Julie Marie Bekkevold, Jonathan J P Peters, Ryo Ishikawa, Naoya Shibata, Lewys Jones
In the scanning transmission electron microscope, both phase imaging of beam-sensitive materials and characterization of a material's functional properties using in situ experiments are becoming more widely available. As the practicable scan speed of 4D-STEM detectors improves, so too does the temporal resolution achievable for both differential phase contrast (DPC) and ptychography. However, the read-out burden of pixelated detectors, and the size of the gigabyte to terabyte sized data sets, remain a challenge for both temporal resolution and their practical adoption. In this work, we combine ultra-fast scan coils and detector signal digitization to show that a high-fidelity DPC phase reconstruction can be achieved from an annular segmented detector. Unlike conventional analog data phase reconstructions from digitized DPC-segment images yield reliable data, even at the fastest scan speeds. Finally, dose fractionation by fast scanning and multi-framing allows for postprocess binning of frame streams to balance signal-to-noise ratio and temporal resolution for low-dose phase imaging for in situ experiments.
{"title":"Ultra-fast Digital DPC Yielding High Spatio-temporal Resolution for Low-Dose Phase Characterization.","authors":"Julie Marie Bekkevold, Jonathan J P Peters, Ryo Ishikawa, Naoya Shibata, Lewys Jones","doi":"10.1093/mam/ozae082","DOIUrl":"10.1093/mam/ozae082","url":null,"abstract":"<p><p>In the scanning transmission electron microscope, both phase imaging of beam-sensitive materials and characterization of a material's functional properties using in situ experiments are becoming more widely available. As the practicable scan speed of 4D-STEM detectors improves, so too does the temporal resolution achievable for both differential phase contrast (DPC) and ptychography. However, the read-out burden of pixelated detectors, and the size of the gigabyte to terabyte sized data sets, remain a challenge for both temporal resolution and their practical adoption. In this work, we combine ultra-fast scan coils and detector signal digitization to show that a high-fidelity DPC phase reconstruction can be achieved from an annular segmented detector. Unlike conventional analog data phase reconstructions from digitized DPC-segment images yield reliable data, even at the fastest scan speeds. Finally, dose fractionation by fast scanning and multi-framing allows for postprocess binning of frame streams to balance signal-to-noise ratio and temporal resolution for low-dose phase imaging for in situ experiments.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"878-888"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jovana Z Jelić, Marta Bukumira, Aleksa Denčevski, Ana Senkić, Livio Žužić, Borna Radatović, Nataša Vujičić, Tanja Pajić, Mihailo D Rabasović, Aleksandar J Krmpot
We report application of the knife-edge technique at the sharp edges of WS2 and MoS2 monolayer flakes for lateral and axial resolution assessment in all three modalities of nonlinear laser scanning microscopy: two-photon excited fluorescence (TPEF), second- and third-harmonic generation (SHG, THG) imaging. This technique provides a high signal-to-noise ratio, no photobleaching effect and shows good agreement with standard resolution measurement techniques. Furthermore, we assessed both the lateral resolution in TPEF imaging modality and the axial resolution in SHG and THG imaging modality directly via the full-width at half maximum parameter of the corresponding Gaussian distribution. We comprehensively analyzed the factors influencing the resolution, such as the numerical aperture, the excitation wavelength and the refractive index of the embedding medium for the different imaging modalities. Glycerin was identified as the optimal embedding medium for achieving resolutions closest to the theoretical limit. The proposed use of WS2 and MoS2 monolayer flakes emerged as promising tools for characterization of nonlinear imaging systems.
