Background: Colorectal cancer (CRC) is a very common cancer worldwide. CRC is characterized by some changes in the expression of oncogenic and tumor suppressor genes. These changes are associated with dysregulation of non-coding RNAs, including long non-coding RNAs (lncRNAs). LncRNAs are heterogeneous non-coding molecules without open reading frames. LncRNAs have been established as regulators in the development of CRC and clinical biomarkers for the CRC detection. In this project, we investigated the expression changes of two new lncRNAs named SFTA1P and MYOSLID in CRC patients.
Materials and methods: 30 samples of CRC tissue and 30 samples of normal tissue adjacent to the cancer tissue were obtained from patients. RNA extraction from tissue samples was performed using RNAX plus. ExcelRT™ Reverse Transcription Kit (SymBio, Korea) was used for cDNA synthesis. RealQ Plus 2x Master Mix Green Without ROX™ was used to perform a quantitative PCR (qPCR). REST, and SPSS software were used for statistical analysis.
Result: Our result demonstrated that lncRNAs MYOSLID and SFTA1P were significantly up-regulated in tumor tissues compared to healthy tissues with a fold change of 13.43 and 5.33 (P < 0.05) respectively. Based on the analysis of ROC curve, MYOSLID (AUC = 0.946, P < 0.0001, SE =0.0035) and SFTA1P (AUC = 0.800, P < 0.0001, SE = 0.059) were indicated as potential clinical hallmarks for CRC patients.
Conclusion: According to the results obtained from this research, lncRNAs SFTA1P and MYOSLID can be suggested as molecular biomarkers for the CRC diagnosis.
{"title":"The dysregulation and clinical relevance of lncRNAs MYOSLID and SFTA1P in colorectal cancer patients.","authors":"Amir Reza Karamzadeh, Mansour Heidari, Abolfazl Namazi, Seidamir Pasha Tabaeian, Abolfazl Akbari","doi":"10.1007/s11033-024-10020-x","DOIUrl":"https://doi.org/10.1007/s11033-024-10020-x","url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a very common cancer worldwide. CRC is characterized by some changes in the expression of oncogenic and tumor suppressor genes. These changes are associated with dysregulation of non-coding RNAs, including long non-coding RNAs (lncRNAs). LncRNAs are heterogeneous non-coding molecules without open reading frames. LncRNAs have been established as regulators in the development of CRC and clinical biomarkers for the CRC detection. In this project, we investigated the expression changes of two new lncRNAs named SFTA1P and MYOSLID in CRC patients.</p><p><strong>Materials and methods: </strong>30 samples of CRC tissue and 30 samples of normal tissue adjacent to the cancer tissue were obtained from patients. RNA extraction from tissue samples was performed using RNAX plus. ExcelRT™ Reverse Transcription Kit (SymBio, Korea) was used for cDNA synthesis. RealQ Plus 2x Master Mix Green Without ROX™ was used to perform a quantitative PCR (qPCR). REST, and SPSS software were used for statistical analysis.</p><p><strong>Result: </strong>Our result demonstrated that lncRNAs MYOSLID and SFTA1P were significantly up-regulated in tumor tissues compared to healthy tissues with a fold change of 13.43 and 5.33 (P < 0.05) respectively. Based on the analysis of ROC curve, MYOSLID (AUC = 0.946, P < 0.0001, SE =0.0035) and SFTA1P (AUC = 0.800, P < 0.0001, SE = 0.059) were indicated as potential clinical hallmarks for CRC patients.</p><p><strong>Conclusion: </strong>According to the results obtained from this research, lncRNAs SFTA1P and MYOSLID can be suggested as molecular biomarkers for the CRC diagnosis.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1109"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s11033-024-09994-5
Sibel Özdaş, İpek Canatar, Talih Özdaş, Sezen Yilmaz Sarialtin, Aslı Can Ağca, Murat Koç
Purpose: Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines.
Methods: Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis.
Results: The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all).
Conclusion: This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.
