Pub Date : 2023-09-18DOI: 10.1088/2050-6120/acf118
Natalia Philipp, Enrico Gratton, Laura Estrada
The cell membrane has a fundamental role in the cell life cycle but there's still much to be learned about its heterogeneous structure, regulation, and protein interaction. Additionally, the protein-membrane interaction is often overlooked when studying specific protein dynamics. In this work, we present a new tool for a better understanding of protein dynamics and membrane function using live cells and fast non-invasive techniques without the need for individual particle tracking. To this end, we used the 2D-pair correlation function (2D-pCF) to study protein interactions across cellular membranes. We performed numerical simulations and confocal experiments using a GAP-mEGFP fusion construct known to interact with the plasmatic membrane. Our results demonstrate that based on a quantitative correlation analysis as the 2D pair correlation of the signal intensities, is possible to characterize protein-membrane interactions in live systems and real-time. Combining experimental and numerical results this work presents a new powerful approach to the study of the dynamic protein-membrane interaction.
{"title":"Measuring protein-membrane interaction through radial fluorescence correlation in 2 dimensions.","authors":"Natalia Philipp, Enrico Gratton, Laura Estrada","doi":"10.1088/2050-6120/acf118","DOIUrl":"https://doi.org/10.1088/2050-6120/acf118","url":null,"abstract":"<p><p>The cell membrane has a fundamental role in the cell life cycle but there's still much to be learned about its heterogeneous structure, regulation, and protein interaction. Additionally, the protein-membrane interaction is often overlooked when studying specific protein dynamics. In this work, we present a new tool for a better understanding of protein dynamics and membrane function using live cells and fast non-invasive techniques without the need for individual particle tracking. To this end, we used the 2D-pair correlation function (2D-pCF) to study protein interactions across cellular membranes. We performed numerical simulations and confocal experiments using a GAP-mEGFP fusion construct known to interact with the plasmatic membrane. Our results demonstrate that based on a quantitative correlation analysis as the 2D pair correlation of the signal intensities, is possible to characterize protein-membrane interactions in live systems and real-time. Combining experimental and numerical results this work presents a new powerful approach to the study of the dynamic protein-membrane interaction.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10355829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The survival rate of oral squamous cell carcinoma (OSCC) patients is very poor, but it can be improved using highly sensitive, specific, and accurate techniques. Autofluorescence and fluorescence techniques are very sensitive and helpful in cancer screening; being directly linked with the molecular levels of human tissue, they can be used as a quantitative tool for cancer detection. Here, we report the development of multi-modal autofluorescence and fluorescence imaging and spectroscopic (MAF-IS) smartphone-based systems for fast and real-time oral cancer screening. MAF-IS system is indigenously developed and offers the advantages of being a low-cost, handy, non-contact, non-invasive, and easily operable device that can be employed in hospitals, including low-resource settings. In this study, we report the results of 43 individuals with 28 OSCC and 15 oral potentially malignant disorders (OPMDs), i.e., epithelial dysplasia and oral submucous fibrosis, using the developed devices. We observed a red shift in fluorescence emission spectrain vivo. We found red-shift of 7.72 ± 6 nm, 3 ± 4.36 nm, and 1.33 ± 0.47 nm in the case of OSCC, epithelial dysplasia, and oral submucous fibrosis, respectively, compared to normal. The results were compared with histopathology and found to be consistent. Further, the MAF-IS system provides results in real-time with higher accuracy and sensitivity compared to devices using a single modality. Our system can achieve an accuracy of 97% with sensitivity and specificity of 100% and 94.7%, respectively, even with a smaller number of patients (28 patients of OSCC). The proposed MAF-IS device has great potential for fast screening and diagnosis of oral cancer in the future.