{"title":"Application of the Knife-Edge Technique on Transition Metal Dichalcogenide Monolayers for Resolution Assessment of Nonlinear Microscopy Modalities.","authors":"Jovana Z Jelić, Marta Bukumira, Aleksa Denčevski, Ana Senkić, Livio Žužić, Borna Radatović, Nataša Vujičić, Tanja Pajić, Mihailo D Rabasović, Aleksandar J Krmpot","doi":"10.1093/mam/ozae061","DOIUrl":"10.1093/mam/ozae061","url":null,"abstract":"<p><p>We report application of the knife-edge technique at the sharp edges of WS2 and MoS2 monolayer flakes for lateral and axial resolution assessment in all three modalities of nonlinear laser scanning microscopy: two-photon excited fluorescence (TPEF), second- and third-harmonic generation (SHG, THG) imaging. This technique provides a high signal-to-noise ratio, no photobleaching effect and shows good agreement with standard resolution measurement techniques. Furthermore, we assessed both the lateral resolution in TPEF imaging modality and the axial resolution in SHG and THG imaging modality directly via the full-width at half maximum parameter of the corresponding Gaussian distribution. We comprehensively analyzed the factors influencing the resolution, such as the numerical aperture, the excitation wavelength and the refractive index of the embedding medium for the different imaging modalities. Glycerin was identified as the optimal embedding medium for achieving resolutions closest to the theoretical limit. The proposed use of WS2 and MoS2 monolayer flakes emerged as promising tools for characterization of nonlinear imaging systems.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"671-680"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Richter, Gaurav Achuda, Philippe T Pinard, Tamme Claus, Manuel Torrilhon
Electron probe microanalysis (EPMA) is a powerful tool for chemical characterization of materials on a microscopic scale. However, EPMA has the drawback that its information volume has a spatial extent of some 100 nm to a few µm. With the introduction of new electron sources, i.e., Schottky Thermal Field and Cold Field Emitter, where the electron beam is focused down to a few nm, measurements can be nowadays performed on the sub-micrometer scale. The goal of the work is to reveal the chemical composition of structures smaller than the excitation volume. New strategies are presented where the acquisition is performed at different positions on the sample and as a scan across a fine structure by using one or more single beam energies. Besides the well-known Monte-Carlo simulation, a deterministic model is also used. The deterministic model is based on moment equations of the Boltzmann equation. Inverse modeling is presented for several case studies. Due to the highly complex nonlinearity of the inverse model, an ill-posed and well-posed problem is shown as well. Finally, the method is extended to reconstruct 2D structures, i.e., rectangular shaped particles, with heterogeneous composition on lateral and depth scale.
{"title":"Inverse Modeling of Heterogeneous Structures in Electron Probe Microanalysis.","authors":"Silvia Richter, Gaurav Achuda, Philippe T Pinard, Tamme Claus, Manuel Torrilhon","doi":"10.1093/mam/ozae066","DOIUrl":"10.1093/mam/ozae066","url":null,"abstract":"<p><p>Electron probe microanalysis (EPMA) is a powerful tool for chemical characterization of materials on a microscopic scale. However, EPMA has the drawback that its information volume has a spatial extent of some 100 nm to a few µm. With the introduction of new electron sources, i.e., Schottky Thermal Field and Cold Field Emitter, where the electron beam is focused down to a few nm, measurements can be nowadays performed on the sub-micrometer scale. The goal of the work is to reveal the chemical composition of structures smaller than the excitation volume. New strategies are presented where the acquisition is performed at different positions on the sample and as a scan across a fine structure by using one or more single beam energies. Besides the well-known Monte-Carlo simulation, a deterministic model is also used. The deterministic model is based on moment equations of the Boltzmann equation. Inverse modeling is presented for several case studies. Due to the highly complex nonlinearity of the inverse model, an ill-posed and well-posed problem is shown as well. Finally, the method is extended to reconstruct 2D structures, i.e., rectangular shaped particles, with heterogeneous composition on lateral and depth scale.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"729-740"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Reifsnyder, Jordan A Hachtel, Andrew R Lupini, David W McComb
Cryo-transfer stations are essential tools in the field of cryo-electron microscopy, enabling the safe transfer of frozen vitreous samples between different stages of the workflow. However, existing cryo-transfer stations are typically configured for only the two most popular sample holder geometries and are not commercially available for all electron microscopes. Additionally, they are expensive and difficult to customize, which limits their accessibility and adaptability for research laboratories. Here, we present a new modular cryo-transfer station that addresses these limitations. The station is composed entirely of 3D-printed and off the shelf parts, allowing it to be reconfigured to a fit variety of microscopes and experimental protocols. We describe the design and construction of the station and report on the results of testing the cryo-transfer station, including its ability to maintain cryogenic temperatures and transfer frozen vitreous samples as demonstrated by vibrational spectroscopy. Our findings demonstrate that the cryo-transfer station performs comparably to existing commercial models, while offering greater accessibility and customizability. The design for the station is open source to encourage other groups to replicate and build on this development. We hope that this project will increase access to cryo-transfer stations for researchers in a variety of disciplines with nonstandard equipment.
