Pub Date : 2024-07-26DOI: 10.1088/2050-6120/ad63f5
Parvez Alam, Ndege Simisi Clovis, Ajay Kumar Chand, Mohammad Firoz Khan, Sobhan Sen
Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.
{"title":"Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy.","authors":"Parvez Alam, Ndege Simisi Clovis, Ajay Kumar Chand, Mohammad Firoz Khan, Sobhan Sen","doi":"10.1088/2050-6120/ad63f5","DOIUrl":"10.1088/2050-6120/ad63f5","url":null,"abstract":"<p><p>Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1088/2050-6120/ad5e5b
Bong Lee, Luca Ceresa, Danh Pham, Joseph Kimball, Emma Alexander, Xuan Ye, Ignacy Gryczynski, Zygmunt Gryczynski
Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices forin situchemical and biological species analysis in both industrial and biomedicalin vitro/in vivodetection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.
{"title":"Fiber-optics based fluorescence detection. Part I: Basic concepts.","authors":"Bong Lee, Luca Ceresa, Danh Pham, Joseph Kimball, Emma Alexander, Xuan Ye, Ignacy Gryczynski, Zygmunt Gryczynski","doi":"10.1088/2050-6120/ad5e5b","DOIUrl":"10.1088/2050-6120/ad5e5b","url":null,"abstract":"<p><p>Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices for<i>in situ</i>chemical and biological species analysis in both industrial and biomedical<i>in vitro</i>/<i>in vivo</i>detection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1088/2050-6120/ad5415
Frank B Peters, Andreas O Rapp
This technical note presents a device to diminish scattering signal in front-face fluorescence spectra while obtaining fluorescence signal. The beam path in a commercial fluorescence spectrometer was modified by two deflecting mirrors, leading reflections away from the sensor. This light path modifying (LPM) device was tested with two fluid and three solid substances, where the scattering-to-fluorescence ratio improved by a factor of 1.7 to 7.6. The spectra obtained with the LPM were much clearer, and distortion of the fluorescence peaks was avoided. Scans of quinine sulphate complied well with reference spectra.
{"title":"A simple light path modifying device to reduce scattering in front-face fluorescence spectra.","authors":"Frank B Peters, Andreas O Rapp","doi":"10.1088/2050-6120/ad5415","DOIUrl":"10.1088/2050-6120/ad5415","url":null,"abstract":"<p><p>This technical note presents a device to diminish scattering signal in front-face fluorescence spectra while obtaining fluorescence signal. The beam path in a commercial fluorescence spectrometer was modified by two deflecting mirrors, leading reflections away from the sensor. This light path modifying (LPM) device was tested with two fluid and three solid substances, where the scattering-to-fluorescence ratio improved by a factor of 1.7 to 7.6. The spectra obtained with the LPM were much clearer, and distortion of the fluorescence peaks was avoided. Scans of quinine sulphate complied well with reference spectra.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1088/2050-6120/ad5490
Panpan Chen, Zhigang Niu, Eenju Wang
Most luminophores often suffer from the problem of aggregation-caused quenching (ACQ) or fluorescence disappearance in dilute solution. It is significant to bridge the gap between ACQ and AIE. In this work, a facile but effective strategy was proposed for the fabrication of always-on luminophores based on the excited state intramolecular proton transfer (ESIPT) mechanism, and six luminophores emitting bright fluorescence in solution, aggregation and solid states were synthesized from 5-tert-butyl-2-hydroxyisophthalaldehyde. All these ESIPT systems show only keto emission owing to their congested structures which block the breakage of intramolecular hydrogen bond (O-H⋯N) by solvation, and subsequently make enol emission impossible. Three of these luminophores are prone to convert into the corresponding phenolate anions emitting blue-shifted emission, which enable them to sense pH variation in the weakly basic range. Furthermore, white-light emission was achieved by combining two of them which show complementary-color fluorescence, and one of them was utilized for bioimaging of living Hela cells and the high-resolution image was obtained.