{"title":"Antioxidant, cytotoxic, anti-migratory, and pro-apoptotic effects of Bolanthus turcicus extracts on head and neck cancer cells.","authors":"Sibel Özdaş, İpek Canatar, Talih Özdaş, Sezen Yilmaz Sarialtin, Aslı Can Ağca, Murat Koç","doi":"10.1007/s11033-024-09994-5","DOIUrl":"https://doi.org/10.1007/s11033-024-09994-5","url":null,"abstract":"<p><strong>Purpose: </strong>Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines.</p><p><strong>Methods: </strong>Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis.</p><p><strong>Results: </strong>The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all).</p><p><strong>Conclusion: </strong>This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1104"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s11033-024-10040-7
Pooja Gupta, Bibekanand Mallick
Background: MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms.
Methods and results: We quantified the expression of miR-128-3p and its target genes using qRT-PCR, followed by a series of functional assays in vitro, such as proliferation and migration assays, flow cytometry analysis, and western blotting to unravel the mechanisms underlying the functions of miR-128-3p. Additionally, we validated the ability of miR-128-3p to target MAP2K7 genes through luciferase reporter assays. We observed that increased expression of miR-128-3p significantly inhibited TSCC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), possibly by regulating MAP2K7 in the JNK/MAP kinase pathway through miRNA target binding. Furthermore, we showed that increased miR-128-3p levels enhanced the sensitivity of TSCC cells to CIS through the JNK/c-Jun cascade. We observed that miR-128-3p reduces the expression of c-Jun and ABC transporter genes by targeting MAP2K7, affecting JNK1/2. This inhibition possibly decreases drug efflux and thus enhances the TSCC sensitivity to CIS treatment.
Conclusions: Our findings demonstrate oncosuppressive behaviour of miR-128-3p, which also potentially enhances the sensitivity of TSCC cells to CIS by suppressing MAP2K7 and JNK1/2, leading to evasion of apoptosis.
{"title":"miR-128-3p suppresses tumor growth and enhances chemosensitivity in tongue squamous cell carcinoma through MAP2K7 targeting.","authors":"Pooja Gupta, Bibekanand Mallick","doi":"10.1007/s11033-024-10040-7","DOIUrl":"10.1007/s11033-024-10040-7","url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms.</p><p><strong>Methods and results: </strong>We quantified the expression of miR-128-3p and its target genes using qRT-PCR, followed by a series of functional assays in vitro, such as proliferation and migration assays, flow cytometry analysis, and western blotting to unravel the mechanisms underlying the functions of miR-128-3p. Additionally, we validated the ability of miR-128-3p to target MAP2K7 genes through luciferase reporter assays. We observed that increased expression of miR-128-3p significantly inhibited TSCC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), possibly by regulating MAP2K7 in the JNK/MAP kinase pathway through miRNA target binding. Furthermore, we showed that increased miR-128-3p levels enhanced the sensitivity of TSCC cells to CIS through the JNK/c-Jun cascade. We observed that miR-128-3p reduces the expression of c-Jun and ABC transporter genes by targeting MAP2K7, affecting JNK1/2. This inhibition possibly decreases drug efflux and thus enhances the TSCC sensitivity to CIS treatment.</p><p><strong>Conclusions: </strong>Our findings demonstrate oncosuppressive behaviour of miR-128-3p, which also potentially enhances the sensitivity of TSCC cells to CIS by suppressing MAP2K7 and JNK1/2, leading to evasion of apoptosis.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1107"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s11033-024-10052-3
Dalia M Aboelhassan, Hesham Abozaid
CRISPR-Cas9 has emerged as a powerful tool in livestock breeding, enabling precise genetic modifications to address genetic diseases, enhance productivity, and develop disease-resistant animal breeds. A thorough analysis of previous research highlights the potential of CRISPR-Cas9 in overcoming genetic disorders by targeting specific mutations in genes. Furthermore, its integration with reproductive biotechnologies and genomic selection facilitates the production of gene-edited animals with high genomic value, contributing to genetic enhancement and improved productivity. Additionally, CRISPR-Cas9 opens new avenues for developing disease-resistant livestock and creating innovative breeding models for high-quality production. A key trend in the field is the development of multi-sgRNA vectors to correct mutations in various genes linked to productivity traits or certain diseases within individual genomes, thereby increasing resistance in animals. However, despite the potential advantages of CRISPR-Cas9, public acceptance of genetically modified agricultural products remains uncertain. Would consumers be willing to purchase such products? It is essential to advocate for bold and innovative research into genetically edited animals, with a focus on safety, careful promotion, and strict regulatory oversight to align with long-term goals and public acceptance. Continued advancements in this technology and its underlying mechanisms promise to improve poultry products and genetically modified livestock. Overall, CRISPR-Cas9 technology offers a promising pathway for advancing livestock breeding practices, with opportunities for genetic improvement, enhanced disease resistance, and greater productivity.