冷冻转移台是冷冻电子显微镜领域的重要工具,可在工作流程的不同阶段之间安全转移冷冻玻璃体样品。然而,现有的冷冻转移站通常只针对两种最常用的样品架几何形状进行配置,而且并非所有电子显微镜都能在市场上买到。此外,它们价格昂贵且难以定制,这限制了它们对研究实验室的可及性和适应性。在此,我们介绍一种新型模块化低温转移台,以解决这些局限性。该工作站完全由 3D 打印和现成部件组成,可根据各种显微镜和实验方案进行重新配置。我们介绍了低温转移站的设计和构造,并报告了低温转移站的测试结果,包括其保持低温和转移冷冻玻璃体样本的能力,振动光谱学证明了这一点。我们的研究结果表明,低温转移站的性能与现有的商业模型相当,同时具有更高的可访问性和可定制性。低温转移站的设计是开放源代码的,以鼓励其他团体在此基础上进行复制和开发。我们希望这个项目能让更多拥有非标准设备的各学科研究人员使用低温转移站。
{"title":"Development of a Modular Cryo-Transfer Station for the Side-Entry Transmission Electron Microscope†.","authors":"Alexander Reifsnyder, Jordan A Hachtel, Andrew R Lupini, David W McComb","doi":"10.1093/mam/ozae063","DOIUrl":"10.1093/mam/ozae063","url":null,"abstract":"<p><p>Cryo-transfer stations are essential tools in the field of cryo-electron microscopy, enabling the safe transfer of frozen vitreous samples between different stages of the workflow. However, existing cryo-transfer stations are typically configured for only the two most popular sample holder geometries and are not commercially available for all electron microscopes. Additionally, they are expensive and difficult to customize, which limits their accessibility and adaptability for research laboratories. Here, we present a new modular cryo-transfer station that addresses these limitations. The station is composed entirely of 3D-printed and off the shelf parts, allowing it to be reconfigured to a fit variety of microscopes and experimental protocols. We describe the design and construction of the station and report on the results of testing the cryo-transfer station, including its ability to maintain cryogenic temperatures and transfer frozen vitreous samples as demonstrated by vibrational spectroscopy. Our findings demonstrate that the cryo-transfer station performs comparably to existing commercial models, while offering greater accessibility and customizability. The design for the station is open source to encourage other groups to replicate and build on this development. We hope that this project will increase access to cryo-transfer stations for researchers in a variety of disciplines with nonstandard equipment.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"724-728"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While multislice electron ptychography can provide thermal vibration limited resolution and structural information in 3D, it relies on properly selecting many intertwined acquisition and computational parameters. Here, we outline a methodology for selecting acquisition parameters to enable robust ptychographic reconstructions. We develop two physically informed metrics, areal oversampling and Ronchigram magnification, to describe the selection of these parameters in multislice ptychography. Through simulations, we comprehensively evaluate the validity of these two metrics over a broad range of conditions and show that they accurately guide reconstruction success. Further, we validate these conclusions with experimental ptychographic data and demonstrate close agreement between trends in simulated and experimental data. Using these metrics, we achieve experimental multislice reconstructions at a scan step of 2.1Å/px, enabling large field-of-view, data-efficient reconstructions. These experimental design principles enable the routine and robust use of multislice ptychography for 3D characterization of materials at the atomic scale.
