This work describes the relationship between the complex of photosystem I and photosystem II in the senescence process of rice leaves observed through changes in the optical response. We studied three varieties of rice plants at different aging times using time-resolved photoluminescence to measure the time decay of the emission, and stationary photoluminescence, to measure the emission wavelength. The spectra obtained with the former technique were fitted with decreasing exponential functions. Two relaxation times were obtained, one ranging between 1.0 and 1.7 ns, and the other, from 5.0 to 10.5 ns. They are associated with the electron's deexcitation of PSI and PSII, respectively, and these decay times increase as the leaf senescence process takes place. The spectra obtained with stationary photoluminescence were fitted with Voigt functions. These spectra exhibit two main peaks around 683 and 730 nm, which could be associated mainly with PSII and PSI emissions, respectively. The PSI de-excitation exhibits higher dispersive processes because chlorophyll-a molecules in it move away from each other, decreasing their concentration. Therefore, it takes longer for electrons to recombine during photosynthesis, as seen in the time-resolve response. Articulating the results of both photoluminescence techniques, the changes in the response of the photosystems of the living rice leaves during senescence are evidenced.
{"title":"Study of the senescence of rice leaves through stationary and time-resolved photoluminescence.","authors":"Gerardo Fonthal, Liliana Tirado-Mejía, Luz Angela Giraldo-Pinto","doi":"10.1088/2050-6120/acda7b","DOIUrl":"https://doi.org/10.1088/2050-6120/acda7b","url":null,"abstract":"<p><p>This work describes the relationship between the complex of photosystem I and photosystem II in the senescence process of rice leaves observed through changes in the optical response. We studied three varieties of rice plants at different aging times using time-resolved photoluminescence to measure the time decay of the emission, and stationary photoluminescence, to measure the emission wavelength. The spectra obtained with the former technique were fitted with decreasing exponential functions. Two relaxation times were obtained, one ranging between 1.0 and 1.7 ns, and the other, from 5.0 to 10.5 ns. They are associated with the electron's deexcitation of PSI and PSII, respectively, and these decay times increase as the leaf senescence process takes place. The spectra obtained with stationary photoluminescence were fitted with Voigt functions. These spectra exhibit two main peaks around 683 and 730 nm, which could be associated mainly with PSII and PSI emissions, respectively. The PSI de-excitation exhibits higher dispersive processes because chlorophyll-a molecules in it move away from each other, decreasing their concentration. Therefore, it takes longer for electrons to recombine during photosynthesis, as seen in the time-resolve response. Articulating the results of both photoluminescence techniques, the changes in the response of the photosystems of the living rice leaves during senescence are evidenced.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9616049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-30DOI: 10.1088/2050-6120/acd837
Ross Birch, Jochen Bruckbauer, Marta Gajewska, Grzegorz Cios, Robert Pal, Lewis E MacKenzie
Polyvinylpyrrolidone (PVP) can be used to produce upconversion nanoparticles (UCNPs) in an advantageous manner, i.e. at modest temperatures in open-to-air conditions with simple hotplate and flask apparatus. However, the influence of PVP parameters on the formation of UCNPs has not been previously investigated. In this exploratory study, we establish that PVP molecular weight and relative amount of PVP can greatly influence the morphology and diameter of NaYF4:Yb,Er UCNPs produced via the PVP-assisted route. At nominal amounts of PVP, varying the molecular weight of PVP in synthesis between 10,000 g mol-1(PVP10), 40,000 g mol-1(PVP40), and 55,000 g mol-1(PVP55), had minimal effect on UCNP morphology, whereas reducing the quantity of PVP10 and PVP40 in the reaction to 10% of the nominal amount resulted in two notable effects: (1) the generation of a greater range of UCNP diameters and (2) the production of an unexpected sub-population of rhombus-shaped UCNPs. Bulk and individual nanoparticle analysis indicates that all UCNP morphologies were cubic (α-phase) crystal structure and consisted of NaYF4:Yb,Er. Optical emission properties exhibited only modest green and red luminescence emission ratio when PVP parameters were varied. However, separately produced PVP40 NaYF4:Yb,Tm UCNPs exhibited a much more intense and dual-band blue/red emission. This exploratory work demonstrates that tailoring PVP content in synthesis of UCNPs can greatly alter morphology of UCNPs produced and should be carefully considered in experimental design. However, the underlying mechanisms of action of the role PVP plays in this synthesis remain unclear. Ultimately, significant further work is still required to fully elucidate the relevant chemistry to achieve full control of PVP-UCNP synthesis.