{"title":"Multimodal fluorescence imaging and spectroscopic techniques for oral cancer screening: a real-time approach.","authors":"Pramila Thapa, Veena Singh, Sunil Bhatt, Kiran Maurya, Virendra Kumar, Vivek Nayyar, Kiran Jot, Deepika Mishra, Anurag Shrivastava, Dalip Singh Mehta","doi":"10.1088/2050-6120/acf6ac","DOIUrl":"https://doi.org/10.1088/2050-6120/acf6ac","url":null,"abstract":"<p><p>The survival rate of oral squamous cell carcinoma (OSCC) patients is very poor, but it can be improved using highly sensitive, specific, and accurate techniques. Autofluorescence and fluorescence techniques are very sensitive and helpful in cancer screening; being directly linked with the molecular levels of human tissue, they can be used as a quantitative tool for cancer detection. Here, we report the development of multi-modal autofluorescence and fluorescence imaging and spectroscopic (MAF-IS) smartphone-based systems for fast and real-time oral cancer screening. MAF-IS system is indigenously developed and offers the advantages of being a low-cost, handy, non-contact, non-invasive, and easily operable device that can be employed in hospitals, including low-resource settings. In this study, we report the results of 43 individuals with 28 OSCC and 15 oral potentially malignant disorders (OPMDs), i.e., epithelial dysplasia and oral submucous fibrosis, using the developed devices. We observed a red shift in fluorescence emission spectra<i>in vivo</i>. We found red-shift of 7.72 ± 6 nm, 3 ± 4.36 nm, and 1.33 ± 0.47 nm in the case of OSCC, epithelial dysplasia, and oral submucous fibrosis, respectively, compared to normal. The results were compared with histopathology and found to be consistent. Further, the MAF-IS system provides results in real-time with higher accuracy and sensitivity compared to devices using a single modality. Our system can achieve an accuracy of 97% with sensitivity and specificity of 100% and 94.7%, respectively, even with a smaller number of patients (28 patients of OSCC). The proposed MAF-IS device has great potential for fast screening and diagnosis of oral cancer in the future.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.1088/2050-6120/acf546
Xuecheng Chen, Yaqian Li, Xiaowei Li, Jielin Sun, Daniel M Czajkowsky, Zhifeng Shao
The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.
{"title":"Quasi-equilibrium state based quantification of biological macromolecules in single-molecule localization microscopy.","authors":"Xuecheng Chen, Yaqian Li, Xiaowei Li, Jielin Sun, Daniel M Czajkowsky, Zhifeng Shao","doi":"10.1088/2050-6120/acf546","DOIUrl":"https://doi.org/10.1088/2050-6120/acf546","url":null,"abstract":"<p><p>The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometry<i>in vitro</i>, it is presently challenging to precisely quantify this property<i>in vivo,</i>especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10197268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.1088/2050-6120/acf119
Ali Abdel-Hakim, Fatallah Belal, Mohamed A Hammad, Mahmoud Hamed Elmaghrabey
Green, one-pot, quick, and easily synthesized nitrogen and sulfur co-doped carbon quantum dots (N,S-CDs) were obtained from cheap and readily available chemicals (sucrose, urea, and thiourea) using a microwave-assisted approach in about 4 min and utilized as a turn-off fluorescent sensor for estimation of natamycin (NAT). First, the effect of N and S doping on the microwave-synthesized CDs' quantum yield was carefully studied. CDs derived from sucrose alone failed to produce a high quantum yield; then, to increase the quantum yield, doping with heteroatoms was carried out using either urea or thiourea. A slight increase in quantum yield was observed upon using thiourea with sucrose, while an obvious enhancement of quantum yield was obtained when urea was used instead of thiourea. Surprisingly, using a combination of urea and thiourea together results in N,S-CDs with the highest quantum yield (53.5%), uniform and small particle size distribution, and extended stability. The fluorescent signal of N,S-CDs was quenched upon addition of NAT due to inner filter effect and static quenching in a manner that allowed for quantitative determination of NAT over a range of 0.5-10.0μg ml-1(LOD = 0.10μg ml-1). The N,S-CDs were applicable for determination of NAT in aqueous humor, eye drops, different environmental water samples, and bread with excellent performance. The selectivity study indicated excellent selectivity of the prepared N,S-CDs toward NAT with little interference from possibly interfering substances. In-silico toxicological evaluation of NAT was conducted to estimate its long-term toxicity and drug-drug interactions. Finally, the preparation of N,S-CDs, and analytical procedure compliance with the green chemistry principles were confirmed by two greenness assessment tools.