{"title":"Bright ESIPT emission from 2,6-di(thiazol/oxazol/imidazol-2-yl)phenol derivatives in solution, aggregation and solid states.","authors":"Panpan Chen, Zhigang Niu, Eenju Wang","doi":"10.1088/2050-6120/ad5490","DOIUrl":"10.1088/2050-6120/ad5490","url":null,"abstract":"<p><p>Most luminophores often suffer from the problem of aggregation-caused quenching (ACQ) or fluorescence disappearance in dilute solution. It is significant to bridge the gap between ACQ and AIE. In this work, a facile but effective strategy was proposed for the fabrication of always-on luminophores based on the excited state intramolecular proton transfer (ESIPT) mechanism, and six luminophores emitting bright fluorescence in solution, aggregation and solid states were synthesized from 5-tert-butyl-2-hydroxyisophthalaldehyde. All these ESIPT systems show only keto emission owing to their congested structures which block the breakage of intramolecular hydrogen bond (O-H⋯N) by solvation, and subsequently make enol emission impossible. Three of these luminophores are prone to convert into the corresponding phenolate anions emitting blue-shifted emission, which enable them to sense pH variation in the weakly basic range. Furthermore, white-light emission was achieved by combining two of them which show complementary-color fluorescence, and one of them was utilized for bioimaging of living Hela cells and the high-resolution image was obtained.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1088/2050-6120/ad5075
Mohd Azam, Vineet Kumar Rai, Savidh Khan, K Singh
This paper reports the effect of incorporation of Yb3+ions on the frequency downconversion luminescence and thermal properties of triply ionised Ho3+doped zinc tellurite (TZ) glasses. The photoluminescence spectra of both the Ho3+/Yb3+doped and codoped glasses have been recorded and observed a green emission band corresponding to the5F4,5S2→5I8(∼550 nm) transition upon various excitations. In the downconversion (DC) emission process, the back energy transfer (BET) mechanism from Ho3+ions to Yb3+ions has also been explored. The colour emitted in the downconversion process is found to be non-tunable at different excitations. Thus, the Ho3+:TZ glass can be utilised for non-colour tunable optical devices under various UV excitations. Also the glass transition (Tg) and crystallisation (Tc) temperatures have been measured for both the doped and codoped glasses and found to be increased in the codoped glass. The singly Ho3+ions doped TZ glass shows better optical downconversion and glass forming ability.
{"title":"Influence of Yb<sup>3+</sup>/Ho<sup>3+</sup>codoping on optical and thermal properties of TeO<sub>2</sub>-ZnO glass.","authors":"Mohd Azam, Vineet Kumar Rai, Savidh Khan, K Singh","doi":"10.1088/2050-6120/ad5075","DOIUrl":"10.1088/2050-6120/ad5075","url":null,"abstract":"<p><p>This paper reports the effect of incorporation of Yb<sup>3+</sup>ions on the frequency downconversion luminescence and thermal properties of triply ionised Ho<sup>3+</sup>doped zinc tellurite (TZ) glasses. The photoluminescence spectra of both the Ho<sup>3+</sup>/Yb<sup>3+</sup>doped and codoped glasses have been recorded and observed a green emission band corresponding to the<sup>5</sup>F<sub>4</sub>,<sup>5</sup>S<sub>2</sub>→<sup>5</sup>I<sub>8</sub>(∼550 nm) transition upon various excitations. In the downconversion (DC) emission process, the back energy transfer (BET) mechanism from Ho<sup>3+</sup>ions to Yb<sup>3+</sup>ions has also been explored. The colour emitted in the downconversion process is found to be non-tunable at different excitations. Thus, the Ho<sup>3+</sup>:TZ glass can be utilised for non-colour tunable optical devices under various UV excitations. Also the glass transition (T<sub>g</sub>) and crystallisation (T<sub>c</sub>) temperatures have been measured for both the doped and codoped glasses and found to be increased in the codoped glass. The singly Ho<sup>3+</sup>ions doped TZ glass shows better optical downconversion and glass forming ability.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
{"title":"Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research.","authors":"Lida Aeindartehran, Zahra Sadri, Fateme Rahimi, Tahereh Alinejad","doi":"10.1088/2050-6120/ad46e6","DOIUrl":"10.1088/2050-6120/ad46e6","url":null,"abstract":"<p><p>Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blinking of fluorophores is essential in the context of single molecule localization-based optical super-resolution microscopy methods. To make the fluorescence molecule undergo blinking specific complex chemical mounting buffer systems, combined with suitable oxygen scavengers, and reducing agents are required. For instance to realise blinking in widely used fluorescence tags, like Alexa Fluor 647 (AF647), they are to be mounted on anti-fading buffer such as Mowiol and reducing agent such as Beta (β) - ME. However, the quality of the super-resolved images is decided by the total number of blinking events or in other words net duration for which the fluorescence blinking persists. In this paper we investigate how a violet and UV light induced fluorescence recovery mechanism can enhance the duration of fluorescence blinking. Our study uses AF647 dye conjugated with Phalloidin antibody in U87MG cell line mounted on Mowiol andβ- ME. On the basis of the investigation we optimize the intensity, at the sample plane, of fluorescence excitation laser at 638 nm and fluorescence recovery beam at 405 nm or in the UV giving the maximum possible fluorescence blinking duration. We observe that the longer blinking duration, using the optimized illumination scheme, has brought down the resolution in the super-resolved image, as given by Fourier Ring Correlation method, from 168 nm to 112 nm, while the separation between two nearby resolvable filaments has been brought down to ≤ 60 nm.
