Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2024.107208
Peike Wang , Yali Zeng , Jinbo Liu , Lin Wang , Min Yang , Jian Zhou
The formation of biofilms enhances bacterial antibiotic resistance, posing significant challenges to clinical treatment. Methicillin-resistant Staphylococcus aureus (MRSA) is a primary pathogen in biofilm-associated infections. Its high antibiotic resistance and incidence rates make it a major clinical challenge, underscoring the urgent need for novel therapeutic strategies. Building on previous research, this study employs nanotechnology to fabricate dihydroartemisinin-chitosan nanoparticles (DHA-CS NPs) and, for the first time, applies them to the treatment of MRSA biofilm infections. The antibacterial and anti-biofilm activities of these compounds were evaluated, and their potential mechanisms of action were preliminarily explored. The results demonstrated that the DHA-CS NPs exhibited a minimum inhibitory concentration (MIC) of15 μg/mLand a minimum bactericidal concentration (MBC) of 30 μg/mL. At 15 μg/mL, the DHA-CS NPs significantly inhibited MRSA biofilm formation (P < 0.001),while at 7.5 μg/mL, they dispersed 67.4 ± 3.77 % of the preformed biofilms (P < 0.001). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed the disruption of MRSA biofilms. Mechanistic studies, including phenol-sulfuric acid assays, static biofilm microtiter plate assays, and RT-qPCR, revealed that the DHA-CS NPs inhibited the synthesis of extracellular polymeric substances (EPS), suppressed the release of extracellular DNA (eDNA), and downregulated key biofilm-related genes (icaA, sarA, cidA, and agrA). These findings suggest that DHA-CS NPs hold significant promise for inhibiting and eradicating MRSA biofilms, providing a theoretical basis for the development of novel antibiofilm therapies.
{"title":"Antimicrobial and anti-biofilm effects of dihydroartemisinin-loaded chitosan nanoparticles against methicillin-resistant Staphylococcus aureus","authors":"Peike Wang , Yali Zeng , Jinbo Liu , Lin Wang , Min Yang , Jian Zhou","doi":"10.1016/j.micpath.2024.107208","DOIUrl":"10.1016/j.micpath.2024.107208","url":null,"abstract":"<div><div>The formation of biofilms enhances bacterial antibiotic resistance, posing significant challenges to clinical treatment. Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) is a primary pathogen in biofilm-associated infections. Its high antibiotic resistance and incidence rates make it a major clinical challenge, underscoring the urgent need for novel therapeutic strategies. Building on previous research, this study employs nanotechnology to fabricate dihydroartemisinin-chitosan nanoparticles (DHA-CS NPs) and, for the first time, applies them to the treatment of MRSA biofilm infections. The antibacterial and anti-biofilm activities of these compounds were evaluated, and their potential mechanisms of action were preliminarily explored. The results demonstrated that the DHA-CS NPs exhibited a minimum inhibitory concentration (MIC) of15 μg/mLand a minimum bactericidal concentration (MBC) of 30 μg/mL. At 15 μg/mL, the DHA-CS NPs significantly inhibited MRSA biofilm formation (<em>P</em> < 0.001),while at 7.5 μg/mL, they dispersed 67.4 ± 3.77 % of the preformed biofilms (<em>P</em> < 0.001). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed the disruption of MRSA biofilms. Mechanistic studies, including phenol-sulfuric acid assays, static biofilm microtiter plate assays, and RT-qPCR, revealed that the DHA-CS NPs inhibited the synthesis of extracellular polymeric substances (EPS), suppressed the release of extracellular DNA (eDNA), and downregulated key biofilm-related genes (icaA, sarA, cidA, and agrA). These findings suggest that DHA-CS NPs hold significant promise for inhibiting and eradicating MRSA biofilms, providing a theoretical basis for the development of novel antibiofilm therapies.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107208"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2025.107354
Sonia A. Soto-Rodriguez , Eduardo Quiroz-Guzman , Bruno Gomez-Gil , Rodolfo Lozano-Olvera , Karla G. Aguilar-Rendon , Juan Manuel Serrano-Hernández , Jean Pierre González-Gómez , Cristobal Chaidez
Phages vB_Pd_PDCC-1, vB_Vc_SrVc9, and vB_Vp_PvVp11 were found to be lytic against Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (AHPND) and other pathogenic vibrios. The complete genomic and biological characterization of phage vB_Vp_PvVp1 was conducted, and a cocktail of these three phages was applied to juvenile Penaeus vannamei infected with V. parahaemolyticus AHPND. Water samples collected during the challenges were analyzed using metagenomics. At the end of the experimental infection, the phage cocktail did not improve shrimp survival compared to the positive control group (infected only with bacteria). This suggests the emergence of phage-resistant V. parahaemolyticus strains. However, a significantly lower mortality rate was observed 12 h post-infection, along with a shortening of the disease course in the phage therapy treatment.
