Pub Date : 2024-06-20DOI: 10.1038/s41550-024-02311-x
Bishwanath Gaire
{"title":"The Sun: solar dynamo located near the surface","authors":"Bishwanath Gaire","doi":"10.1038/s41550-024-02311-x","DOIUrl":"10.1038/s41550-024-02311-x","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 6","pages":"684-684"},"PeriodicalIF":12.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanophase iron particles (npFe0) are generated on the surface of airless bodies by space weathering and can alter surficial optical properties substantially. However, the details of their formation pathways are still unclear. Here we use impact glasses returned from the Moon by Chang’e-5 to distinguish the relative contributions of solar wind irradiation and (micro)meteorites impacts to the production of different-sized npFe0. We show that solar wind irradiation can solely produce small npFe0, via implantation of solar wind ions into the topmost grain surfaces. On the other hand, (micro)meteorite impacts produce directly large npFe0 in melts, through impact-triggered disproportionation reaction or thermal decomposition. These nanoparticles are also capable to further coalesce into micrometre-sized Fe0 particles during impacts. These findings can help in predicting the space-weathering behaviour of regions exposed to different space environments. A lunar glass bead can preserve nanophase iron (npFe0) of varying sizes via multiple mechanisms. The formation of small and large npFe0 with distinct weathering effects is independently governed by solar wind irradiation and micrometeorite impacts.
{"title":"Separate effects of irradiation and impacts on lunar metallic iron formation observed in Chang’e-5 samples","authors":"Laiquan Shen, Rui Zhao, Chao Chang, Jihao Yu, Dongdong Xiao, Haiyang Bai, Zhigang Zou, Mengfei Yang, Weihua Wang","doi":"10.1038/s41550-024-02300-0","DOIUrl":"10.1038/s41550-024-02300-0","url":null,"abstract":"Nanophase iron particles (npFe0) are generated on the surface of airless bodies by space weathering and can alter surficial optical properties substantially. However, the details of their formation pathways are still unclear. Here we use impact glasses returned from the Moon by Chang’e-5 to distinguish the relative contributions of solar wind irradiation and (micro)meteorites impacts to the production of different-sized npFe0. We show that solar wind irradiation can solely produce small npFe0, via implantation of solar wind ions into the topmost grain surfaces. On the other hand, (micro)meteorite impacts produce directly large npFe0 in melts, through impact-triggered disproportionation reaction or thermal decomposition. These nanoparticles are also capable to further coalesce into micrometre-sized Fe0 particles during impacts. These findings can help in predicting the space-weathering behaviour of regions exposed to different space environments. A lunar glass bead can preserve nanophase iron (npFe0) of varying sizes via multiple mechanisms. The formation of small and large npFe0 with distinct weathering effects is independently governed by solar wind irradiation and micrometeorite impacts.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 9","pages":"1110-1118"},"PeriodicalIF":12.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1038/s41550-024-02291-y
A. Marino, C. Dehman, K. Kovlakas, N. Rea, J. A. Pons, D. Viganò
Neutron stars are the dense and highly magnetic relics of supernova explosions of massive stars. The quest to constrain the equation of state (EOS) of ultradense matter and thereby probe the behaviour of matter inside neutron stars is one of the core goals of modern physics and astrophysics. A promising method involves investigating the long-term cooling of neutron stars, comparing theoretical predictions with various sources at different ages. However, limited observational data, and uncertainties in source ages and distances, have hindered this approach. Here, by re-analysing XMM-Newton and Chandra data from dozens of thermally emitting isolated neutron stars, we have identified three sources with unexpectedly cold surface temperatures for their young ages. To investigate these anomalies, we conducted magneto-thermal simulations across diverse mass and magnetic fields, considering three different EOSs. We found that the ’minimal’ cooling model failed to explain the observations, regardless of the mass and the magnetic field, as validated by a machine learning classification method. The existence of these young cold neutron stars suggests that any dense matter EOS must be compatible with a fast cooling process at least in certain mass ranges, eliminating a significant portion of current EOS options according to recent meta-modelling analysis. The quest to understand the composition of neutron stars is a major challenge of modern physics. Here three isolated, young and cold neutron stars have been identified, showing how extremely dense matter can cool rapidly after a supernova explosion.