聚乙烯吡咯烷酮(PVP)可以以一种有利的方式生产上转化纳米颗粒(UCNPs),即在简单的热板和烧瓶装置的露天条件下,在适当的温度下。然而,PVP参数对UCNPs形成的影响尚未被研究过。在本探索性研究中,我们发现PVP的分子量和PVP的相对量对PVP辅助途径产生的NaYF4:Yb,Er UCNPs的形态和直径有很大的影响。在PVP的标称量下,PVP的合成分子量在10000 g mol-1(PVP10)、40000 g mol-1(PVP40)和55000 g mol-1(PVP55)之间变化,对UCNP形态的影响很小,而将反应中PVP10和PVP40的量减少到标称量的10%,会产生两个显著的影响:1)产生更大范围的UCNP直径;2)产生意想不到的菱形UCNP亚群。整体和单个纳米颗粒分析表明,所有UCNP形貌均为立方(α-相)晶体结构,由NaYF4:Yb,Er组成。当PVP参数变化时,光发射性能仅表现出适度的绿色和红色发光比。然而,单独制备的PVP40 NaYF4:Yb,Tm UCNPs表现出更强烈的双波段蓝/红发射。这项探索性工作表明,在合成UCNPs时调整PVP含量可以极大地改变所产生的UCNPs的形态,在实验设计中应该仔细考虑。然而,PVP在这一合成过程中所起作用的潜在机制尚不清楚。最终,为了实现对PVP-UCNP合成的完全控制,还需要大量的进一步工作来充分阐明相关的化学反应。
{"title":"Influence of polyvinylpyrrolidone (PVP) in the synthesis of luminescent NaYF<sub>4</sub>:Yb,Er upconversion nanoparticles.","authors":"Ross Birch, Jochen Bruckbauer, Marta Gajewska, Grzegorz Cios, Robert Pal, Lewis E MacKenzie","doi":"10.1088/2050-6120/acd837","DOIUrl":"https://doi.org/10.1088/2050-6120/acd837","url":null,"abstract":"<p><p>Polyvinylpyrrolidone (PVP) can be used to produce upconversion nanoparticles (UCNPs) in an advantageous manner, i.e. at modest temperatures in open-to-air conditions with simple hotplate and flask apparatus. However, the influence of PVP parameters on the formation of UCNPs has not been previously investigated. In this exploratory study, we establish that PVP molecular weight and relative amount of PVP can greatly influence the morphology and diameter of NaYF<sub>4</sub>:Yb,Er UCNPs produced via the PVP-assisted route. At nominal amounts of PVP, varying the molecular weight of PVP in synthesis between 10,000 g mol<sup>-1</sup>(PVP10), 40,000 g mol<sup>-1</sup>(PVP40), and 55,000 g mol<sup>-1</sup>(PVP55), had minimal effect on UCNP morphology, whereas reducing the quantity of PVP10 and PVP40 in the reaction to 10% of the nominal amount resulted in two notable effects: (1) the generation of a greater range of UCNP diameters and (2) the production of an unexpected sub-population of rhombus-shaped UCNPs. Bulk and individual nanoparticle analysis indicates that all UCNP morphologies were cubic (<i>α</i>-phase) crystal structure and consisted of NaYF<sub>4</sub>:Yb,Er. Optical emission properties exhibited only modest green and red luminescence emission ratio when PVP parameters were varied. However, separately produced PVP40 NaYF<sub>4</sub>:Yb,Tm UCNPs exhibited a much more intense and dual-band blue/red emission. This exploratory work demonstrates that tailoring PVP content in synthesis of UCNPs can greatly alter morphology of UCNPs produced and should be carefully considered in experimental design. However, the underlying mechanisms of action of the role PVP plays in this synthesis remain unclear. Ultimately, significant further work is still required to fully elucidate the relevant chemistry to achieve full control of PVP-UCNP synthesis.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9537912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1088/2050-6120/accfe4
Kapil Dev Mahato, Uday Kumar
Two different pairs of laser dyes, Rhodamine-110 (Rh-110)/Rhodamine-6G (Rh-6G) and Rhodamine-19 (Rh-19)/Rhodamine-B (Rh-B) (the first dye in each pair as a donor and the second as an acceptor) were impregnated in silica samples prepared by the sol-gel method and spectroscopically studied using absorption and steady-state fluorescence techniques. The critical transfer distance (R0), actual distance (r) between the donor and acceptor, overlap integral [J(υ¯)], FRET (fluorescence resonance energy transfer) efficiency (E), and antenna effect efficiency (AE) were investigated in detail based on the variation in acceptor concentration. The FRET efficiency, antenna effect efficiency, and actual donor-acceptor distance for Rh-110/Rh-6G and Rh-19/Rh-B dye pairs