{"title":"A Methodology for Robust Multislice Ptychography.","authors":"Colin Gilgenbach, Xi Chen, James M LeBeau","doi":"10.1093/mam/ozae055","DOIUrl":"10.1093/mam/ozae055","url":null,"abstract":"<p><p>While multislice electron ptychography can provide thermal vibration limited resolution and structural information in 3D, it relies on properly selecting many intertwined acquisition and computational parameters. Here, we outline a methodology for selecting acquisition parameters to enable robust ptychographic reconstructions. We develop two physically informed metrics, areal oversampling and Ronchigram magnification, to describe the selection of these parameters in multislice ptychography. Through simulations, we comprehensively evaluate the validity of these two metrics over a broad range of conditions and show that they accurately guide reconstruction success. Further, we validate these conclusions with experimental ptychographic data and demonstrate close agreement between trends in simulated and experimental data. Using these metrics, we achieve experimental multislice reconstructions at a scan step of 2.1Å/px, enabling large field-of-view, data-efficient reconstructions. These experimental design principles enable the routine and robust use of multislice ptychography for 3D characterization of materials at the atomic scale.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"703-711"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc is a critical ion for a large number of cellular functions. In the central nervous system, zinc ions are involved in synaptic transmission. Therefore, zinc homeostasis is essential, and cells have developed a variety of mechanisms to control cellular zinc concentration, including the zincosome formation. Alterations of free zinc levels have been associated with brain dysfunction and are present in many illnesses and syndromes. Astrocytes are implicated in the maintenance of the neuronal milleu and brain homeostasis. In this work, we have analyzed the combination of direct (TSQ) and indirect (autometallography) zinc detection methods to increase sensitivity for studying zinc uptake by rat astrocytes in vitro. Zincosome formation was visualized with the zinc fluorochrome TSQ by light microscopy. Additionally, we improved both zinc precipitation and cellular fixation methods to preserve zinc ions and make them suitable for autometallography development. Our tests pinpointed paraformaldehyde and sodium sulfide as the more adequate methods for cellular fixation and zinc precipitation, respectively. TSQ incubation and pH of the fixative were shown to be crucial for autometallography. Using this improved method, we visualized the zinc content of zincosomes at the ultrastructural level both as silver autometallographic precipitates and as electrodense sulfide-osmium zinc precipitates.
{"title":"TSQ Incubation Enhances Autometallographic Zinc Detection in Cultured Astrocytes.","authors":"Raúl Ballestín, Josema Torres, Xavier Ponsoda","doi":"10.1093/mam/ozae060","DOIUrl":"10.1093/mam/ozae060","url":null,"abstract":"<p><p>Zinc is a critical ion for a large number of cellular functions. In the central nervous system, zinc ions are involved in synaptic transmission. Therefore, zinc homeostasis is essential, and cells have developed a variety of mechanisms to control cellular zinc concentration, including the zincosome formation. Alterations of free zinc levels have been associated with brain dysfunction and are present in many illnesses and syndromes. Astrocytes are implicated in the maintenance of the neuronal milleu and brain homeostasis. In this work, we have analyzed the combination of direct (TSQ) and indirect (autometallography) zinc detection methods to increase sensitivity for studying zinc uptake by rat astrocytes in vitro. Zincosome formation was visualized with the zinc fluorochrome TSQ by light microscopy. Additionally, we improved both zinc precipitation and cellular fixation methods to preserve zinc ions and make them suitable for autometallography development. Our tests pinpointed paraformaldehyde and sodium sulfide as the more adequate methods for cellular fixation and zinc precipitation, respectively. TSQ incubation and pH of the fixative were shown to be crucial for autometallography. Using this improved method, we visualized the zinc content of zincosomes at the ultrastructural level both as silver autometallographic precipitates and as electrodense sulfide-osmium zinc precipitates.