A phage-resistant strain of V. parahaemolyticus AHPND was in vitro isolated. For the first time, we report the identification of nucleotide variants in the glycosyltransferase gene of this mutant strain through genome sequencing. Although the phage cocktail was ineffective in controlling AHPND, some protective benefits of phage therapy were noted in P. vannamei during the acute phase—the most critical stage—compared to the positive control. Phage therapy decreased alpha diversity and altered the microbiota composition during the challenge, increasing V. parahaemolyticus. The Vibrio AHPND pathogen produces a potent PirAB toxin, making this disease difficult to manage. Further studies are needed to explore synergistic approaches as effective therapeutic tools.
{"title":"Phage cocktail against Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei: Genomic, biological, and pathological characterization","authors":"Sonia A. Soto-Rodriguez , Eduardo Quiroz-Guzman , Bruno Gomez-Gil , Rodolfo Lozano-Olvera , Karla G. Aguilar-Rendon , Juan Manuel Serrano-Hernández , Jean Pierre González-Gómez , Cristobal Chaidez","doi":"10.1016/j.micpath.2025.107354","DOIUrl":"10.1016/j.micpath.2025.107354","url":null,"abstract":"<div><div>Phages vB_Pd_PDCC-1, vB_Vc_SrVc9, and vB_Vp_PvVp11 were found to be lytic against <em>Vibrio parahaemolyticus</em> acute hepatopancreatic necrosis disease (AHPND) and other pathogenic vibrios. The complete genomic and biological characterization of phage vB_Vp_PvVp1 was conducted, and a cocktail of these three phages was applied to juvenile <em>Penaeus vannamei</em> infected with <em>V. parahaemolyticus</em> AHPND. Water samples collected during the challenges were analyzed using metagenomics. At the end of the experimental infection, the phage cocktail did not improve shrimp survival compared to the positive control group (infected only with bacteria). This suggests the emergence of phage-resistant <em>V. parahaemolyticus</em> strains. However, a significantly lower mortality rate was observed 12 h post-infection, along with a shortening of the disease course in the phage therapy treatment.</div><div>A phage-resistant strain of <em>V. parahaemolyticus</em> AHPND was <em>in vitro</em> isolated. For the first time, we report the identification of nucleotide variants in the glycosyltransferase gene of this mutant strain through genome sequencing. Although the phage cocktail was ineffective in controlling AHPND, some protective benefits of phage therapy were noted in <em>P. vannamei</em> during the acute phase—the most critical stage—compared to the positive control. Phage therapy decreased alpha diversity and altered the microbiota composition during the challenge, increasing <em>V. parahaemolyticus</em>. The <em>Vibrio</em> AHPND pathogen produces a potent PirAB toxin, making this disease difficult to manage. Further studies are needed to explore synergistic approaches as effective therapeutic tools.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"200 ","pages":"Article 107354"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2024.107231
Chunmei Yi, Shanshan Huang, Wenlan Zhang, Lin Guo, Tong Xia, Fayin Huang, Yijing Yan, Huhu Li, Bin Yu
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
{"title":"Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management","authors":"Chunmei Yi, Shanshan Huang, Wenlan Zhang, Lin Guo, Tong Xia, Fayin Huang, Yijing Yan, Huhu Li, Bin Yu","doi":"10.1016/j.micpath.2024.107231","DOIUrl":"10.1016/j.micpath.2024.107231","url":null,"abstract":"<div><div>Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107231"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142837761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is accumulating evidence suggesting a connection between epilepsy, a neurologic disease with recurrent seizures, and gut microbiota. This systematic review and meta-analysis explores the alterations of GM composition in patients with epilepsy.