{"title":"Opportunities for CRISPR-Cas9 application in farm animal genetic improvement.","authors":"Dalia M Aboelhassan, Hesham Abozaid","doi":"10.1007/s11033-024-10052-3","DOIUrl":"https://doi.org/10.1007/s11033-024-10052-3","url":null,"abstract":"<p><p>CRISPR-Cas9 has emerged as a powerful tool in livestock breeding, enabling precise genetic modifications to address genetic diseases, enhance productivity, and develop disease-resistant animal breeds. A thorough analysis of previous research highlights the potential of CRISPR-Cas9 in overcoming genetic disorders by targeting specific mutations in genes. Furthermore, its integration with reproductive biotechnologies and genomic selection facilitates the production of gene-edited animals with high genomic value, contributing to genetic enhancement and improved productivity. Additionally, CRISPR-Cas9 opens new avenues for developing disease-resistant livestock and creating innovative breeding models for high-quality production. A key trend in the field is the development of multi-sgRNA vectors to correct mutations in various genes linked to productivity traits or certain diseases within individual genomes, thereby increasing resistance in animals. However, despite the potential advantages of CRISPR-Cas9, public acceptance of genetically modified agricultural products remains uncertain. Would consumers be willing to purchase such products? It is essential to advocate for bold and innovative research into genetically edited animals, with a focus on safety, careful promotion, and strict regulatory oversight to align with long-term goals and public acceptance. Continued advancements in this technology and its underlying mechanisms promise to improve poultry products and genetically modified livestock. Overall, CRISPR-Cas9 technology offers a promising pathway for advancing livestock breeding practices, with opportunities for genetic improvement, enhanced disease resistance, and greater productivity.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1108"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s11033-024-10034-5
Hamidreza Saeidi, Mohsen Sarafbidabad
Despite recent advancements in the treatment of metastatic castrate-resistant prostate cancer (mCRPC), this disease remains lethal. A novel family of targeted pharmaceuticals known as poly-ADP-ribose polymerase (PARP) inhibitors has been developed to treat mCRPC patients with homologous recombination repair (HRR) gene alterations. The FDA recently approved olaparib and rucaparib for treating mCRPC patients with HRR gene alterations. Ongoing trials are investigating combination therapies involving PARP inhibitors combined with radiation, chemotherapy, immunotherapy, and androgen receptor signaling inhibitors (ARSIs) to improve the effectiveness of PARP inhibitors and broaden the range of patients who can benefit from the treatment. This review provides an overview of the development of PARP inhibitors in prostate cancer and analyzes the mechanisms underlying their resistance.
{"title":"PARP inhibitors in prostate cancer: clinical applications.","authors":"Hamidreza Saeidi, Mohsen Sarafbidabad","doi":"10.1007/s11033-024-10034-5","DOIUrl":"10.1007/s11033-024-10034-5","url":null,"abstract":"<p><p>Despite recent advancements in the treatment of metastatic castrate-resistant prostate cancer (mCRPC), this disease remains lethal. A novel family of targeted pharmaceuticals known as poly-ADP-ribose polymerase (PARP) inhibitors has been developed to treat mCRPC patients with homologous recombination repair (HRR) gene alterations. The FDA recently approved olaparib and rucaparib for treating mCRPC patients with HRR gene alterations. Ongoing trials are investigating combination therapies involving PARP inhibitors combined with radiation, chemotherapy, immunotherapy, and androgen receptor signaling inhibitors (ARSIs) to improve the effectiveness of PARP inhibitors and broaden the range of patients who can benefit from the treatment. This review provides an overview of the development of PARP inhibitors in prostate cancer and analyzes the mechanisms underlying their resistance.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1103"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1007/s11033-024-10056-z
Kai Liu, Nan Xie
Background: The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis.