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"759-770"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantifying light elements such as carbon, nitrogen, and oxygen in a transmission electron microscope (TEM) is a challenging however essential task in biology, materials, or earth and planetary sciences. We have developed an approach that allows precise quantification by energy-dispersive X-ray spectroscopy (EDXS), using sensitive windowless silicon drift detectors and homemade Python routines for hyperspectral data processing. K-factors were determined using wedge-shaped focused ion beam sections. To correct for X-ray absorption within the sample, the sample mass thickness is determined by the-revisited-two-lines method (Morris, 1980). No beam current measurement is required. Applying this method to the K and L lines of iron, we found that the tabulated mass absorption coefficient at the energy of the iron L lines was too low. This is due to X-ray self-absorption at the iron edge. Using reference material, we experimentally determined an absorption coefficient that gave the expected results. We then analyzed the complex phyllosilicate mixture of the Orgueil meteorite. We show that the N/C ratio of organics can be obtained with an accuracy better than 5 at.% and that oxygen can be quantified accurately enough to infer the hydroxyl content of phyllosilicates.
在透射电子显微镜(TEM)中对碳、氮和氧等轻元素进行定量是一项极具挑战性的任务,但在生物、材料或地球和行星科学领域却是必不可少的。我们开发了一种方法,利用灵敏的无窗硅漂移探测器和自制的 Python 高光谱数据处理例程,通过能量色散 X 射线光谱(EDXS)进行精确定量。使用楔形聚焦离子束截面测定 K 因子。为校正样品内部的 X 射线吸收,采用重温两线法(Morris,1980 年)确定样品质量厚度。无需测量束流。将此方法应用于铁的 K 线和 L 线时,我们发现铁 L 线能量处的表列质量吸收系数过低。这是由于铁边缘的 X 射线自吸收造成的。我们利用参考材料,通过实验确定了一个能给出预期结果的吸收系数。然后,我们分析了 Orgueil 陨石中复杂的植硅酸盐混合物。我们的研究表明,有机物的氮/碳比率可以精确到优于 5%,氧气的定量也足够精确,足以推断出植硅酸盐的羟基含量。
{"title":"Light Element (C, N, O) Quantification by EDXS: Application to Meteorite Water Content and Organic Composition.","authors":"Corentin Le Guillou, Pierre-Marie Zanetta, Hugues Leroux, Anne-Marie Blanchenet, Maya Marinova","doi":"10.1093/mam/ozae071","DOIUrl":"10.1093/mam/ozae071","url":null,"abstract":"<p><p>Quantifying light elements such as carbon, nitrogen, and oxygen in a transmission electron microscope (TEM) is a challenging however essential task in biology, materials, or earth and planetary sciences. We have developed an approach that allows precise quantification by energy-dispersive X-ray spectroscopy (EDXS), using sensitive windowless silicon drift detectors and homemade Python routines for hyperspectral data processing. K-factors were determined using wedge-shaped focused ion beam sections. To correct for X-ray absorption within the sample, the sample mass thickness is determined by the-revisited-two-lines method (Morris, 1980). No beam current measurement is required. Applying this method to the K and L lines of iron, we found that the tabulated mass absorption coefficient at the energy of the iron L lines was too low. This is due to X-ray self-absorption at the iron edge. Using reference material, we experimentally determined an absorption coefficient that gave the expected results. We then analyzed the complex phyllosilicate mixture of the Orgueil meteorite. We show that the N/C ratio of organics can be obtained with an accuracy better than 5 at.% and that oxygen can be quantified accurately enough to infer the hydroxyl content of phyllosilicates.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"660-670"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-Ru Lin, Yao Li, Steven J Zinkle, Jose' D Arregui-Mena, M Grace Burke