Methods
A systematic search was conducted up to June 26, 2024, across PubMed, Scopus, Web of Science, and Embase. The study outcomes were α- and β-diversity indexes, and relative abundance at different bacterial taxonomic levels, compared between epilepsy patients and healthy controls. Inverse variance-weighted meta-analysis was performed to estimate the standardized mean difference. We utilized the Newcastle-Ottawa Scale (NOS) to assess the quality of the included studies.
Results
In this systematic review, we included 16 case-control studies encompassing 438 cases and 369 controls, and 12 studies were included in the meta-analyses. α-diversity was not significantly different between epilepsy and control group. Of the 11 studies measuring β-diversity, 8 studies showed that the microbiota compositions of the two groups differed significantly. Verrucomicrobia was significantly higher in the epilepsy group (SMD = 0.39 [0.05, 0.72], p = 0.022) than in the control group. At the genus level, Roseburia (SMD = −0.50 [-0.84, −0.17], p = 0.003), Blautia (SMD = −0.40 [-0.73, −0.06], p = 0.022), and Dialister (SMD = −0.40 [-0.74, −0.07], p = 0.018) were significantly less abundant in patients with epilepsy.
Conclusions
Our findings evince remarkable changes in gut microbiota composition in epilepsy. Bacterial genera that promote neuroinflammation are elevated in epilepsy. Our study revealed the interrelation between GM disruption and epileptogenesis, but the heterogeneity among the included results was high, and further investigation is encouraged.
{"title":"The alteration of gut microbiota composition in patients with epilepsy: A systematic review and meta-analysis","authors":"Seyede Maryam Mousavi , Sobhan Younesian , Hanieh-Sadat Ejtahed","doi":"10.1016/j.micpath.2024.107266","DOIUrl":"10.1016/j.micpath.2024.107266","url":null,"abstract":"<div><h3>Background</h3><div>There is accumulating evidence suggesting a connection between epilepsy, a neurologic disease with recurrent seizures, and gut microbiota. This systematic review and meta-analysis explores the alterations of GM composition in patients with epilepsy.</div></div><div><h3>Methods</h3><div>A systematic search was conducted up to June 26, 2024, across PubMed, Scopus, Web of Science, and Embase. The study outcomes were α- and β-diversity indexes, and relative abundance at different bacterial taxonomic levels, compared between epilepsy patients and healthy controls. Inverse variance-weighted meta-analysis was performed to estimate the standardized mean difference. We utilized the Newcastle-Ottawa Scale (NOS) to assess the quality of the included studies.</div></div><div><h3>Results</h3><div>In this systematic review, we included 16 case-control studies encompassing 438 cases and 369 controls, and 12 studies were included in the meta-analyses. α-diversity was not significantly different between epilepsy and control group. Of the 11 studies measuring β-diversity, 8 studies showed that the microbiota compositions of the two groups differed significantly. Verrucomicrobia was significantly higher in the epilepsy group (SMD = 0.39 [0.05, 0.72], p = 0.022) than in the control group. At the genus level, <em>Roseburia</em> (SMD = −0.50 [-0.84, −0.17], p = 0.003), <em>Blautia</em> (SMD = −0.40 [-0.73, −0.06], p = 0.022), and <em>Dialister</em> (SMD = −0.40 [-0.74, −0.07], p = 0.018) were significantly less abundant in patients with epilepsy.</div></div><div><h3>Conclusions</h3><div>Our findings evince remarkable changes in gut microbiota composition in epilepsy. Bacterial genera that promote neuroinflammation are elevated in epilepsy. Our study revealed the interrelation between GM disruption and epileptogenesis, but the heterogeneity among the included results was high, and further investigation is encouraged.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107266"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS). In this study, the concentration of heavy metals was measured in stool samples of MS patients by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method and compared with healthy people. Also, another goal of this study is to investigate the alteration of the gut microbiome of MS patients by metagenomics technique based on the 16S rRNA gene sequencing. The IL-10 ELISA assay showed no significant differences between the serum level of the IL-10 in the patients and the control group (p = 0.510). Heavy metal measurement by ICP-MS showed significantly higher levels of arsenic (As, Mean = 32.77 μg/kg), nickel (Ni, Mean = 7.154 μg/kg), manganese (Mn, Mean = 3723 μg/kg), and zinc (Zn, Mean = 5508 μg/kg) in the stool samples of the MS group compared to the control group, while concentrations of iron (Fe, Mean = 9585 μg/kg), lead (Pb, Mean = 18.54 μg/kg), titanium (Ti, Mean = 69.69 μg/kg), and tin (Sn, Mean = 13.92 μg/kg) were significantly lower. The result of gut microbiome analysis showed an increase in the abundance of the Verrumicrobiaceae, Lachnospiraceae and Ruminococcaceae families was considerably increased in MS patients compared to the control group (p < 0.05). This