{"title":"Constraints on the dense matter equation of state from young and cold isolated neutron stars","authors":"A. Marino, C. Dehman, K. Kovlakas, N. Rea, J. A. Pons, D. Viganò","doi":"10.1038/s41550-024-02291-y","DOIUrl":"10.1038/s41550-024-02291-y","url":null,"abstract":"Neutron stars are the dense and highly magnetic relics of supernova explosions of massive stars. The quest to constrain the equation of state (EOS) of ultradense matter and thereby probe the behaviour of matter inside neutron stars is one of the core goals of modern physics and astrophysics. A promising method involves investigating the long-term cooling of neutron stars, comparing theoretical predictions with various sources at different ages. However, limited observational data, and uncertainties in source ages and distances, have hindered this approach. Here, by re-analysing XMM-Newton and Chandra data from dozens of thermally emitting isolated neutron stars, we have identified three sources with unexpectedly cold surface temperatures for their young ages. To investigate these anomalies, we conducted magneto-thermal simulations across diverse mass and magnetic fields, considering three different EOSs. We found that the ’minimal’ cooling model failed to explain the observations, regardless of the mass and the magnetic field, as validated by a machine learning classification method. The existence of these young cold neutron stars suggests that any dense matter EOS must be compatible with a fast cooling process at least in certain mass ranges, eliminating a significant portion of current EOS options according to recent meta-modelling analysis. The quest to understand the composition of neutron stars is a major challenge of modern physics. Here three isolated, young and cold neutron stars have been identified, showing how extremely dense matter can cool rapidly after a supernova explosion.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 8","pages":"1020-1030"},"PeriodicalIF":12.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1038/s41550-024-02295-8
Jeremy Heyl, Victor Doroshenko, Denis González-Caniulef, Ilaria Caiazzo, Juri Poutanen, Alexander Mushtukov, Sergey S. Tsygankov, Demet Kirmizibayrak, Matteo Bachetti, George G. Pavlov, Sofia V. Forsblom, Christian Malacaria, Valery F. Suleimanov, Iván Agudo, Lucio Angelo Antonelli, Luca Baldini, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Niccolò Bucciantini, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Enrico Costa, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Niccolò Di Lalla, Alessandro Di Marco, Immacolata Donnarumma, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Riccardo Ferrazzoli, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Philip Kaaret, Vladimir Karas, Fabian Kislat, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Frédéric Marin, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Francesco Massaro, Giorgio Matt, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Fabio Muleri, Michela Negro, C.-Y. Ng, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, Abel Lawrence Peirson, Matteo Perri, Melissa Pesce-Rollins, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver J. Roberts, Roger W. Romani, Carmelo Sgrò, Patrick Slane, Paolo Soffitta, Gloria Spandre, Douglas A. Swartz, Toru Tamagawa, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Roberto Turolla, Jacco Vink, Martin C. Weisskopf, Kinwah Wu, Fei Xie, Silvia Zane
In an accreting X-ray pulsar, a neutron star accretes matter from a companion star through an accretion disk. The magnetic field of the rotating neutron star disrupts the inner edge of the disk, funnelling the gas to flow onto the poles on its surface. Hercules X-1 is a prototypical persistent X-ray pulsar about 7 kpc from Earth. Its emission varies on three distinct timescales: the neutron star rotates every 1.2 s, it is eclipsed by its companion each 1.7 d, and the system exhibits a superorbital period of 35 d, which has remained stable since its discovery. Several lines of evidence point to the source of this variation as the precession of the accretion disk or that of the neutron star. Despite the many hints over the past 50 yr, the precession of the neutron star itself has yet not been confirmed or refuted. X-ray polarization measurements (probing the spin geometry of Her X-1) with the Imaging X-ray Polarimetry Explorer suggest that free precession of the neutron star crust sets the 35 d period; this has the important implication that its crust is somewhat asymmetric by a few parts per ten million. IXPE has revealed how the spin of the accreting neutron star Hercules X-1 changes in three dimensions. The spin axis of the star moves both through the star and across the sky, hinting that the crust of the star is asymmetric by almost one part in a million.