{"title":"Enhanced fluorescence blinking of AF647 fluorophores in Mowiol via violet and UV light induced recovery for superior localization microscopy.","authors":"Anupam Bharadwaj, Amalesh Kumar, Rumela Mitra, Bithiah Grace Jaganathan, Bosanta R Boruah","doi":"10.1088/2050-6120/ad4ae6","DOIUrl":"10.1088/2050-6120/ad4ae6","url":null,"abstract":"<p><p>Blinking of fluorophores is essential in the context of single molecule localization-based optical super-resolution microscopy methods. To make the fluorescence molecule undergo blinking specific complex chemical mounting buffer systems, combined with suitable oxygen scavengers, and reducing agents are required. For instance to realise blinking in widely used fluorescence tags, like Alexa Fluor 647 (AF647), they are to be mounted on anti-fading buffer such as Mowiol and reducing agent such as Beta (<i>β</i>) - ME. However, the quality of the super-resolved images is decided by the total number of blinking events or in other words net duration for which the fluorescence blinking persists. In this paper we investigate how a violet and UV light induced fluorescence recovery mechanism can enhance the duration of fluorescence blinking. Our study uses AF647 dye conjugated with Phalloidin antibody in U87MG cell line mounted on Mowiol and<i>β</i>- ME. On the basis of the investigation we optimize the intensity, at the sample plane, of fluorescence excitation laser at 638 nm and fluorescence recovery beam at 405 nm or in the UV giving the maximum possible fluorescence blinking duration. We observe that the longer blinking duration, using the optimized illumination scheme, has brought down the resolution in the super-resolved image, as given by Fourier Ring Correlation method, from 168 nm to 112 nm, while the separation between two nearby resolvable filaments has been brought down to ≤ 60 nm.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1088/2050-6120/ad444b
H C S Perera, B Ford, G Das, F Balembois, J Sathian
In the past, there were limited efforts to use light-emitting diodes (LEDs) for pumping solid-state lasers. However, these attempts were overshadowed by the introduction of laser diodes, which offered more favourable pumping conditions. Nevertheless, recent advancements in high-power LEDs, coupled with the utilization of luminescent concentrators (LC), have paved the way for a novel approach to pump solid-state lasers. The combination of LEDs and LC in this LED-LC system presents several advantages, including enhanced ruggedness, stability, and cost-effectiveness compared to other laser pumping methods. This review explores the various techniques employed to pump solid-state lasers using LED-LC as a pump source, along with improvements made to enhance the brightness of LEDs in this context.
过去,使用发光二极管(LED)为固态激光器提供泵浦的尝试十分有限。然而,由于激光二极管的出现,这些尝试都黯然失色,因为激光二极管提供了更有利的泵浦条件。不过,最近在大功率发光二极管方面取得的进展,加上发光聚光器(LC)的使用,为采用新方法泵浦固体激光器铺平了道路。与其他激光泵浦方法相比,这种 LED-LC 系统中 LED 与 LC 的结合具有多种优势,包括更坚固耐用、更稳定和更具成本效益。本综述探讨了使用 LED-LC 作为泵浦源为固体激光器提供泵浦的各种技术,以及在此背景下为提高 LED 亮度而做出的改进。
{"title":"Exploring light-emitting diode pumped luminescent concentrators in solid-state laser applications.","authors":"H C S Perera, B Ford, G Das, F Balembois, J Sathian","doi":"10.1088/2050-6120/ad444b","DOIUrl":"10.1088/2050-6120/ad444b","url":null,"abstract":"<p><p>In the past, there were limited efforts to use light-emitting diodes (LEDs) for pumping solid-state lasers. However, these attempts were overshadowed by the introduction of laser diodes, which offered more favourable pumping conditions. Nevertheless, recent advancements in high-power LEDs, coupled with the utilization of luminescent concentrators (LC), have paved the way for a novel approach to pump solid-state lasers. The combination of LEDs and LC in this LED-LC system presents several advantages, including enhanced ruggedness, stability, and cost-effectiveness compared to other laser pumping methods. This review explores the various techniques employed to pump solid-state lasers using LED-LC as a pump source, along with improvements made to enhance the brightness of LEDs in this context.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, we synthesized and constructed a novel gelator (named QN) combining quinoline and naphthalene that self-assembled in N, N-dimethylformamide (DMF) to form a stable supramolecular gel (named OQN). Under UV light, gel OQN exhibited extremely bright yellow fluorescence. The gel OQN showed excellent sensing performance for both Fe3+ and Cu2+, with a fluorescence ‘turn-off’ detection mechanism and the lowest detection limit of 7.58 × 10−8 M and 1.51 × 10−8 M, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, x-ray powder diffraction (XRD), rheological measurements, x-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy were used to characterize the gel OQN. The OQN ion-responsive membrane created is an excellent fluorescent writing material.