study reports that high levels of heavy metals such as Ars, Ni, Mn, and Zn, deficiency of Fe, Pb, Ti, and Sn, and alteration of the gut microbiome are involved in the pathogenesis of MS. The novelty of this study lies in its multi-faceted approach to understanding MS by integrating the measurement of heavy metals in stool samples with the analysis of gut microbiome alterations, thereby providing comprehensive insights into heavy metals, the gut microbiome, and potential therapeutic avenues. This study suggests several potential applications and practical implications based on its findings regarding heavy metals, gut microbiome alterations, and IL-10 levels in MS. First, the identification of elevated levels of specific heavy metals and deficiencies in others may lead to targeted screening and monitoring, informing preventive strategies for MS patients. Additionally, the observed gut microbiome changes could facilitate the development of microbiome-based therapies, such as probiotics or dietary interventions, aimed at restoring microbial balance. Finally, exploring the interplay between heavy metals, gut microbiome, and immune response may guide the creation of novel therapeutic interventions, ultimately enhancing treatment efficacy and providing new avenues for managing MS, thereby alleviating the burden of this chronic condition.
{"title":"The interplay of gut microbiota and heavy metals in multiple sclerosis patients","authors":"Hawraa Raqee Hashim Jumaylawee , Majid Komijani , Shahnaz Shahrjerdi , Javad Sargolzaei","doi":"10.1016/j.micpath.2024.107269","DOIUrl":"10.1016/j.micpath.2024.107269","url":null,"abstract":"<div><div>Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS). In this study, the concentration of heavy metals was measured in stool samples of MS patients by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method and compared with healthy people. Also, another goal of this study is to investigate the alteration of the gut microbiome of MS patients by metagenomics technique based on the 16S rRNA gene sequencing. The IL-10 ELISA assay showed no significant differences between the serum level of the IL-10 in the patients and the control group (p = 0.510). Heavy metal measurement by ICP-MS showed significantly higher levels of arsenic (As, Mean = 32.77 μg/kg), nickel (Ni, Mean = 7.154 μg/kg), manganese (Mn, Mean = 3723 μg/kg), and zinc (Zn, Mean = 5508 μg/kg) in the stool samples of the MS group compared to the control group, while concentrations of iron (Fe, Mean = 9585 μg/kg), lead (Pb, Mean = 18.54 μg/kg), titanium (Ti, Mean = 69.69 μg/kg), and tin (Sn, Mean = 13.92 μg/kg) were significantly lower. The result of gut microbiome analysis showed an increase in the abundance of the <em>Verrumicrobiaceae</em>, <em>Lachnospiraceae</em> and <em>Ruminococcaceae</em> families was considerably increased in MS patients compared to the control group (p < 0.05). This study reports that high levels of heavy metals such as Ars, Ni, Mn, and Zn, deficiency of Fe, Pb, Ti, and Sn, and alteration of the gut microbiome are involved in the pathogenesis of MS. The novelty of this study lies in its multi-faceted approach to understanding MS by integrating the measurement of heavy metals in stool samples with the analysis of gut microbiome alterations, thereby providing comprehensive insights into heavy metals, the gut microbiome, and potential therapeutic avenues. This study suggests several potential applications and practical implications based on its findings regarding heavy metals, gut microbiome alterations, and IL-10 levels in MS. First, the identification of elevated levels of specific heavy metals and deficiencies in others may lead to targeted screening and monitoring, informing preventive strategies for MS patients. Additionally, the observed gut microbiome changes could facilitate the development of microbiome-based therapies, such as probiotics or dietary interventions, aimed at restoring microbial balance. Finally, exploring the interplay between heavy metals, gut microbiome, and immune response may guide the creation of novel therapeutic interventions, ultimately enhancing treatment efficacy and providing new avenues for managing MS, thereby alleviating the burden of this chronic condition.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107269"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2024.107244
Helena Malvezzi , Bruna Azevedo Cestari , Helen Mendes , Camila Hernandes , Sergio Podgaec