corresponding to acceptor concentration ranges (3.83 to 7.65) × 10-5M l-1and (3.71 to 8.34) × 10-5M l-1, respectively, were found to be in the ranges of 57.38% to 74.89%, 36.97% to 24.13%, 5.44 nm to 4.77 nm, and 77.01%. Furthermore, maximum FRET efficiencies of 85.68% and 87.63% and antenna effect efficiencies of 36.97% and 40.95% for Rh-110/Rh-6G and Rh-19/Rh-B, respectively, were also reported. Our results demonstrate the superior FRET efficiency of Rh-19/Rh-B over Rh-110/Rh-6G dye pair in sol-gel glasses, while the antenna effect efficiency of Rh-110/Rh-6G is higher than that of Rh-19/Rh-B for the same donor to acceptor (D/A) ratio. Finally, Rh-110/Rh-6G is a better energy harvester than the Rh-19/Rh-B dye pair at the common D/A ratio. These results are explained in terms of molecular structure similarity, polarity, and rigidity of donor and acceptor.
{"title":"A comparative study of conventional FRET and light harvesting properties of Rh-110/Rh-6G and Rh-19/Rh-B organic dye pairs impregnated in sol-gel glasses.","authors":"Kapil Dev Mahato, Uday Kumar","doi":"10.1088/2050-6120/accfe4","DOIUrl":"https://doi.org/10.1088/2050-6120/accfe4","url":null,"abstract":"<p><p>Two different pairs of laser dyes, Rhodamine-110 (Rh-110)/Rhodamine-6G (Rh-6G) and Rhodamine-19 (Rh-19)/Rhodamine-B (Rh-B) (the first dye in each pair as a donor and the second as an acceptor) were impregnated in silica samples prepared by the sol-gel method and spectroscopically studied using absorption and steady-state fluorescence techniques. The critical transfer distance (R<sub>0</sub>), actual distance (r) between the donor and acceptor, overlap integral [J(υ¯)], FRET (fluorescence resonance energy transfer) efficiency (E), and antenna effect efficiency (AE) were investigated in detail based on the variation in acceptor concentration. The FRET efficiency, antenna effect efficiency, and actual donor-acceptor distance for Rh-110/Rh-6G and Rh-19/Rh-B dye pairs corresponding to acceptor concentration ranges (3.83 to 7.65) × 10<sup>-5</sup>M l<sup>-1</sup>and (3.71 to 8.34) × 10<sup>-5</sup>M l<sup>-1</sup>, respectively, were found to be in the ranges of 57.38% to 74.89%, 36.97% to 24.13%, 5.44 nm to 4.77 nm, and 77.01%. Furthermore, maximum FRET efficiencies of 85.68% and 87.63% and antenna effect efficiencies of 36.97% and 40.95% for Rh-110/Rh-6G and Rh-19/Rh-B, respectively, were also reported. Our results demonstrate the superior FRET efficiency of Rh-19/Rh-B over Rh-110/Rh-6G dye pair in sol-gel glasses, while the antenna effect efficiency of Rh-110/Rh-6G is higher than that of Rh-19/Rh-B for the same donor to acceptor (D/A) ratio. Finally, Rh-110/Rh-6G is a better energy harvester than the Rh-19/Rh-B dye pair at the common D/A ratio. These results are explained in terms of molecular structure similarity, polarity, and rigidity of donor and acceptor.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-21DOI: 10.1088/2050-6120/acc714
Alexander Demchenko
The wavelength-ratiometric techniques gain increasing popularity in fluorescence probing and sensing for providing inner reference to output signal and removing instrumental artefacts, in this way increasing the sensitivity and reliability of assays. Recent developments demonstrate that such approach can allow achieving much more, with the application of broad range of novel molecular and nanoscale fluorophores (luminophores), exploring the whole power of photophysical and photochemical effects and using extended range of assay formats. Simplicity of detection and potentially rich content of output data allows realizing these techniques in different simplified, miniaturized and multiplexing devices. The latter issues are discussed in Pt. II of these series.
