{"title":"2021 Nier Prize for Dr. Nan Liu","authors":"Larry R. Nittler","doi":"10.1111/maps.14237","DOIUrl":"10.1111/maps.14237","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 S1","pages":"A491-A492"},"PeriodicalIF":2.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the mineralogy of the Martian mantle is essential for constructing geochemical and geophysical models of Mars. This study employs the pMELTS program to determine the mineralogy at the solidus from 11 published bulk silicate Mars (BSM) compositions, within a pressure range of 2–5 GPa. The pMELTS results align with experimental data and calculations from another thermodynamic program (Perple_X/stx11). Mineral modes from compositional models based on Martian meteorite geochemistry show relatively consistent abundances modes (olivine: 48–56 wt%, orthopyroxene: 20–25 wt%, clinopyroxene: 15–17 wt%, garnet: 6–9 wt%). In contrast, mineral modes from compositional models that are not based on Martian meteorite geochemistry exhibit a wider range of olivine and garnet abundances. Additionally, we constrained the mineral modes of the Martian mantle using trace element partitioning and partial melting models. Our calculations indicate that melts derived from mantle sources with a hypothesized garnet content of 5–10 wt% closely match the analyzed compositions of shergottites, validating the garnet mode (6–9 wt%) constrained in our pMELTS calculations. Extracting low-degree (<4 wt%) melts from a BSM to form depleted Martian mantle (DMM) does not significantly alter the mineralogical modes of solid residues, but it does lead to substantial trace elemental depletion in the DMM. Therefore, enriched, intermediate, and depleted shergottite sources are likely characterized by similar mineral modes yet differ in incompatible element abundances.
{"title":"Mineralogy of the Martian mantle inferred from bulk chemical compositions","authors":"Shuying Yang, Munir Humayun, Kevin Righter","doi":"10.1111/maps.14235","DOIUrl":"10.1111/maps.14235","url":null,"abstract":"<p>Understanding the mineralogy of the Martian mantle is essential for constructing geochemical and geophysical models of Mars. This study employs the pMELTS program to determine the mineralogy at the solidus from 11 published bulk silicate Mars (BSM) compositions, within a pressure range of 2–5 GPa. The pMELTS results align with experimental data and calculations from another thermodynamic program (Perple_X/stx11). Mineral modes from compositional models based on Martian meteorite geochemistry show relatively consistent abundances modes (olivine: 48–56 wt%, orthopyroxene: 20–25 wt%, clinopyroxene: 15–17 wt%, garnet: 6–9 wt%). In contrast, mineral modes from compositional models that are not based on Martian meteorite geochemistry exhibit a wider range of olivine and garnet abundances. Additionally, we constrained the mineral modes of the Martian mantle using trace element partitioning and partial melting models. Our calculations indicate that melts derived from mantle sources with a hypothesized garnet content of 5–10 wt% closely match the analyzed compositions of shergottites, validating the garnet mode (6–9 wt%) constrained in our pMELTS calculations. Extracting low-degree (<4 wt%) melts from a BSM to form depleted Martian mantle (DMM) does not significantly alter the mineralogical modes of solid residues, but it does lead to substantial trace elemental depletion in the DMM. Therefore, enriched, intermediate, and depleted shergottite sources are likely characterized by similar mineral modes yet differ in incompatible element abundances.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2545-2564"},"PeriodicalIF":2.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Award of the 2007 Nier Prize to Thorsten Kleine","authors":"Klaus Mezger","doi":"10.1111/maps.14243","DOIUrl":"10.1111/maps.14243","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 S1","pages":"A493-A494"},"PeriodicalIF":2.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantin M. Ryazantsev, Alexander N. Krot, Chi Ma, Marina A. Ivanova, Cyril A. Lorenz, Vasiliy D. Shcherbakov