Endometriosis is a chronic gynecological disease that affects 10 % of reproductive-aged women and characterized by the presence of endometrial tissue outside the uterus. The disease is linked to a pro-inflammatory environment in the peritoneal fluid of patients, with high levels of cytokines, growth factors, and reactive oxygen species. Changes in the peritoneal fluid, such as altered immune cells and cytokines, can be linked to the immune balance in endometriosis. Immunological changes may be related to the presence of microorganisms in the peritoneal fluid that can activate Toll-like receptor (TLR) signaling and trigger an inflammatory response. A high diversity of TLRs has been found in women with endometriosis, and the presence of specific microorganisms in the fluid is suggested to be responsible for the activation of inflammasomes and inflammatory cytokines involved in the development of endometriosis. The present study was conducted at a hospital in southeastern Brazil to test this hypothesis, using a case-control design. Peritoneal fluid from 50 patients was used in this study. The case group consisted of 27 patients with endometriosis and the control group consisted of 23 patients without endometriosis. The samples were stored in a microbiome transport solution, and DNA was extracted and sent for genetic sequencing to identify the microorganisms present. The obtained sequencing reads were processed using a bioinformatics pipeline involving demultiplexing with the Illumina proprietary software, primer detection and removal, error evaluation, quality filtering, error removal using the Deblur software, amplicon sequence variants grouping, and chimera detection using the VSEARCH software. The sheer abundance of the microbiome made it challenging to discern any notable differences between the two groups. Nevertheless, we highlighted the prevalence of three primary bacteria in the peritoneal fluid from patients with endometriosis: Flavobacterium, Pseudomonas, and Bacillus. The results were established after a rigorous experimental design to eliminate potential contamination from extraction kits and handling. Our findings provide valuable insight into the pathogenesis of this disease and can be useful to understand how microbiota and immune system works in endometriosis.
{"title":"Peritoneal fluid microbiota profile of patients with deep endometriosis","authors":"Helena Malvezzi , Bruna Azevedo Cestari , Helen Mendes , Camila Hernandes , Sergio Podgaec","doi":"10.1016/j.micpath.2024.107244","DOIUrl":"10.1016/j.micpath.2024.107244","url":null,"abstract":"<div><div>Endometriosis is a chronic gynecological disease that affects 10 % of reproductive-aged women and characterized by the presence of endometrial tissue outside the uterus. The disease is linked to a pro-inflammatory environment in the peritoneal fluid of patients, with high levels of cytokines, growth factors, and reactive oxygen species. Changes in the peritoneal fluid, such as altered immune cells and cytokines, can be linked to the immune balance in endometriosis. Immunological changes may be related to the presence of microorganisms in the peritoneal fluid that can activate Toll-like receptor (TLR) signaling and trigger an inflammatory response. A high diversity of TLRs has been found in women with endometriosis, and the presence of specific microorganisms in the fluid is suggested to be responsible for the activation of inflammasomes and inflammatory cytokines involved in the development of endometriosis. The present study was conducted at a hospital in southeastern Brazil to test this hypothesis, using a case-control design. Peritoneal fluid from 50 patients was used in this study. The case group consisted of 27 patients with endometriosis and the control group consisted of 23 patients without endometriosis. The samples were stored in a microbiome transport solution, and DNA was extracted and sent for genetic sequencing to identify the microorganisms present. The obtained sequencing reads were processed using a bioinformatics pipeline involving demultiplexing with the Illumina proprietary software, primer detection and removal, error evaluation, quality filtering, error removal using the Deblur software, amplicon sequence variants grouping, and chimera detection using the VSEARCH software. The sheer abundance of the microbiome made it challenging to discern any notable differences between the two groups. Nevertheless, we highlighted the prevalence of three primary bacteria in the peritoneal fluid from patients with endometriosis: <em>Flavobacterium</em>, <em>Pseudomonas</em>, and <em>Bacillus</em>. The results were established after a rigorous experimental design to eliminate potential contamination from extraction kits and handling. Our findings provide valuable insight into the pathogenesis of this disease and can be useful to understand how microbiota and immune system works in endometriosis.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107244"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2024.106950
Noha K. El Dougdoug , Mohamed S. Attia , Mohamed N. Malash , Mostafa A. Abdel-Maksoud , Abdul Malik , Bushra H. Kiani , Abeer A. Fesal , Samar H. Rizk , Gharieb S. El-Sayyad , Nashwa Harb
A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that Aspergillus fumigatus was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV–visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. In vitro tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa, and Staphylococcus aureus under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards S. aureus and P. aeruginosa. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC50 at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.