{"title":"Dual emission and its<i>λ</i>-ratiometric detection in analytical fluorimetry. Pt. I. Basic mechanisms of generating the reporter signal.","authors":"Alexander Demchenko","doi":"10.1088/2050-6120/acc714","DOIUrl":"https://doi.org/10.1088/2050-6120/acc714","url":null,"abstract":"<p><p>The wavelength-ratiometric techniques gain increasing popularity in fluorescence probing and sensing for providing inner reference to output signal and removing instrumental artefacts, in this way increasing the sensitivity and reliability of assays. Recent developments demonstrate that such approach can allow achieving much more, with the application of broad range of novel molecular and nanoscale fluorophores (luminophores), exploring the whole power of photophysical and photochemical effects and using extended range of assay formats. Simplicity of detection and potentially rich content of output data allows realizing these techniques in different simplified, miniaturized and multiplexing devices. The latter issues are discussed in Pt. II of these series.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9337002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-20DOI: 10.1088/2050-6120/acca62
Dentcho A Genov
The problem of enhanced molecular emission in close proximity to dielectric and metallic interfaces is of great importance for many physical and biological applications. Here we present an exact treatment of the problem from the view point of classical electromagnetism. Self-consistent analytical theory of the surface enhanced fluorescence (SEF) is developed for configurations consisting of an emitter in proximity to core-shell metal-dielectric nanoparticles. The dependence of the fluorescence enhancement on the excitation laser and fluorescence frequencies and distance of the emitter to the nanoparticle interface are studied. The developed theory predicts enhanced fluorescence at intermediate distances as well as emission quenching into non-radiative surface plasmon (SP) modes dominating the response for short distances. The conditions for optimal emission enhancement for two core-shell configurations are determined and a comparison to published experimental data is performed showing a good correspondence between theory and experiment. The developed model can be applied toward analyzes and optimizations of various applications related to SP enhance fluorescence spectroscopy.
{"title":"Surface plasmon enhanced fluorescence: self-consistent classical treatment in the quasi-static limit.","authors":"Dentcho A Genov","doi":"10.1088/2050-6120/acca62","DOIUrl":"https://doi.org/10.1088/2050-6120/acca62","url":null,"abstract":"<p><p>The problem of enhanced molecular emission in close proximity to dielectric and metallic interfaces is of great importance for many physical and biological applications. Here we present an exact treatment of the problem from the view point of classical electromagnetism. Self-consistent analytical theory of the surface enhanced fluorescence (SEF) is developed for configurations consisting of an emitter in proximity to core-shell metal-dielectric nanoparticles. The dependence of the fluorescence enhancement on the excitation laser and fluorescence frequencies and distance of the emitter to the nanoparticle interface are studied. The developed theory predicts enhanced fluorescence at intermediate distances as well as emission quenching into non-radiative surface plasmon (SP) modes dominating the response for short distances. The conditions for optimal emission enhancement for two core-shell configurations are determined and a comparison to published experimental data is performed showing a good correspondence between theory and experiment. The developed model can be applied toward analyzes and optimizations of various applications related to SP enhance fluorescence spectroscopy.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1088/2050-6120/acc715
Alexander P Demchenko
The wavelength-ratiometric techniques demonstrate strong advantages in fluorescence sensing and imaging over techniques employing variations of intensity at single wavelength. We present different possibilities for realization of these advantages in different simplified, miniaturized and multiplexing devices. They include the smartphone-based detection systems and strips, in which the color changes are observed with naked eye. The array-based techniques and different immunoassays withλ-ratiometric detection demonstrate strongly increased stability and sensitivity. The application areas extend from on-site monitoring of environment and point-of-care diagnostics to testing in personal need. Selected examples of sensing different analytes in chemical and biological systems demonstrate multiple possibilities of coupling the analyte-sensor interaction with the generation ofλ-ratiometric output signal. Among them, simultaneous detection of several analytes and performing logical operations that can be useful in analysis. Finally, the benefits of multicolor ratiometric fluorescence imaging are demonstrated by visualization the functionally important parameters of biological membranes.