{"title":"Rapid microwave synthesis of N and S dual-doped carbon quantum dots for natamycin determination based on fluorescence switch-off assay.","authors":"Ali Abdel-Hakim, Fatallah Belal, Mohamed A Hammad, Mahmoud Hamed Elmaghrabey","doi":"10.1088/2050-6120/acf119","DOIUrl":"https://doi.org/10.1088/2050-6120/acf119","url":null,"abstract":"<p><p>Green, one-pot, quick, and easily synthesized nitrogen and sulfur co-doped carbon quantum dots (N,S-CDs) were obtained from cheap and readily available chemicals (sucrose, urea, and thiourea) using a microwave-assisted approach in about 4 min and utilized as a turn-off fluorescent sensor for estimation of natamycin (NAT). First, the effect of N and S doping on the microwave-synthesized CDs' quantum yield was carefully studied. CDs derived from sucrose alone failed to produce a high quantum yield; then, to increase the quantum yield, doping with heteroatoms was carried out using either urea or thiourea. A slight increase in quantum yield was observed upon using thiourea with sucrose, while an obvious enhancement of quantum yield was obtained when urea was used instead of thiourea. Surprisingly, using a combination of urea and thiourea together results in N,S-CDs with the highest quantum yield (53.5%), uniform and small particle size distribution, and extended stability. The fluorescent signal of N,S-CDs was quenched upon addition of NAT due to inner filter effect and static quenching in a manner that allowed for quantitative determination of NAT over a range of 0.5-10.0<i>μ</i>g ml<sup>-1</sup>(LOD = 0.10<i>μ</i>g ml<sup>-1</sup>). The N,S-CDs were applicable for determination of NAT in aqueous humor, eye drops, different environmental water samples, and bread with excellent performance. The selectivity study indicated excellent selectivity of the prepared N,S-CDs toward NAT with little interference from possibly interfering substances. In-silico toxicological evaluation of NAT was conducted to estimate its long-term toxicity and drug-drug interactions. Finally, the preparation of N,S-CDs, and analytical procedure compliance with the green chemistry principles were confirmed by two greenness assessment tools.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10080910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1088/2050-6120/aceed0
Anna Ryschich, Yan Dong, Michael Schäfer, Eduard Ryschich, Svetlana Karakhanova
Antibodies have gained considerable importance in laboratory and clinical settings. Currently, antibodies are extensively employed for the diagnosis and treatment of several human diseases. Herein, using targeted and cell immunisation approaches, we developed and characterised an antibody clone, DWH24. We found that DWH24 is an IgMκtype antibody that enables excellent visualisation and quantification of dead cells using immunofluorescence, fluorescence microscopy, and flow cytometry. This property was proved by the spontaneous cell death of several tumour cell lines and stimulated T cells, as well as after chemo- and photodynamic therapy. Unlike conventional apoptosis and cell death markers, DWH24 binding occurred in a Ca2+- and protein-independent manner and enabled live imaging of cell death progress, as shown using time-lapse microscopy. The binding specificity of DWH24 was analysed using a human proteome microarray, which revealed a complex response profile with very high spot intensities against various proteins, such as tropomyosin variants and FAM131C. Accordingly, DWH24 can be employed as a suitable tool for the cost-effective and universal analysis of cell death using fluorescence imaging and flow cytometry.