{"title":"Aspergillus fumigatus-induced biogenic silver nanoparticles' efficacy as antimicrobial and antibiofilm agents with potential anticancer activity: An in vitro investigation","authors":"Noha K. El Dougdoug , Mohamed S. Attia , Mohamed N. Malash , Mostafa A. Abdel-Maksoud , Abdul Malik , Bushra H. Kiani , Abeer A. Fesal , Samar H. Rizk , Gharieb S. El-Sayyad , Nashwa Harb","doi":"10.1016/j.micpath.2024.106950","DOIUrl":"10.1016/j.micpath.2024.106950","url":null,"abstract":"<div><div>A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that <em>Aspergillus fumigatus</em> was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV–visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. <em>In vitro</em> tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against <em>Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa,</em> and <em>Staphylococcus aureus</em> under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards <em>S. aureus</em> and <em>P. aeruginosa</em>. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC<sub>50</sub> at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 106950"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study aimed to environmentally friendly synthesis of ZnO NPs using Fioria vitifolia leaf extracts which provides a sustainable and green approach for production of NPs. The produced ZnO NPs were evaluated using various spectrum approaches (UV–vis, FTIR XRD, TEM and EDAX). The synthesized ZnO NPs was confirmed by UV–Visible spectroscopy exhibited a peak at 370 nm. SEM imaging revealed a flash-like and needle-like bottom morphology. Fourier-transform infrared spectroscopy (FTIR) analysis detected vibrations corresponding to alcohols, halides, and aromatics functional groups. TEM showed spherical-shaped NPs with an average diameter of 11 nm. XRD analysis exhibited distinct peaks at 2θ values of 31.7°, 34.3°, 36.2°, 47.4°, 56.6°, 62.8°, 66.4°, 67.9°, 69.1°, and 76.8°, corresponding to the crystallographic planes (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202) planes respectively. The antibacterial activity demonstrated significant zones of inhibition against E. coli (17 ± 0.6 mm) and S. aureus (23.7 ± 0.5 mm), and inhibition of biofilm formation in S. aureus and C. albicans. Additionally, S. mutans exhibited the highest sensitivity to the minimum inhibitory concentration (MIC) of ZnO NPs, with complete inhibition occurring at 7.5 μg/mL. Furthermore, antioxidant DPPH assays exhibited IC50 values of 42 μg/mL. Additionally, the anti-inflammatory properties of ZnO NPs of F. vitifolia were evaluated in-vitro using models utilizing the human red blood cells (HRBC) membrane stabilization method (MSM), and it was shown to have an MSM of 83.87 % at 250 μg/mL. Furthermore, ZnO NPs exhibited anticancer activity against the MDA-MB-231 breast cancer cell line with an IC50 value of 35.50 μg/mL. Toxicological evaluation of FV-ZnO nanoparticles in zebrafish (Danio rerio) embryos indicated low toxicity at maximum concentration. These is first findings suggest that ZnO NPs synthesized from F. vitifolia leaf extracts possess significant antibacterial, antioxidant, anti-inflammatory, and anticancer properties. Additionally, their low toxicity in zebrafish embryos makes them suitable for further development in antimicrobial therapies with minimal side effects, offering a sustainable, biocompatible solution to tackle multidrug-resistant microbial infections.
