Escherichia coli (E. coli) is a leading cause of human infections worldwide and is considered a major cause of nosocomial infections, sepsis, meningitis and diarrhea. Lately, there has been an alarming increase in the incidence of antimicrobial resistance among clinical E. coli isolates. In the current study, a novel bacteriophage (phage) vB_EcoS_UTEC10 was isolated and characterized. The isolated phage showed high stability over wide temperature and pH ranges beside its promising bacteriolytic activity against multidrug resistant (MDR) E. coli isolates. In addition, vB_EcoS_UTEC10 showed a marked antibiofilm capability against mature E. coli biofilms. Genomic investigation revealed that vB_EcoS_UTEC10 has a double stranded DNA genome that consists of 44,772 bp comprising a total of 73 open reading frames (ORFs), out of which 35 ORFs were annotated as structural or functional proteins, and none were related to antimicrobial resistance or lysogeny. In vivo investigations revealed a promising bacteriolytic activity of vB_EcoS_UTEC10 against MDR E. coli which was further supported by a significant reduction in bacterial load in specimens collected from the phage-treated mice. Histopathology examination demonstrated minimal signs of inflammation and necrosis in the tissues of phage-treated mice compared to the degenerative tissue damage observed in untreated mice. In summary, the present findings suggest that vB_EcoS_UTEC10 has a remarkable ability to eradicate MDR E. coli infections and biofilms. These findings could be further invested for the development of targeted phage therapies that offer a viable alternative to traditional antibiotics against resistant E. coli.