Methods and results: We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs.
Conclusions: The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.
{"title":"Full-length transcriptome assembly of black amur bream (Megalobrama terminalis) as a reference resource.","authors":"Kai Liu, Nan Xie","doi":"10.1007/s11033-024-10056-z","DOIUrl":"https://doi.org/10.1007/s11033-024-10056-z","url":null,"abstract":"<p><strong>Background: </strong>The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis.</p><p><strong>Methods and results: </strong>We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs.</p><p><strong>Conclusions: </strong>The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1101"},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
{"title":"TLR-4: a promising target for chemotherapy-induced peripheral neuropathy.","authors":"Nagendra Babu, Anagha Gadepalli, Akhilesh, Dilip Sharma, Anurag Kumar Singh, Deepak Chouhan, Somesh Agrawal, Vinod Tiwari","doi":"10.1007/s11033-024-10038-1","DOIUrl":"https://doi.org/10.1007/s11033-024-10038-1","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1099"},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1007/s11033-024-10048-z
Ankan Chakrabarti, Saikat Majumder, Apurba Sarkar, Tapan Majumdar
Introduction: From 2020, with advent of COVID-19 pandemic, Tripura has experienced SARS-CoV-2 viral evolution in accordance with other parts of India. Since January 2022, the Omicron variant of SARS-CoV-2 virus became the predominant lineage circulating in India and neighboring countries. This study characterizes the viral genome of the omicron variant circulating in the state since its inception to June, 2023.
Methods and results: The current study was performed on nasopharyngeal and oropharyngeal samples received from the various departments of AGMC, as well as eight district hospitals from Tripura. The positive samples with a cycle threshold value of 25 or less for the E and/or N gene were considered for whole genome sequencing using Illumina Miseq NGS platform. Majority of the sequences belonged to Clade 21 L, with BA.5.2 being the major sub variant detected during the study period. Majority of the mutations were detected in the Spike protein region, including L24-, P25-, P26-, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, S477N, T478K, Q498R, Y505H, Q954H and N969K. All the sequences uniquely showed the mutations A27S and G142D in N terminal domain in Spike protein, not being reported from other Indian sequences like BA.5 variants. T9I, A63T and P13L were major substitutions in E, M and N protein regions respectively. Escape of mutants from vaccine induced immunity was mostly observed in BA.2 sub variants, majority endowed with the triplet mutation of K417N + E484K + N501Y.
Conclusion: The current study indicates that Omicron variants circulating in the state of Tripura is comparable to other regions of India and the neighbouring country of Bangladesh. Genetic mutations increasing viral transmissibility have been identified in the circulating viral genomes.
{"title":"Characterization of the viral genome of Omicron variants of SARS-CoV-2 circulating in Tripura, a remote frontier state in Northeastern India.","authors":"Ankan Chakrabarti, Saikat Majumder, Apurba Sarkar, Tapan Majumdar","doi":"10.1007/s11033-024-10048-z","DOIUrl":"https://doi.org/10.1007/s11033-024-10048-z","url":null,"abstract":"<p><strong>Introduction: </strong>From 2020, with advent of COVID-19 pandemic, Tripura has experienced SARS-CoV-2 viral evolution in accordance with other parts of India. Since January 2022, the Omicron variant of SARS-CoV-2 virus became the predominant lineage circulating in India and neighboring countries. This study characterizes the viral genome of the omicron variant circulating in the state since its inception to June, 2023.</p><p><strong>Methods and results: </strong>The current study was performed on nasopharyngeal and oropharyngeal samples received from the various departments of AGMC, as well as eight district hospitals from Tripura. The positive samples with a cycle threshold value of 25 or less for the E and/or N gene were considered for whole genome sequencing using Illumina Miseq NGS platform. Majority of the sequences belonged to Clade 21 L, with BA.5.2 being the major sub variant detected during the study period. Majority of the mutations were detected in the Spike protein region, including L24-, P25-, P26-, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, S477N, T478K, Q498R, Y505H, Q954H and N969K. All the sequences uniquely showed the mutations A27S and G142D in N terminal domain in Spike protein, not being reported from other Indian sequences like BA.5 variants. T9I, A63T and P13L were major substitutions in E, M and N protein regions respectively. Escape of mutants from vaccine induced immunity was mostly observed in BA.2 sub variants, majority endowed with the triplet mutation of K417N + E484K + N501Y.</p><p><strong>Conclusion: </strong>The current study indicates that Omicron variants circulating in the state of Tripura is comparable to other regions of India and the neighbouring country of Bangladesh. Genetic mutations increasing viral transmissibility have been identified in the circulating viral genomes.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1100"},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1007/s11033-024-10030-9
Riwa Mahai, Shasha Sheng, Xiaoyun Wang, Jun Yuan, Zejing Mu
Background: The Asteraceae family, the largest and one of the most diverse families of angiosperms, presents significant challenges in taxonomic classification and systematic research due to its vast species diversity and morphological complexity. A comprehensive understanding of the chloroplast genomes within this family is essential for refining taxonomic classifications and advancing phylogenetic studies.