{"title":"Eco-friendly synthesis of ZnO nanoparticles fabricated using Fioria vitifolia L. and their biomedical potentials","authors":"Mohamed Imath , Jayant Giri , Faruq Mohammad , Chinnasamy Ragavendran","doi":"10.1016/j.micpath.2024.107139","DOIUrl":"10.1016/j.micpath.2024.107139","url":null,"abstract":"<div><div>The present study aimed to environmentally friendly synthesis of ZnO NPs using <em>Fioria vitifolia</em> leaf extracts which provides a sustainable and green approach for production of NPs. The produced ZnO NPs were evaluated using various spectrum approaches (UV–vis, FTIR XRD, TEM and EDAX). The synthesized ZnO NPs was confirmed by UV–Visible spectroscopy exhibited a peak at 370 nm. SEM imaging revealed a flash-like and needle-like bottom morphology. Fourier-transform infrared spectroscopy (FTIR) analysis detected vibrations corresponding to alcohols, halides, and aromatics functional groups. TEM showed spherical-shaped NPs with an average diameter of 11 nm. XRD analysis exhibited distinct peaks at 2θ values of 31.7°, 34.3°, 36.2°, 47.4°, 56.6°, 62.8°, 66.4°, 67.9°, 69.1°, and 76.8°, corresponding to the crystallographic planes (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202) planes respectively. The antibacterial activity demonstrated significant zones of inhibition against <em>E. coli</em> (17 ± 0.6 mm) and <em>S. aureus</em> (23.7 ± 0.5 mm), and inhibition of biofilm formation in <em>S. aureus</em> and <em>C. albicans</em>. Additionally, <em>S. mutans</em> exhibited the highest sensitivity to the minimum inhibitory concentration (MIC) of ZnO NPs, with complete inhibition occurring at 7.5 μg/mL. Furthermore, antioxidant DPPH assays exhibited IC<sub>50</sub> values of 42 μg/mL. Additionally, the anti-inflammatory properties of ZnO NPs of <em>F. vitifolia</em> were evaluated <em>in-vitro</em> using models utilizing the human red blood cells (HRBC) membrane stabilization method (MSM), and it was shown to have an MSM of 83.87 % at 250 μg/mL. Furthermore, ZnO NPs exhibited anticancer activity against the MDA-MB-231 breast cancer cell line with an IC<sub>50</sub> value of 35.50 μg/mL. Toxicological evaluation of FV-ZnO nanoparticles in zebrafish (<em>Danio rerio</em>) embryos indicated low toxicity at maximum concentration. These is first findings suggest that ZnO NPs synthesized from <em>F. vitifolia</em> leaf extracts possess significant antibacterial, antioxidant, anti-inflammatory, and anticancer properties. Additionally, their low toxicity in zebrafish embryos makes them suitable for further development in antimicrobial therapies with minimal side effects, offering a sustainable, biocompatible solution to tackle multidrug-resistant microbial infections.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107139"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xanthomonas campestris pathovar campestris (Xcc) is the pathogen responsible for causing black rot in cruciferous plants. In this study, we show that mutation of AAW18_RS04175 (pacR, encodes a hypothetical protein containing a domain of unknown function, DUF1631) of Xcc strain Xc17 had decreased bacterial attachment, exopolysaccharide production, hypersensitive response and virulence. Furthermore, the pacR mutant exhibited reduced cell membrane integrity and outer membrane vesicle production. Transcriptomic analysis indicated that 225 genes were differentially expressed following pacR mutation. These genes can be classified into various functional categories, such as the type three secretion system and membrane component. Among them, genes associated with attachment, exopolysaccharide synthesis, the type three secretion system, and nucleotide metabolism were further verified by quantitative RT-PCR. Metabolomic analysis showed that 81 and 132 metabolites in positive and negative modes, respectively, were altered after pacR mutation. Among the identified metabolites, some are known to belong to different pathways, such as biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and nucleotide and purine metabolism, while others have not been previously documented in microbial systems. Additionally, the transcription initiation point of pacR was mapped, and promoter analysis indicated that pacR expression is influenced by different conditions. Taken together, our findings advance the understanding of PacR function and expression in Xcc and offer new insights into the role of the DUF1631-containing hypothetical protein in bacterial physiology.
