response of C-complex asteroids to hypervelocity impacts","authors":"Martin R. Lee, Luke Daly, Jennika Greer, Sammy Griffin, Cameron J. Floyd, Levi Tegg, Julie Cairney","doi":"10.1111/maps.14253","DOIUrl":"https://doi.org/10.1111/maps.14253","url":null,"abstract":"<p>Many of the CM carbonaceous chondrites are regolith breccias and so should have abundant evidence for collisional processing. The constituent clasts of these fragmental rocks frequently display compactional petrofabrics; yet, olivine microstructures show that most CMs are unshocked. To better understand the reasons for this contradiction, we have sought other evidence for hypervelocity impact processing of CM chondrites using the Cold Bokkeveld meteorite. We find that this regolith breccia contains rare particles of vesicular shock melt that are close in chemical composition to bulk CM chondrite. Transmission electron microscopy of a melt bead shows that it is composed of silicate glass with inclusions of pentlandite, pyrrhotite, and wüstite. Characterization of shards of another bead by atom probe tomography reveals nanoscale clusters of sulfur that represent sulfide inclusions arrested at an early stage of growth. These glass particles are mineralogically comparable to micrometeoroid impact melt described from the Cb-type asteroid Ryugu and melt that has been experimentally produced by pulsed laser irradiation of CM targets. The glass could have formed by in situ shock-melting, but petrographic evidence is more consistent with an origin as ballistic ejecta from a distal impact. The scarcity of melt in this meteorite, and CM chondrites more broadly, is consistent with the explosive fragmentation of hydrous asteroids following energetic collisions. Cold Bokkeveld's parent body is likely to be a second-generation asteroid that was constructed from the debris of one or more earlier bodies, and only a small proportion of the reaccreted material had been highly shocked and melted.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 10","pages":"2818-2830"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. N. Nguyen, S. J. Clemett, K. Thomas-Keprta, C. M. O'D. Alexander, D. P. Glavin, J. P. Dworkin, H. C. Connolly Jr, D. S. Lauretta
Samples of B-type asteroid (101955) Bennu returned by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft will provide unique insight into the nature of carbonaceous asteroidal matter without the atmospheric entry heating or terrestrial weathering effects associated with meteoritic samples. Some of the Bennu samples will undergo characterization by X-ray computed tomography (XCT). To protect the pristine nature of the samples, it is important to understand any adverse effects that could result from irradiation during XCT analysis. We analyzed acid-insoluble residues produced from two powdered samples of the Murchison carbonaceous chondrite, one control and one XCT-scanned, to assess the impact on insoluble organic matter (IOM) and presolar grains. Using a suite of in situ analytical techniques (field-emission scanning electron microscopy, optical and ultraviolet fluorescence microscopy, microprobe two-step laser mass spectrometry, and nanoscale secondary ion mass spectrometry), we found that the two residues had indistinguishable chemical, molecular, and isotopic signatures on the micron to submicron scale, indicating that an X-ray dosage of 180 Gy (the maximum dose to be used during preliminary examination of Bennu materials) did not damage the IOM and presolar grains. To explore the use of acid-insoluble residues to infer parent body processes in preparation for Bennu sample analysis, we also analyzed a residue produced from the Sutter's Mill carbonaceous chondrite. Multiple lines of evidence, including severely degraded UV fluorescence signatures and D-rich hotspots, indicate that the parent body of Sutter's Mill was heated to >400°C. This heating event was likely short lived because the abundance of presolar SiC grains, which are destroyed by thermal metamorphism and prolonged oxidation, was consistent with those in Murchison and other unheated chondrites. The results of these in situ analyses of acid-insoluble residues from Murchison and Sutter's Mill provide complementary detail to bulk analyses.