在吸积 X 射线脉冲星中,一颗中子星通过吸积盘吸积来自伴星的物质。旋转的中子星的磁场破坏了吸积盘的内缘,使气体流向吸积盘表面的两极。海格力斯 X-1 是一颗典型的持续 X 射线脉冲星,距离地球约 7 kpc。它的发射在三个不同的时间尺度上变化:中子星每 1.2 秒旋转一次,它每 1.7 天被其伴星食一次,该系统显示出 35 天的超轨道周期,自发现以来一直保持稳定。一些证据表明,这种变化的来源是吸积盘或中子星的前向运动。尽管在过去的 50 年中出现了许多暗示,但中子星本身的前摄动尚未得到证实或反驳。利用成像 X 射线偏振探测仪进行的 X 射线偏振测量(探测 Her X-1 的自旋几何)表明,中子星外壳的自由前冲设定了 35 d 周期;这具有重要的含义,即其外壳在某种程度上是不对称的,为千万分之几。
{"title":"Complex rotational dynamics of the neutron star in Hercules X-1 revealed by X-ray polarization","authors":"Jeremy Heyl, Victor Doroshenko, Denis González-Caniulef, Ilaria Caiazzo, Juri Poutanen, Alexander Mushtukov, Sergey S. Tsygankov, Demet Kirmizibayrak, Matteo Bachetti, George G. Pavlov, Sofia V. Forsblom, Christian Malacaria, Valery F. Suleimanov, Iván Agudo, Lucio Angelo Antonelli, Luca Baldini, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Niccolò Bucciantini, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Enrico Costa, Alessandra De Rosa, Ettore Del Monte, Laura Di Gesu, Niccolò Di Lalla, Alessandro Di Marco, Immacolata Donnarumma, Michal Dovčiak, Steven R. Ehlert, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Riccardo Ferrazzoli, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Wataru Iwakiri, Svetlana G. Jorstad, Philip Kaaret, Vladimir Karas, Fabian Kislat, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Frédéric Marin, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Francesco Massaro, Giorgio Matt, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Fabio Muleri, Michela Negro, C.-Y. Ng, Stephen L. O’Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, Abel Lawrence Peirson, Matteo Perri, Melissa Pesce-Rollins, Pierre-Olivier Petrucci, Maura Pilia, Andrea Possenti, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver J. Roberts, Roger W. Romani, Carmelo Sgrò, Patrick Slane, Paolo Soffitta, Gloria Spandre, Douglas A. Swartz, Toru Tamagawa, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Roberto Turolla, Jacco Vink, Martin C. Weisskopf, Kinwah Wu, Fei Xie, Silvia Zane","doi":"10.1038/s41550-024-02295-8","DOIUrl":"10.1038/s41550-024-02295-8","url":null,"abstract":"In an accreting X-ray pulsar, a neutron star accretes matter from a companion star through an accretion disk. The magnetic field of the rotating neutron star disrupts the inner edge of the disk, funnelling the gas to flow onto the poles on its surface. Hercules X-1 is a prototypical persistent X-ray pulsar about 7 kpc from Earth. Its emission varies on three distinct timescales: the neutron star rotates every 1.2 s, it is eclipsed by its companion each 1.7 d, and the system exhibits a superorbital period of 35 d, which has remained stable since its discovery. Several lines of evidence point to the source of this variation as the precession of the accretion disk or that of the neutron star. Despite the many hints over the past 50 yr, the precession of the neutron star itself has yet not been confirmed or refuted. X-ray polarization measurements (probing the spin geometry of Her X-1) with the Imaging X-ray Polarimetry Explorer suggest that free precession of the neutron star crust sets the 35 d period; this has the important implication that its crust is somewhat asymmetric by a few parts per ten million. IXPE has revealed how the spin of the accreting neutron star Hercules X-1 changes in three dimensions. The spin axis of the star moves both through the star and across the sky, hinting that the crust of the star is asymmetric by almost one part in a million.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 8","pages":"1047-1053"},"PeriodicalIF":12.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1038/s41550-024-02280-1
Although stars and galaxies have developed over time, it seems that supermassive black holes already existed at the ‘cosmic dawn’ of the Universe. Analysis of the mid-infrared spectrum of an early quasar (a quasi-stellar object powered by a black hole) suggests that supermassive black holes and their feeding mechanisms were already completely mature when the Universe was 5% of its present age.
