Agglutination of pathogenic microorganisms on the body surface is a significant phenomenon for the prevention of infection. In the present study, we show that an extract of the skin mucus from Japanese flounder (Paralichthys olivaceus) has agglutination activity against the yeast Saccharomyces cerevisiae. We purified this yeast-binding protein, which consists of an approximately 35-kDa homodimer, using affinity chromatography with yeast as a ligand. Multiple internal amino acid sequences of the protein, as determined using liquid chromatography with quadrupole time-of-flight tandem mass spectrometry, mapped to flounder glyceraldehyde 3-phosphate dehydrogenase (GAPDH). An anti-GAPDH antibody inhibited the yeast agglutination activity in the skin mucus extract and stained agglutinated yeast, indicating that flounder GAPDH could agglutinate yeast. The current study suggests that GAPDH, a well-known protein as the sixth enzyme in the glycolytic pathway, is a significant player in mucosal immunity in teleosts.
{"title":"A fungal-binding agglutinin in the skin slime of Japanese flounder (Paralichthys olivaceus) is glyceraldehyde 3-phosphate dehydrogenase","authors":"Shigeyuki Tsutsui, Mizuki Terashima, Osamu Nakamura","doi":"10.1111/1348-0421.13163","DOIUrl":"10.1111/1348-0421.13163","url":null,"abstract":"<p>Agglutination of pathogenic microorganisms on the body surface is a significant phenomenon for the prevention of infection. In the present study, we show that an extract of the skin mucus from Japanese flounder (<i>Paralichthys olivaceus</i>) has agglutination activity against the yeast <i>Saccharomyces cerevisiae</i>. We purified this yeast-binding protein, which consists of an approximately 35-kDa homodimer, using affinity chromatography with yeast as a ligand. Multiple internal amino acid sequences of the protein, as determined using liquid chromatography with quadrupole time-of-flight tandem mass spectrometry, mapped to flounder glyceraldehyde 3-phosphate dehydrogenase (GAPDH). An anti-GAPDH antibody inhibited the yeast agglutination activity in the skin mucus extract and stained agglutinated yeast, indicating that flounder GAPDH could agglutinate yeast. The current study suggests that GAPDH, a well-known protein as the sixth enzyme in the glycolytic pathway, is a significant player in mucosal immunity in teleosts.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 9","pages":"331-338"},"PeriodicalIF":1.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
{"title":"Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway","authors":"Qing Su, Shu-Ping Yang, Jun-Ping Guo, Yi-Ren Rong, Yun Sun, Yu-Rong Chai","doi":"10.1111/1348-0421.13159","DOIUrl":"10.1111/1348-0421.13159","url":null,"abstract":"<p>The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 8","pages":"281-293"},"PeriodicalIF":1.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant Enterococcus (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including Enterococcus faecium (41 isolates), Enterococcus faecalis (80 isolates), Enterococcus raffinosus (11 isolates), Enterococcus casseliflavus (nine isolates), Enterococcus avium (12 isolates), Enterococcus lactis (eight isolates), Enterococcus gallinarum (two isolates), and Enterococcus malodoratus (one isolate), were analyzed. We found one vanA-positive E. faecium, which was already informed when the patient was transferred to the hospital, nine vanC-positive E. casseliflavus, and two vanC-positive E. gallinarum. E. faecium isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and E. faecalis isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant E. faecium had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. E. raffinosus showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and E. lactis showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes optrA and cfr(B) were found only in one isolate of E. faecalis and E. raffinosus, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.
{"title":"Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan","authors":"Ayumi Fujii, Miki Kawada-Matsuo, Mi Nguyen-Tra Le, Kanako Masuda, Kayoko Tadera, Yujin Suzuki, Saki Nishihama, Junzo Hisatsune, Yo Sugawara, Seiya Kashiyama, Hideki Shiba, Tomonao Aikawa, Hiroki Ohge, Motoyuki Sugai, Hitoshi Komatsuzawa","doi":"10.1111/1348-0421.13155","DOIUrl":"10.1111/1348-0421.13155","url":null,"abstract":"<p>To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant <i>Enterococcus</i> (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including <i>Enterococcus faecium</i> (41 isolates), <i>Enterococcus faecalis</i> (80 isolates), <i>Enterococcus raffinosus</i> (11 isolates), <i>Enterococcus casseliflavus</i> (nine isolates), <i>Enterococcus avium</i> (12 isolates), <i>Enterococcus lactis</i> (eight isolates), <i>Enterococcus gallinarum</i> (two isolates), and <i>Enterococcus malodoratus</i> (one isolate), were analyzed. We found one <i>vanA</i>-positive <i>E. faecium</i>, which was already informed when the patient was transferred to the hospital, nine <i>vanC</i>-positive <i>E. casseliflavus</i>, and two <i>vanC</i>-positive <i>E. gallinarum. E. faecium</i> isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and <i>E. faecalis</i> isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant <i>E. faecium</i> had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. <i>E. raffinosus</i> showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and <i>E. lactis</i> showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes <i>optrA</i> and <i>cfr</i>(B) were found only in one isolate of <i>E. faecalis</i> and <i>E. raffinosus</i>, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 8","pages":"254-266"},"PeriodicalIF":1.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}