起源、光谱解读、资源识别和安全--红岩探测器(OSIRIS-REx)航天器返回的 B 型小行星(101955)贝努样本将为了解碳质小行星物质的性质提供独特的见解,而不会产生与陨石样本有关的大气进入加热或陆地风化效应。一些贝努样本将通过 X 射线计算机断层扫描(XCT)进行表征。为了保护样本的原始性质,必须了解 XCT 分析期间辐照可能造成的任何不利影响。我们分析了从默奇森碳质软玉的两个粉末样本(一个对照样本和一个XCT扫描样本)中产生的酸不溶性残留物,以评估其对不溶性有机物(IOM)和前极粒的影响。利用一套原位分析技术(场发射扫描电子显微镜、光学和紫外荧光显微镜、微探针两步激光质谱法和纳米级二次离子质谱法),我们发现这两种残留物在微米到亚微米尺度上具有难以区分的化学、分子和同位素特征,这表明 180 Gy 的 X 射线剂量(贝努材料初步检查期间使用的最大剂量)并没有损坏不溶性有机物质和前极粒。为了探索利用酸不溶性残留物来推断母体在准备贝努样本分析时的过程,我们还分析了从萨特磨坊碳质软玉中产生的残留物。多种证据(包括严重退化的紫外线荧光特征和富含D的热点)表明,萨特磨坊星的母体曾被加热到400°C。这一加热事件很可能持续时间很短,因为被热变质作用和长期氧化作用破坏的前极性碳化硅晶粒的丰度与默奇森和其他未加热软玉中的碳化硅晶粒的丰度一致。对来自默奇森和萨特磨坊的酸不溶性残留物进行的这些原位分析结果为批量分析提供了补充细节。
{"title":"Micro- and nanoscale studies of insoluble organic matter and C-rich presolar grains in Murchison and Sutter's Mill in preparation for Bennu sample analysis","authors":"A. N. Nguyen, S. J. Clemett, K. Thomas-Keprta, C. M. O'D. Alexander, D. P. Glavin, J. P. Dworkin, H. C. Connolly Jr, D. S. Lauretta","doi":"10.1111/maps.14254","DOIUrl":"https://doi.org/10.1111/maps.14254","url":null,"abstract":"<p>Samples of B-type asteroid (101955) Bennu returned by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft will provide unique insight into the nature of carbonaceous asteroidal matter without the atmospheric entry heating or terrestrial weathering effects associated with meteoritic samples. Some of the Bennu samples will undergo characterization by X-ray computed tomography (XCT). To protect the pristine nature of the samples, it is important to understand any adverse effects that could result from irradiation during XCT analysis. We analyzed acid-insoluble residues produced from two powdered samples of the Murchison carbonaceous chondrite, one control and one XCT-scanned, to assess the impact on insoluble organic matter (IOM) and presolar grains. Using a suite of in situ analytical techniques (field-emission scanning electron microscopy, optical and ultraviolet fluorescence microscopy, microprobe two-step laser mass spectrometry, and nanoscale secondary ion mass spectrometry), we found that the two residues had indistinguishable chemical, molecular, and isotopic signatures on the micron to submicron scale, indicating that an X-ray dosage of 180 Gy (the maximum dose to be used during preliminary examination of Bennu materials) did not damage the IOM and presolar grains. To explore the use of acid-insoluble residues to infer parent body processes in preparation for Bennu sample analysis, we also analyzed a residue produced from the Sutter's Mill carbonaceous chondrite. Multiple lines of evidence, including severely degraded UV fluorescence signatures and D-rich hotspots, indicate that the parent body of Sutter's Mill was heated to >400°C. This heating event was likely short lived because the abundance of presolar SiC grains, which are destroyed by thermal metamorphism and prolonged oxidation, was consistent with those in Murchison and other unheated chondrites. The results of these in situ analyses of acid-insoluble residues from Murchison and Sutter's Mill provide complementary detail to bulk analyses.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 10","pages":"2831-2850"},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Srivastava, A. Basu Sarbadhikari, A. Yamaguchi, A. Takenouchi, J. M. D. Day, T. Ubide
Lunar basaltic meteorite Asuka-881757 (A-881757), a member of the source crater paired YAMM meteorites (Yamato-793169, A-881757, Miller Range 05035 and Meteorite Hills 01210), provides information on potassium-rare earth element-phosphorous (KREEP)-free magmatic sources within the Moon. Asuka-881757 is an unbrecciated and Fe-rich (Mg# 36) gabbro with coarse pyroxene (2–8 mm) and plagioclase (1–3 mm). The coarse pyroxene preserves mm-scale, near-complete hour-glass sector zoning with strong Ca and Fe partitioning, similar to some Fe-rich Apollo basalts. In contrast to the most Mg-rich Apollo basalts, A-881757 contains various types of symplectites (~8 vol%) formed by the breakdown of pyroxferroite due to slow cooling, resembling a few extreme Fe-rich (Mg#