{"title":"DWH24: a new antibody for fluorescence-based cell death analysis.","authors":"Anna Ryschich, Yan Dong, Michael Schäfer, Eduard Ryschich, Svetlana Karakhanova","doi":"10.1088/2050-6120/aceed0","DOIUrl":"https://doi.org/10.1088/2050-6120/aceed0","url":null,"abstract":"<p><p>Antibodies have gained considerable importance in laboratory and clinical settings. Currently, antibodies are extensively employed for the diagnosis and treatment of several human diseases. Herein, using targeted and cell immunisation approaches, we developed and characterised an antibody clone, DWH24. We found that DWH24 is an IgM<i>κ</i>type antibody that enables excellent visualisation and quantification of dead cells using immunofluorescence, fluorescence microscopy, and flow cytometry. This property was proved by the spontaneous cell death of several tumour cell lines and stimulated T cells, as well as after chemo- and photodynamic therapy. Unlike conventional apoptosis and cell death markers, DWH24 binding occurred in a Ca<sup>2+</sup>- and protein-independent manner and enabled live imaging of cell death progress, as shown using time-lapse microscopy. The binding specificity of DWH24 was analysed using a human proteome microarray, which revealed a complex response profile with very high spot intensities against various proteins, such as tropomyosin variants and FAM131C. Accordingly, DWH24 can be employed as a suitable tool for the cost-effective and universal analysis of cell death using fluorescence imaging and flow cytometry.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10421226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.1088/2050-6120/ace81b
Mona Abo Zaid, Nahed El Enany, Aziza E Mostafa, Ghada M Hadad, Fathalla Belal
A facile, simple, green and sensitive spectrofluorometric method was developed for determination of the calcimimetic drug cinacalcet hydrochloride. It is used for the treatment of hyperparathyroidism. The drug showed high native fluorescence intensity at 320 nm after excitation at 280 nm. The method was linear over the range of 5.0-400.0 ng ml-1with excellent correlation (R2= 0.9999). Limit of detection (LOD) and limit of quantitation (LOQ) values were 1.19 and 3.62 ng ml-1, respectively. The percentage recovery was found to be 100.42% ± 1.39 (n=8). The proposed method was successfully applied for determination of cinacalcet in spiked human plasma samples with % recoveries of (87.23 to 109.69%). Two recent greenness metrics (GAPI and Analytical Eco-Scale) were chosen to prove the eco-friendly nature of the method. Furthermore, the proposed method was successfully applied to dissolution study of commercial cinacalcet tablets. The interference likely to be introduced by some commonly co-administrated drugs such as metoprolol and itraconazole was studied; the tolerance limits were calculated.
建立了一种快速、简便、绿色、灵敏的测定拟钙化药盐酸西那卡塞的荧光光谱法。它用于治疗甲状旁腺功能亢进。在280 nm激发后,药物在320 nm处显示出较高的天然荧光强度。该方法在5.0 ~ 400.0 ng ml-1范围内呈良好的线性关系(R2= 0.9999)。检测限(LOD)和定量限(LOQ)分别为1.19和3.62 ng ml-1。回收率为100.42%±1.39 (n=8)。该方法可用于加标人血浆样品中cinacalcet的测定,回收率为(87.23 ~ 109.69%)。两个最近的绿色指标(GAPI和分析生态尺度)被选择来证明该方法的环保性。并将该方法成功地应用于市售辛那卡塞片的溶出度研究。对美托洛尔、伊曲康唑等常用合用药物可能引起的干扰进行了研究;计算公差限值。
{"title":"Spectrofluorometric determination of cinacalcet hydrochloride: greenness assessment and application to biological fluids and<i>in-vitro</i>dissolution testing.","authors":"Mona Abo Zaid, Nahed El Enany, Aziza E Mostafa, Ghada M Hadad, Fathalla Belal","doi":"10.1088/2050-6120/ace81b","DOIUrl":"https://doi.org/10.1088/2050-6120/ace81b","url":null,"abstract":"<p><p>A facile, simple, green and sensitive spectrofluorometric method was developed for determination of the calcimimetic drug cinacalcet hydrochloride. It is used for the treatment of hyperparathyroidism. The drug showed high native fluorescence intensity at 320 nm after excitation at 280 nm. The method was linear over the range of 5.0-400.0 ng ml<sup>-1</sup>with excellent correlation (R<sup>2</sup>= 0.9999). Limit of detection (LOD) and limit of quantitation (LOQ) values were 1.19 and 3.62 ng ml<sup>-1</sup>, respectively. The percentage recovery was found to be 100.42% ± 1.39 (n=8). The proposed method was successfully applied for determination of cinacalcet in spiked human plasma samples with % recoveries of (87.23 to 109.69%). Two recent greenness metrics (GAPI and Analytical Eco-Scale) were chosen to prove the eco-friendly nature of the method. Furthermore, the proposed method was successfully applied to dissolution study of commercial cinacalcet tablets. The interference likely to be introduced by some commonly co-administrated drugs such as metoprolol and itraconazole was studied; the tolerance limits were calculated.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.1088/2050-6120/ace513