Methods and results: In this study, we sequenced the complete chloroplast genomes of 14 Asteraceae species and conducted a thorough bioinformatic analysis of their characteristics. The chloroplast genomes, ranging from 150,907 bp to 152,858 bp, exhibit a typical quadripartite structure: a large single-copy (LSC) region (83,044 bp to 84,625 bp), a small single-copy (SSC) region (18,223 bp to 18,673 bp), and a pair of inverted repeats (IRs) (24,806 bp to 25,201 bp). These genomes encode 87 to 89 protein-coding genes (PCGs), 36 to 37 tRNA genes, and 8 rRNA genes, with high conservation in size, structure, gene content, and order. Comparative analysis with other Asteraceae species' chloroplast genomes revealed notable similarities and structural variations, particularly in the IR regions. Nucleotide polymorphism analysis identified four genes-trnY-GUA, trnE-UUC, ycf1, and rrn23-with higher Pi values, suggesting potential hotspots for evolutionary studies. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) approaches provided new insights, proposing the reclassification of Himalaiella auriculata and Jacobaea raphanifolia as independent genera, distinct from Saussurea and Senecio.
Conclusions: This study presents a comprehensive analysis of the chloroplast genome structures and phylogenetic relationships of 14 Asteraceae species, offering critical data for future molecular identification, evolutionary biology, and population genetics research. The findings hold significant implications for the ongoing refinement of Asteraceae taxonomic classifications and enhance our understanding of the evolutionary dynamics within this complex family.
背景:菊科是被子植物中最大和最多样化的科之一,由于其物种的多样性和形态的复杂性,给分类和系统研究带来了巨大的挑战。全面了解该科的叶绿体基因组对于完善分类学分类和推进系统发育研究至关重要:在这项研究中,我们对 14 个菊科物种的叶绿体基因组进行了测序,并对其特征进行了全面的生物信息学分析。这些叶绿体基因组的长度从 150,907 bp 到 152,858 bp 不等,呈现典型的四方结构:一个大的单拷贝(LSC)区(83,044 bp 到 84,625 bp)、一个小的单拷贝(SSC)区(18,223 bp 到 18,673 bp)和一对反向重复序列(IRs)(24,806 bp 到 25,201 bp)。这些基因组编码 87 至 89 个蛋白质编码基因 (PCGs)、36 至 37 个 tRNA 基因和 8 个 rRNA 基因,在大小、结构、基因含量和排列顺序上都有高度的一致性。与其他菊科植物叶绿体基因组的比较分析表明,这些基因组具有显著的相似性和结构差异,尤其是在IR区域。核苷酸多态性分析发现四个基因--trnY-GUA、trnE-UUC、ycf1和rrn23--具有较高的Pi值,为进化研究提供了潜在的热点。利用最大似然法(ML)和贝叶斯推断法(BI)进行的系统发生分析提供了新的见解,提出将 Himalaiella auriculata 和 Jacobaea raphanifolia 重新分类为独立的属,与 Saussurea 和 Senecio 区分开来:本研究对 14 个菊科物种的叶绿体基因组结构和系统发育关系进行了全面分析,为未来的分子鉴定、进化生物学和种群遗传学研究提供了重要数据。研究结果对不断完善菊科植物的分类学意义重大,并加深了我们对这一复杂家族内部进化动态的了解。
{"title":"Comparative analysis of complete chloroplast genomes of 14 Asteraceae species.","authors":"Riwa Mahai, Shasha Sheng, Xiaoyun Wang, Jun Yuan, Zejing Mu","doi":"10.1007/s11033-024-10030-9","DOIUrl":"https://doi.org/10.1007/s11033-024-10030-9","url":null,"abstract":"<p><strong>Background: </strong>The Asteraceae family, the largest and one of the most diverse families of angiosperms, presents significant challenges in taxonomic classification and systematic research due to its vast species diversity and morphological complexity. A comprehensive understanding of the chloroplast genomes within this family is essential for refining taxonomic classifications and advancing phylogenetic studies.