{"title":"Functional characterization, transcriptome and metabolome analyses reveal that pacR possesses multifaceted physiological roles in Xanthomonas campestris pathovar campestris","authors":"Chao-Tsai Liao, Hsiao-Ching Chang, Chih-En Li, Yi-Min Hsiao","doi":"10.1016/j.micpath.2024.107162","DOIUrl":"10.1016/j.micpath.2024.107162","url":null,"abstract":"<div><div><em>Xanthomonas campestris</em> pathovar <em>campestris</em> (Xcc) is the pathogen responsible for causing black rot in cruciferous plants. In this study, we show that mutation of <em>AAW18_RS04175</em> (<em>pacR</em>, encodes a hypothetical protein containing a domain of unknown function, DUF1631) of Xcc strain Xc17 had decreased bacterial attachment, exopolysaccharide production, hypersensitive response and virulence. Furthermore, the <em>pacR</em> mutant exhibited reduced cell membrane integrity and outer membrane vesicle production. Transcriptomic analysis indicated that 225 genes were differentially expressed following <em>pacR</em> mutation. These genes can be classified into various functional categories, such as the type three secretion system and membrane component. Among them, genes associated with attachment, exopolysaccharide synthesis, the type three secretion system, and nucleotide metabolism were further verified by quantitative RT-PCR. Metabolomic analysis showed that 81 and 132 metabolites in positive and negative modes, respectively, were altered after <em>pacR</em> mutation. Among the identified metabolites, some are known to belong to different pathways, such as biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and nucleotide and purine metabolism, while others have not been previously documented in microbial systems. Additionally, the transcription initiation point of <em>pacR</em> was mapped, and promoter analysis indicated that <em>pacR</em> expression is influenced by different conditions. Taken together, our findings advance the understanding of PacR function and expression in Xcc and offer new insights into the role of the DUF1631-containing hypothetical protein in bacterial physiology.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107162"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.micpath.2024.107199
Heng Li , Yan Yin , Wei Cao , Shichao Chen , Jianxia Chen , Yanchun Xing , Hong Yang
Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during Mycobacterium tuberculosis (Mtb) infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of Mtb remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37Rv significantly increased the expression of TlLR2, Prkaa2, and Prkaa2 phosphorylation in MSCs compared with H37Ra infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.
{"title":"Enhanced autophagy and cholesterol efflux in mouse mesenchymal stem cells infected with H37Rv compared to H37Ra","authors":"Heng Li , Yan Yin , Wei Cao , Shichao Chen , Jianxia Chen , Yanchun Xing , Hong Yang","doi":"10.1016/j.micpath.2024.107199","DOIUrl":"10.1016/j.micpath.2024.107199","url":null,"abstract":"<div><div>Autophagy, metabolism, and associated signaling pathways play critical roles in bacterial survival within mammalian cells and influence the immunopathogenesis of infections. Mesenchymal stem cells (MSCs) are important host cells during <em>Mycobacterium tuberculosis (Mtb)</em> infection, yet how autophagy, metabolism, and related pathways are modulated in MSCs infected with the virulent H37Rv or the attenuated H37Ra strain of <em>Mtb</em> remains poorly understood. In this study, we utilized RNA-Seq screening, qRT-PCR, and Western Blotting to investigate the differences in these processes between H37Rv and H37Ra infections. Our results show that, at early time points (no more than 24h), infection with H37<em>Rv</em> significantly increased the expression of TlLR2, <em>Prkaa2,</em> and Prkaa2 phosphorylation in MSCs compared with H37<em>Ra</em> infection. Further analysis revealed that H37Rv infection induced a stronger autophagic response (evidenced by increased Atg9b and LC3II/LC3I) through the TLR2-AMP-AMPK pathway than H37Ra infection. Despite these differences in autophagy, there was no statistically significant difference in bacillary loads, suggesting that, in addition to autophagy, other factors such as apoptosis and immune-inflammatory responses may also regulate Mtb growth in MSCs. Additionally, the metabolic analysis showed that H37Rv infection led to increased expression of SLC2A3, PFKFB3, HK1, and ABCA1 in MSCs compared to H37Ra infection. These findings confirm that, during the early stages of infection, H37Rv induces enhanced autophagy, glucose metabolism, and cholesterol efflux through a more active TLR2-AMP-AMPK pathway than H37Ra. Therefore, MSCs may represent a novel target for the prevention and treatment of tuberculosis.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107199"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}