Aya Barseem, Fathalla Belal, Mokhtar Mabrouk, Sherin Hammad, Hytham Ahmed
The small molecular drugs pharmacodynamics and pharmacokinetics could be affected by human serum albumin (HSA) transport, so we studied the interaction between HSA and the widely used anti-ischemic agent, trimetazidine (TMZ), using different approaches. As shown by synchronous fluorescence spectroscopy, the interaction affects the microenvironment confirmation around tyrosine residues. The site-competitive experiments showed that TMZ had an affinity toward subdomain III A (site II) of HSA. The enthalpy and entropy changes (ΔH and ΔS), which were 37.75 and 0.197 K J mol-1, respectively, showed that the predominant intermolecular interactions are hydrophobic forces. According to FTIR research, the interaction between HSA and TMZ caused polypeptide carbonyl-hydrogen bonds to rearrange. The HSA esterase enzyme activity was decreased with TMZ. Docking analysis confirmed the site-competitive experiments and thermodynamic results. This study demonstrated that TMZ interacted with HSA, and the structure and function of HSA were influenced by TMZ. This study could aid in understanding the pharmacokinetics of TMZ and provide basic data for safe use.
{"title":"Probing the potential toxicity of trimetazidine by characterizing its interaction with human serum albumin.","authors":"Aya Barseem, Fathalla Belal, Mokhtar Mabrouk, Sherin Hammad, Hytham Ahmed","doi":"10.1088/2050-6120/ace513","DOIUrl":"https://doi.org/10.1088/2050-6120/ace513","url":null,"abstract":"<p><p>The small molecular drugs pharmacodynamics and pharmacokinetics could be affected by human serum albumin (HSA) transport, so we studied the interaction between HSA and the widely used anti-ischemic agent, trimetazidine (TMZ), using different approaches. As shown by synchronous fluorescence spectroscopy, the interaction affects the microenvironment confirmation around tyrosine residues. The site-competitive experiments showed that TMZ had an affinity toward subdomain III A (site II) of HSA. The enthalpy and entropy changes (ΔH and ΔS), which were 37.75 and 0.197 K J mol<sup>-1</sup>, respectively, showed that the predominant intermolecular interactions are hydrophobic forces. According to FTIR research, the interaction between HSA and TMZ caused polypeptide carbonyl-hydrogen bonds to rearrange. The HSA esterase enzyme activity was decreased with TMZ. Docking analysis confirmed the site-competitive experiments and thermodynamic results. This study demonstrated that TMZ interacted with HSA, and the structure and function of HSA were influenced by TMZ. This study could aid in understanding the pharmacokinetics of TMZ and provide basic data for safe use.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.1088/2050-6120/ace512
Katarína Dubayová, Anna Birková, Martin Lešo, Jaroslava Žilková, Anton Karabinoš, Mária Mareková, Marek Stupak
Urine is a highly complex fluorescent system, the fluorescence of which can be affected by many factors, including the often-ignored initial urine concentration in comprehensive fluorescent urine analysis. In this study, a total urine fluorescent metabolome profile (uTFMP) was created as a three-dimensional fluorescence profile of serial synchronous spectra of urine diluted by geometric progression. uTFMP was generated using software designed for this purpose after recalculating the 3D data concerning the initial urine concentration. It can be presented as a contour map (top view) or as a more illustrative and straightforward simple curve, thus usable in various medicinal applications.