</p><p><strong>Methods and results: </strong>In this study, we sequenced the complete chloroplast genomes of 14 Asteraceae species and conducted a thorough bioinformatic analysis of their characteristics. The chloroplast genomes, ranging from 150,907 bp to 152,858 bp, exhibit a typical quadripartite structure: a large single-copy (LSC) region (83,044 bp to 84,625 bp), a small single-copy (SSC) region (18,223 bp to 18,673 bp), and a pair of inverted repeats (IRs) (24,806 bp to 25,201 bp). These genomes encode 87 to 89 protein-coding genes (PCGs), 36 to 37 tRNA genes, and 8 rRNA genes, with high conservation in size, structure, gene content, and order. Comparative analysis with other Asteraceae species' chloroplast genomes revealed notable similarities and structural variations, particularly in the IR regions. Nucleotide polymorphism analysis identified four genes-trnY-GUA, trnE-UUC, ycf1, and rrn23-with higher Pi values, suggesting potential hotspots for evolutionary studies. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) approaches provided new insights, proposing the reclassification of Himalaiella auriculata and Jacobaea raphanifolia as independent genera, distinct from Saussurea and Senecio.</p><p><strong>Conclusions: </strong>This study presents a comprehensive analysis of the chloroplast genome structures and phylogenetic relationships of 14 Asteraceae species, offering critical data for future molecular identification, evolutionary biology, and population genetics research. The findings hold significant implications for the ongoing refinement of Asteraceae taxonomic classifications and enhance our understanding of the evolutionary dynamics within this complex family.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1094"},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1007/s11033-024-10031-8
Muhammad Usama Younas, Muhammad Qasim, Irshad Ahmad, Zhiming Feng, Rashid Iqbal, Xiaohong Jiang, Shimin Zuo
Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.
稻瘟病由真菌 Magnaporthe oryzae(同属 Pyricularia oryzae)引起,是水稻种植中的一个主要问题,也是最严重的真菌病害之一。克隆和鉴定水稻中的抗病基因,以及全面研究 M. oryzae 与水稻之间的相互作用,可以深入了解水稻的抗病机制,促进培育具有改良种质的水稻新品种。这些努力对于保护粮食安全至关重要。本综述探讨了过去十年间发现的水稻抗病或易感 M. oryzae 的基因。综述还讨论了分子机制知识在水稻育种中的应用,并概述了培育抗这种病害的水稻品种的关键策略。所讨论的策略包括基因金字塔、分子设计育种、编辑易感基因以及通过病原体挑战提高抗性基因的表达。我们探讨了稻瘟病抗性育种的前景和挑战,强调需要充分利用种质资源,采用前沿方法鉴定新的抗性基因,并开发创新的育种品种。此外,我们还强调了了解稻瘟病抗性分子基础和开发具有广谱抗病性的新型栽培品种的重要性。
{"title":"Exploring the molecular mechanisms of rice blast resistance and advances in breeding for disease tolerance.","authors":"Muhammad Usama Younas, Muhammad Qasim, Irshad Ahmad, Zhiming Feng, Rashid Iqbal, Xiaohong Jiang, Shimin Zuo","doi":"10.1007/s11033-024-10031-8","DOIUrl":"https://doi.org/10.1007/s11033-024-10031-8","url":null,"abstract":"<p><p>Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1093"},"PeriodicalIF":2.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}