Nanoscale dislocation loops formed by irradiation can significantly contribute to both irradiation hardening and embrittlement of materials when subjected to extreme nuclear reactor environments. This study explores the application of weak-beam dark-field (WBDF) scanning transmission electron microscopy (STEM) methods for quantitative irradiation-induced defect analysis in crystalline materials, with a specific focus on dislocation loop imaging and analysis. A high-purity Fe-5 wt% Cr model alloy was irradiated with 8 MeV Fe2+ ions at 450°C to a fluence of 8.8 × 1019 m-2, inducing dislocation loops for analysis. While transmission electron microscopy (TEM) has traditionally been the primary tool for dislocation imaging, recent advancements in STEM technology have reignited interest in using STEM for defect imaging. This study introduces and compares three WBDF STEM methods, demonstrating their effectiveness in suppressing background contrasts, isolating defect information for dislocation loop type classification, providing finer dislocation line images for small loop analysis, and presenting inside-outside contrast for identifying loop nature. Experimental findings indicate that WBDF STEM methods surpass traditional TEM approaches, yielding clearer and more detailed images of dislocation loops. The study concludes by discussing the potential applications of WBDF STEM techniques in defect analysis, emphasizing their adaptability across various material systems beyond nuclear materials.
{"title":"Application of Weak-Beam Dark-Field STEM for Dislocation Loop Analysis†.","authors":"Yan-Ru Lin, Yao Li, Steven J Zinkle, Jose' D Arregui-Mena, M Grace Burke","doi":"10.1093/mam/ozae067","DOIUrl":"10.1093/mam/ozae067","url":null,"abstract":"<p><p>Nanoscale dislocation loops formed by irradiation can significantly contribute to both irradiation hardening and embrittlement of materials when subjected to extreme nuclear reactor environments. This study explores the application of weak-beam dark-field (WBDF) scanning transmission electron microscopy (STEM) methods for quantitative irradiation-induced defect analysis in crystalline materials, with a specific focus on dislocation loop imaging and analysis. A high-purity Fe-5 wt% Cr model alloy was irradiated with 8 MeV Fe2+ ions at 450°C to a fluence of 8.8 × 1019 m-2, inducing dislocation loops for analysis. While transmission electron microscopy (TEM) has traditionally been the primary tool for dislocation imaging, recent advancements in STEM technology have reignited interest in using STEM for defect imaging. This study introduces and compares three WBDF STEM methods, demonstrating their effectiveness in suppressing background contrasts, isolating defect information for dislocation loop type classification, providing finer dislocation line images for small loop analysis, and presenting inside-outside contrast for identifying loop nature. Experimental findings indicate that WBDF STEM methods surpass traditional TEM approaches, yielding clearer and more detailed images of dislocation loops. The study concludes by discussing the potential applications of WBDF STEM techniques in defect analysis, emphasizing their adaptability across various material systems beyond nuclear materials.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"681-691"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sima Aslan Faal, Hamid Reza Esmaeili, Azad Teimori
This study investigated the morphological characteristics of scales in six Cyprinion species, using light and scanning electron microscopy focusing on key features such as scale type, key scales, lateral line scales, radius/radii, rostral margin, focus, circuli, lepidonts, tubercles, and scale indices. The research analyzed the scales using ultramicroscopy and light microscopy imaging, categorizing them based on size classes and body regions. The morphological variations in scale characteristics were examined across different species, regions, and size classes. Notable findings included the tetra-sectioned form of scales, representing a unique characteristic of the Cyprinion genus. Morphological changes in scale features were observed with fish growth, particularly in the overall shape, focus shape, and size. Quantitative analysis revealed variations in average relative scale length and width among different species, regions, and size classes. The study utilized canonical discriminant analysis for multivariate assessment, classifying the species into distinct groups based on morphometric indices. The findings contribute to the understanding of scale morphology in Cyprinion species and exploring morphological variation between the examined species.