{"title":"Dual emission and its<i>λ</i>-ratiometric detection in analytical fluorimetry Pt. II. Exploration in sensing and imaging.","authors":"Alexander P Demchenko","doi":"10.1088/2050-6120/acc715","DOIUrl":"https://doi.org/10.1088/2050-6120/acc715","url":null,"abstract":"<p><p>The wavelength-ratiometric techniques demonstrate strong advantages in fluorescence sensing and imaging over techniques employing variations of intensity at single wavelength. We present different possibilities for realization of these advantages in different simplified, miniaturized and multiplexing devices. They include the smartphone-based detection systems and strips, in which the color changes are observed with naked eye. The array-based techniques and different immunoassays with<i>λ</i>-ratiometric detection demonstrate strongly increased stability and sensitivity. The application areas extend from on-site monitoring of environment and point-of-care diagnostics to testing in personal need. Selected examples of sensing different analytes in chemical and biological systems demonstrate multiple possibilities of coupling the analyte-sensor interaction with the generation of<i>λ</i>-ratiometric output signal. Among them, simultaneous detection of several analytes and performing logical operations that can be useful in analysis. Finally, the benefits of multicolor ratiometric fluorescence imaging are demonstrated by visualization the functionally important parameters of biological membranes.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9377952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-14DOI: 10.1088/2050-6120/acca63
David Nobis, Henry G Sansom, Steven W Magennis
{"title":"Corrigendum: Pulse-shaped broadband multiphoton excitation for single-molecule fluorescence detection in the far field (2023<i>Methods Appl. Fluoresc.</i><b>11</b>017001).","authors":"David Nobis, Henry G Sansom, Steven W Magennis","doi":"10.1088/2050-6120/acca63","DOIUrl":"https://doi.org/10.1088/2050-6120/acca63","url":null,"abstract":"","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9287462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, tetracyclines (TCs) is a hot research topic. Herein, we report an interesting discovery using the complexation of oxytetracycline and metal ions. In this study, according to the properties of Fe3O4nanoparticles (Fe3O4NPs) as a nanoenzyme, it can be used to catalyze the oxidation of KI by H2O2to produceI3-,while at the same timeI3-binds to rhodamine 6G (Rh6G) to form a conjoined particle (Rh6G ∼ I3)n, leading to a decrease in the fluorescence intensity of Rh6G. However, in the presence of TCs, Fe3O4NPs have a synergistic effect with TCs, leading to enhanced catalytic activity, as well as better selectivity compared to the activity of other reducing enzymes. Consequently,the fluorescent signal based on a resonance scattering effect between Rh6G andI3-is dependent on the concentration of TCs, thus achieving highly facile and robust detection of TCs. The limits of detection (LOD) of the method were 20 nM, 10 nM and 40 nM for oxytetracycline(OTC), tetracycline(TC) and chlortetracycline(CTC), respectively. Most importantly, the method can be successfully applied to the detection of TCs in milk, eggs, and honey. The recoveries of spiked samples ranged from 83.11 to 118.95%. Thus, a stable, hands-on strategy for the detection of TCs is proposed, which has potential applications in the field of food safety and environmental protection.
{"title":"Fluorescence quenching determination of tetracyclines based on the synergistic oxidation effect between Fe<sub>3</sub>O<sub>4</sub>nanoparticles and tetracyclines.","authors":"Shiqi Guo, Yilin Chai, Yongjun Wu, Hongchao Guo, Fei Yu, Li-E Liu, Leiliang He, Songcheng Yu, Yongmei Tian, Jia Wang, Ruiying Yang, Ningge Jian, Yilin Wang","doi":"10.1088/2050-6120/acca61","DOIUrl":"https://doi.org/10.1088/2050-6120/acca61","url":null,"abstract":"<p><p>In recent years, tetracyclines (TCs) is a hot research topic. Herein, we report an interesting discovery using the complexation of oxytetracycline and metal ions. In this study, according to the properties of Fe<sub>3</sub>O<sub>4</sub>nanoparticles (Fe<sub>3</sub>O<sub>4</sub>NPs) as a nanoenzyme, it can be used to catalyze the oxidation of KI by H<sub>2</sub>O<sub>2</sub>to produceI3-,while at the same timeI3-binds to rhodamine 6G (Rh6G) to form a conjoined particle (Rh6G ∼ I<sub>3</sub>)<sub>n</sub>, leading to a decrease in the fluorescence intensity of Rh6G. However, in the presence of TCs, Fe<sub>3</sub>O<sub>4</sub>NPs have a synergistic effect with TCs, leading to