Isolated corundum grains and corundum ± Mg-deltalumite [(Al,Mg)(Al,◻)2O4] ± hibonite assemblages were investigated in the CH3.0 metal-rich carbonaceous chondrite Sayh al Uhaymir (SaU) 290. Although very refractory inclusions containing abundant Zr- and Sc-rich oxides and silicates, hibonite, grossite, or perovskite have been previously described in CH chondrites, this is the first discovery of corundum and Mg-deltalumite in CHs and the first discovery of Mg-deltalumite in nature. Magnesium-deltalumite can be indexed by the Fd3m spinel-type structure and gives a perfect fit to the synthetic Al-rich spinel cells. Corundum-Mg-deltalumite grains, 5–20 μm in size, are occasionally rimmed by a thin layer of hibonite replacing corundum. Some corundum grains contain tiny inclusions of ultrarefractory Zr,Sc-rich minerals and platinum-group element (PGE) nuggets. All corundum, hibonite, and Mg-deltalumite grains studied have 16O-rich compositions (average Δ17O ± 2SD = −22 ± 3‰). Two corundum grains show evidence for significant mass-dependent fractionation of oxygen isotopes: Δ18O ~ +34‰ and ~ +19‰. We suggest that the SaU 290 corundum-rich objects were formed by evaporation and/or condensation in a hot nebular region close to the proto-sun where the ambient temperature was close to the condensation temperature of corundum. A corundum grain with tiny inclusions of Zr- and Sc-rich phases and PGE metal nuggets recorded formation temperatures higher than the condensation temperature of corundum. Two corundum-rich objects with highly fractionated oxygen isotopes must have crystallized from a melt that experienced evaporation. Corundum grains corroded by hibonite recorded gas–solid interaction in this region during its cooling. The Mg-deltalumite ± corundum ± hibonite objects were formed by rapid crystallization of high-temperature (>2000°C) refractory melts. The lack of minerals with condensation temperatures below those of corundum and hibonite in the SaU 290 corundum-rich objects suggests that after formation, these objects were rapidly removed from the hot nebular region by disk wind and/or by turbulent diffusion and disk spreading.
{"title":"Corundum ± magnesium-deltalumite ± hibonite-bearing objects in the CH chondrite Sayh al Uhaymir 290","authors":"Konstantin M. Ryazantsev, Alexander N. Krot, Chi Ma, Marina A. Ivanova, Cyril A. Lorenz, Vasiliy D. Shcherbakov","doi":"10.1111/maps.14238","DOIUrl":"10.1111/maps.14238","url":null,"abstract":"<p>Isolated corundum grains and corundum ± Mg-deltalumite [(Al,Mg)(Al,◻)<sub>2</sub>O<sub>4</sub>] ± hibonite assemblages were investigated in the CH3.0 metal-rich carbonaceous chondrite Sayh al Uhaymir (SaU) 290. Although very refractory inclusions containing abundant Zr- and Sc-rich oxides and silicates, hibonite, grossite, or perovskite have been previously described in CH chondrites, this is the first discovery of corundum and Mg-deltalumite in CHs and the first discovery of Mg-deltalumite in nature. Magnesium-deltalumite can be indexed by the <i>Fd</i>3<i>m</i> spinel-type structure and gives a perfect fit to the synthetic Al-rich spinel cells. Corundum-Mg-deltalumite grains, 5–20 μm in size, are occasionally rimmed by a thin layer of hibonite replacing corundum. Some corundum grains contain tiny inclusions of ultrarefractory Zr,Sc-rich minerals and platinum-group element (PGE) nuggets. All corundum, hibonite, and Mg-deltalumite grains studied have <sup>16</sup>O-rich compositions (average Δ<sup>17</sup>O ± 2SD = −22 ± 3‰). Two corundum grains show evidence for significant mass-dependent fractionation of oxygen isotopes: Δ<sup>18</sup>O ~ +34‰ and ~ +19‰. We suggest that the SaU 290 corundum-rich objects were formed by evaporation and/or condensation in a hot nebular region close to the proto-sun where the ambient temperature was close to the condensation temperature of corundum. A corundum grain with tiny inclusions of Zr- and Sc-rich phases and PGE metal nuggets recorded formation temperatures higher than the condensation temperature of corundum. Two corundum-rich objects with highly fractionated oxygen isotopes must have crystallized from a melt that experienced evaporation. Corundum grains corroded by hibonite recorded gas–solid interaction in this region during its cooling. The Mg-deltalumite ± corundum ± hibonite objects were formed by rapid crystallization of high-temperature (>2000°C) refractory melts. The lack of minerals with condensation temperatures below those of corundum and hibonite in the SaU 290 corundum-rich objects suggests that after formation, these objects were rapidly removed from the hot nebular region by disk wind and/or by turbulent diffusion and disk spreading.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 10","pages":"2608-2621"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}