{"title":"Visualization of the composition of the urinary fluorescent metabolome. Why is it important to consider initial urine concentration?","authors":"Katarína Dubayová, Anna Birková, Martin Lešo, Jaroslava Žilková, Anton Karabinoš, Mária Mareková, Marek Stupak","doi":"10.1088/2050-6120/ace512","DOIUrl":"https://doi.org/10.1088/2050-6120/ace512","url":null,"abstract":"<p><p>Urine is a highly complex fluorescent system, the fluorescence of which can be affected by many factors, including the often-ignored initial urine concentration in comprehensive fluorescent urine analysis. In this study, a total urine fluorescent metabolome profile (uTFMP) was created as a three-dimensional fluorescence profile of serial synchronous spectra of urine diluted by geometric progression. uTFMP was generated using software designed for this purpose after recalculating the 3D data concerning the initial urine concentration. It can be presented as a contour map (top view) or as a more illustrative and straightforward simple curve, thus usable in various medicinal applications.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometry in vitro, it is presently challenging to precisely quantify this property in vivo, especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.
{"title":"Quasi-equilibrium state based quantification of biological macromolecules in single-molecule localization microscopy","authors":"Xuecheng Chen, Yaqian Li, Xiaowei Li, Jielin Sun, D. Czajkowsky, Zhifeng Shao","doi":"10.1101/2023.07.17.549270","DOIUrl":"https://doi.org/10.1101/2023.07.17.549270","url":null,"abstract":"The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometry in vitro, it is presently challenging to precisely quantify this property in vivo, especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47048495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present work investigated the influence of different halides on the excited state dynamics of 6-methoxyflavone (6MF) in an aqueous solution with steady-state and time-resolved techniques. On successive addition of I-and Br-ions, the fluorescence of 6MF quenched significantly, whereas the respective ions do not change the maximum fluorescence band. Fluorescence of 6MF was quenched 66% by I-ions and 34% by Br-ions. In a pure aqueous medium, both the H-bonded: CT and protonated species of 6MF participate in the quenching of fluorescence. The quenching process was categorized by Stern-Volmer (S-V) and Lehrer equations. Quenching parameters such as KSV, KSV-Land kqwere higher for I-ions than Br-ions. The decrease in fluorescence intensity and a reduction in fluorescence lifetime suggested the dynamic nature of quenching by I-ions following the electron transfer mechanism. Fluorescence quenching of 6MF has also been observed in the acidic medium in the presence of different halides. Thus, the study reveals that 6MF is responsive towards I-ions in a wide range of pH, specifically in a purely aqueous environment (pH∼7), hence important for sensing/detection applications.
{"title":"Excited-state properties of 6-methoxyflavone in the presence of halide ions in aqueous media.","authors":"Nisha Fatma, Sanjay Pant, Nupur Pandey, Mohan Singh Mehata","doi":"10.1088/2050-6120/ace152","DOIUrl":"https://doi.org/10.1088/2050-6120/ace152","url":null,"abstract":"<p><p>The present work investigated the influence of different halides on the excited state dynamics of 6-methoxyflavone (6MF) in an aqueous solution with steady-state and time-resolved techniques. On successive addition of I<sup>-</sup>and Br<sup>-</sup>ions, the fluorescence of 6MF quenched significantly, whereas the respective ions do not change the maximum fluorescence band. Fluorescence of 6MF was quenched 66% by I<sup>-</sup>ions and 34% by Br<sup>-</sup>ions. In a pure aqueous medium, both the H-bonded: CT and protonated species of 6MF participate in the quenching of fluorescence. The quenching process was categorized by Stern-Volmer (S-V) and Lehrer equations. Quenching parameters such as K<sub>SV</sub>, K<sub>SV-L</sub>and k<sub>q</sub>were higher for I<sup>-</sup>ions than Br<sup>-</sup>ions. The decrease in fluorescence intensity and a reduction in fluorescence lifetime suggested the dynamic nature of quenching by I<sup>-</sup>ions following the electron transfer mechanism. Fluorescence quenching of 6MF has also been observed in the acidic medium in the presence of different halides. Thus, the study reveals that 6MF is responsive towards I<sup>-</sup>ions in a wide range of pH, specifically in a purely aqueous environment (pH∼7), hence important for sensing/detection applications.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}