enhanced catalytic activity, as well as better selectivity compared to the activity of other reducing enzymes. Consequently,the fluorescent signal based on a resonance scattering effect between Rh6G andI3-is dependent on the concentration of TCs, thus achieving highly facile and robust detection of TCs. The limits of detection (LOD) of the method were 20 nM, 10 nM and 40 nM for oxytetracycline(OTC), tetracycline(TC) and chlortetracycline(CTC), respectively. Most importantly, the method can be successfully applied to the detection of TCs in milk, eggs, and honey. The recoveries of spiked samples ranged from 83.11 to 118.95%. Thus, a stable, hands-on strategy for the detection of TCs is proposed, which has potential applications in the field of food safety and environmental protection.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9316156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1088/2050-6120/acc716
Jose Chavez, Luca Ceresa, Emma Kitchner, Danh Pham, Zygmunt Gryczynski, Ignacy Gryczynski
Phosphorescence emission of 5,6-Benzoquinoline embedded in poly (vinyl alcohol) film has been studied at room temperature. A strong green long-lived emission was observed in films doped with 5,6-Benzoquinoline while illuminated on a UV plate. A broad phosphorescence emission spectrum is centered at about 500 nm. The phosphorescence excitation spectrum follows the absorption spectrum of 5,6-Benzoquinoline, except for a long-wavelength part, which is well beyond the absorption band. This long-wavelength part of the absorption spectrum is responsible for the forbidden S0-T1transition. The excitation at 430 nm resulted in the long-lived emission with a spectrum similar to the phosphorescence spectrum obtained with UV excitation within the absorption of 5,6-Benzoquinoline. The phosphorescence anisotropy obtained with a direct S0-T1excitation is positive, while the UV excitation is negative. In contrast to fluorescence, the phosphorescence intensity strongly depends on temperature. Phosphorescence lifetimes with UV and long-wavelength excitation are similar, with a mean value of about 0.5 s.
{"title":"Room Temperature Phosphorescence of 5,6-Benzoquinoline.","authors":"Jose Chavez, Luca Ceresa, Emma Kitchner, Danh Pham, Zygmunt Gryczynski, Ignacy Gryczynski","doi":"10.1088/2050-6120/acc716","DOIUrl":"https://doi.org/10.1088/2050-6120/acc716","url":null,"abstract":"<p><p>Phosphorescence emission of 5,6-Benzoquinoline embedded in poly (vinyl alcohol) film has been studied at room temperature. A strong green long-lived emission was observed in films doped with 5,6-Benzoquinoline while illuminated on a UV plate. A broad phosphorescence emission spectrum is centered at about 500 nm. The phosphorescence excitation spectrum follows the absorption spectrum of 5,6-Benzoquinoline, except for a long-wavelength part, which is well beyond the absorption band. This long-wavelength part of the absorption spectrum is responsible for the forbidden S<sub>0</sub>-T<sub>1</sub>transition. The excitation at 430 nm resulted in the long-lived emission with a spectrum similar to the phosphorescence spectrum obtained with UV excitation within the absorption of 5,6-Benzoquinoline. The phosphorescence anisotropy obtained with a direct S<sub>0</sub>-T<sub>1</sub>excitation is positive, while the UV excitation is negative. In contrast to fluorescence, the phosphorescence intensity strongly depends on temperature. Phosphorescence lifetimes with UV and long-wavelength excitation are similar, with a mean value of about 0.5 s.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.1088/2050-6120/acc009
Shaiju S Nazeer, Ariya Saraswathy, Nirmala Nimi, Elangovan Sarathkumar, A N Resmi, Sachin J Shenoy, Ramapurath S Jayasree
Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablein vivofluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performedin vivoin rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.
{"title":"Fluorescent carbon dots tailored iron oxide nano hybrid system for<i>in vivo</i>optical imaging of liver fibrosis.","authors":"Shaiju S Nazeer, Ariya Saraswathy, Nirmala Nimi, Elangovan Sarathkumar, A N Resmi, Sachin J Shenoy, Ramapurath S Jayasree","doi":"10.1088/2050-6120/acc009","DOIUrl":"https://doi.org/10.1088/2050-6120/acc009","url":null,"abstract":"<p><p>Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enable<i>in vivo</i>fluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performed<i>in vivo</i>in rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":"11 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10311824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}