{"title":"A quinoline derivative-based supramolecular gel for fluorescence ‘turn-off’ detection of Fe3+ and Cu2+","authors":"Shuaishuai Fu, Shang Wu, Jutao Liu, Jiajia Wang, Shuo Tian, Guangwu Zhang, Fenping Yin, Yuzhi Sun, Ping Zhang and Quanlu Yang","doi":"10.1088/2050-6120/ad4232","DOIUrl":"https://doi.org/10.1088/2050-6120/ad4232","url":null,"abstract":"In this research, we synthesized and constructed a novel gelator (named QN) combining quinoline and naphthalene that self-assembled in N, N-dimethylformamide (DMF) to form a stable supramolecular gel (named OQN). Under UV light, gel OQN exhibited extremely bright yellow fluorescence. The gel OQN showed excellent sensing performance for both Fe3+ and Cu2+, with a fluorescence ‘turn-off’ detection mechanism and the lowest detection limit of 7.58 × 10−8 M and 1.51 × 10−8 M, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, x-ray powder diffraction (XRD), rheological measurements, x-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy were used to characterize the gel OQN. The OQN ion-responsive membrane created is an excellent fluorescent writing material.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"17 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1088/2050-6120/ad388f
Yang Xu, Lili Sun, Kenneth P Ghiggino, Trevor A Smith
The alignment of chromophores plays a crucial role in determining the optoelectronic properties of materials. Such alignment can make interpretation of fluorescence anisotropy microscopy (FAM) images somewhat ambiguous. The time-resolved emission behaviour can also influence the fluorescence anisotropy. This is particularly the case when probing excitation energy migration between chromophores in a condensed phase. Ideally information concerning the chromophoric alignment, emission decay kinetics and fluorescence anisotropy can be recorded and correlated. We report on the use of polarised transmission imaging (PTI) coupled with both steady-state and time-resolved FAM to enable accurate identification of chromophoric alignment and morphology in thin films of a conjugated polydiarylfluorene. We show that the combination of these three imaging modes presents a comprehensive methodology for investigating the alignment and morphology of chromophores in thin films, particularly for accurately mapping the distribution of amorphous and crystalline phases within the thin films, offering valuable insights for the design and optimization of materials with enhanced optoelectronic performance.
{"title":"Resolving conjugated polymer film morphology with polarised transmission and time-resolved emission microscopy.","authors":"Yang Xu, Lili Sun, Kenneth P Ghiggino, Trevor A Smith","doi":"10.1088/2050-6120/ad388f","DOIUrl":"10.1088/2050-6120/ad388f","url":null,"abstract":"<p><p>The alignment of chromophores plays a crucial role in determining the optoelectronic properties of materials. Such alignment can make interpretation of fluorescence anisotropy microscopy (FAM) images somewhat ambiguous. The time-resolved emission behaviour can also influence the fluorescence anisotropy. This is particularly the case when probing excitation energy migration between chromophores in a condensed phase. Ideally information concerning the chromophoric alignment, emission decay kinetics and fluorescence anisotropy can be recorded and correlated. We report on the use of polarised transmission imaging (PTI) coupled with both steady-state and time-resolved FAM to enable accurate identification of chromophoric alignment and morphology in thin films of a conjugated polydiarylfluorene. We show that the combination of these three imaging modes presents a comprehensive methodology for investigating the alignment and morphology of chromophores in thin films, particularly for accurately mapping the distribution of amorphous and crystalline phases within the thin films, offering valuable insights for the design and optimization of materials with enhanced optoelectronic performance.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}