{"title":"Scale Characteristics of Six Fish Species of the Genus Cyprinion (Teleostei: Cypriniformes): A Microscopic Analysis.","authors":"Sima Aslan Faal, Hamid Reza Esmaeili, Azad Teimori","doi":"10.1093/mam/ozae065","DOIUrl":"10.1093/mam/ozae065","url":null,"abstract":"<p><p>This study investigated the morphological characteristics of scales in six Cyprinion species, using light and scanning electron microscopy focusing on key features such as scale type, key scales, lateral line scales, radius/radii, rostral margin, focus, circuli, lepidonts, tubercles, and scale indices. The research analyzed the scales using ultramicroscopy and light microscopy imaging, categorizing them based on size classes and body regions. The morphological variations in scale characteristics were examined across different species, regions, and size classes. Notable findings included the tetra-sectioned form of scales, representing a unique characteristic of the Cyprinion genus. Morphological changes in scale features were observed with fish growth, particularly in the overall shape, focus shape, and size. Quantitative analysis revealed variations in average relative scale length and width among different species, regions, and size classes. The study utilized canonical discriminant analysis for multivariate assessment, classifying the species into distinct groups based on morphometric indices. The findings contribute to the understanding of scale morphology in Cyprinion species and exploring morphological variation between the examined species.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"771-792"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al-Mg-Si(-Cu) alloys was introduced.
对用于表征铝-0.9%镁-1.0%硅-0.3%铜(质量百分比)中纳米团簇的基于密度的有噪声应用空间聚类(DBSCAN)算法中的用户定义参数(Dmax、Nmin、阶次(K))进行了优化。对 100°C 下自然老化(NA)和预老化(PA)的样品考虑了给定 K 的十种参数组合。通过分析成分、尺寸、原子密度和簇内原子排列,我们确认了四种人为形成的非物理簇。在 NA 和 PA 样品中都获得了将这些非物理团簇最小化的最佳组合。同时,为了评估最佳组合的可靠性,还进行了体积渲染和等值面分析。结果表明,溶质浓度较高的区域得到了确认,这些区域与应用 DBSCAN 中的最优组合所得到的簇的位置十分吻合。此外,通过将最优组合与迄今为止广泛使用的固定参数进行比较,我们发现对于每个数据集而言,考虑同一方法中获得的独立参数比使用固定参数更可取。因此,我们提出了确定表征铝镁硅(铜)合金中纳米团簇的算法参数的想法。
{"title":"Parameter Optimization in Cluster Identification Algorithms for Characterizing Nanoclusters in Al-Mg-Si-Cu Alloys.","authors":"MinYoung Song, Equo Kobayashi, JaeHwang Kim","doi":"10.1093/mam/ozae053","DOIUrl":"10.1093/mam/ozae053","url":null,"abstract":"<p><p>Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.3% Cu (mass %), was conducted. Ten combinations of parameters with a given K were considered for samples naturally aged (NA) and preaged (PA) at 100°C. We confirmed four types of unphysical clusters, artificially formed, by analyzing composition with size, atomic density, and atomic arrangement inside clusters. The optimum combinations minimizing those unphysical clusters were obtained for both NA and PA samples. Meanwhile, to evaluate the reliability of the optimum combination, volume rendering and isosurfacing were performed. As a result, regions of high solute concentration were confirmed, and those regions are in good agreement with the position of the clusters obtained by applying the optimum combination in DBSCAN. Furthermore, by comparing the optimum combinations with the fixed parameters widely used until now, we showed that for each dataset, considering independent parameters obtained in the same method is desirable rather than using fixed parameters. Consequently, an idea of determining the algorithm parameters for characterizing the nanoclusters in Al-Mg-Si(-Cu) alloys was introduced.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"635-649"},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}