{"title":"JWST confirms that quasars do not evolve across cosmic time","authors":"","doi":"10.1038/s41550-024-02280-1","DOIUrl":"10.1038/s41550-024-02280-1","url":null,"abstract":"Although stars and galaxies have developed over time, it seems that supermassive black holes already existed at the ‘cosmic dawn’ of the Universe. Analysis of the mid-infrared spectrum of an early quasar (a quasi-stellar object powered by a black hole) suggests that supermassive black holes and their feeding mechanisms were already completely mature when the Universe was 5% of its present age.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 8","pages":"951-952"},"PeriodicalIF":12.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1038/s41550-024-02273-0
Sarah E. I. Bosman, Javier Álvarez-Márquez, Luis Colina, Fabian Walter, Almudena Alonso-Herrero, Martin J. Ward, Göran Östlin, Thomas R. Greve, Gillian Wright, Arjan Bik, Leindert Boogaard, Karina Caputi, Luca Costantin, Andreas Eckart, Macarena García-Marín, Steven Gillman, Jens Hjorth, Edoardo Iani, Olivier Ilbert, Iris Jermann, Alvaro Labiano, Danial Langeroodi, Florian Peißker, Pierluigi Rinaldi, Martin Topinka, Paul van der Werf, Manuel Güdel, Thomas Henning, Pierre-Olivier Lagage, Tom P. Ray, Ewine F. van Dishoeck, Bart Vandenbussche
The rapid assembly of the first supermassive black holes is an enduring mystery. Until now, it was not known whether quasar ‘feeding’ structures (the ‘hot torus’) could assemble as fast as the smaller-scale quasar structures. We present JWST/MRS (rest-frame infrared) spectroscopic observations of the quasar J1120+0641 at z = 7.0848 (well within the epoch of reionization). The hot torus dust was clearly detected at λrest ≃ 1.3 μm, with a black-body temperature of $${T}_{{{{rm{dust}}}}}=text{1,413.5}_{-7.4}^{+5.7}$$ K, slightly elevated compared to similarly luminous quasars at lower redshifts. Importantly, the supermassive black hole mass of J1120+0641 based on the Hα line (accessible only with JWST), MBH = 1.52 ± 0.17 × 109 M⊙, is in good agreement with previous ground-based rest-frame ultraviolet Mg ii measurements. Comparing the ratios of the Hα, Paα and Paβ emission lines to predictions from a simple one-phase Cloudy model, we find that they are consistent with originating from a common broad-line region with physical parameters that are consistent with lower-redshift quasars. Together, this implies that J1120+0641’s accretion structures must have assembled very quickly, as they appear fully ‘mature’ less than 760 Myr after the Big Bang. A JWST/MIRI spectrum of an early quasar in the mid-infrared indicates that J1120+0641 had a mature feeding structure 760 Myr after the Big Bang. This finding suggests that supermassive black holes and their torii build up surprisingly quickly.
{"title":"A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy","authors":"Sarah E. I. Bosman, Javier Álvarez-Márquez, Luis Colina, Fabian Walter, Almudena Alonso-Herrero, Martin J. Ward, Göran Östlin, Thomas R. Greve, Gillian Wright, Arjan Bik, Leindert Boogaard, Karina Caputi, Luca Costantin, Andreas Eckart, Macarena García-Marín, Steven Gillman, Jens Hjorth, Edoardo Iani, Olivier Ilbert, Iris Jermann, Alvaro Labiano, Danial Langeroodi, Florian Peißker, Pierluigi Rinaldi, Martin Topinka, Paul van der Werf, Manuel Güdel, Thomas Henning, Pierre-Olivier Lagage, Tom P. Ray, Ewine F. van Dishoeck, Bart Vandenbussche","doi":"10.1038/s41550-024-02273-0","DOIUrl":"10.1038/s41550-024-02273-0","url":null,"abstract":"The rapid assembly of the first supermassive black holes is an enduring mystery. Until now, it was not known whether quasar ‘feeding’ structures (the ‘hot torus’) could assemble as fast as the smaller-scale quasar structures. We present JWST/MRS (rest-frame infrared) spectroscopic observations of the quasar J1120+0641 at z = 7.0848 (well within the epoch of reionization). The hot torus dust was clearly detected at λrest ≃ 1.3 μm, with a black-body temperature of $${T}_{{{{rm{dust}}}}}=text{1,413.5}_{-7.4}^{+5.7}$$ K, slightly elevated compared to similarly luminous quasars at lower redshifts. Importantly, the supermassive black hole mass of J1120+0641 based on the Hα line (accessible only with JWST), MBH = 1.52 ± 0.17 × 109 M⊙, is in good agreement with previous ground-based rest-frame ultraviolet Mg ii measurements. Comparing the ratios of the Hα, Paα and Paβ emission lines to predictions from a simple one-phase Cloudy model, we find that they are consistent with originating from a common broad-line region with physical parameters that are consistent with lower-redshift quasars. Together, this implies that J1120+0641’s accretion structures must have assembled very quickly, as they appear fully ‘mature’ less than 760 Myr after the Big Bang. A JWST/MIRI spectrum of an early quasar in the mid-infrared indicates that J1120+0641 had a mature feeding structure 760 Myr after the Big Bang. This finding suggests that supermassive black holes and their torii build up surprisingly quickly.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 8","pages":"1054-1065"},"PeriodicalIF":12.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1038/s41550-024-02293-w
David Trang, Christina E. Swafford, Tamar A. Kreps, Steven D. Vance, Jemma Davidson, Justin Filiberto, Lillian R. Ostrach, Christina R. Richey
There is a growing recognition of a mental health crisis within the academic and research communities. Members of the planetary science community have called for healthier work environments to improve mental well-being. As a preliminary step towards improving workplace culture, we sought to determine whether the broader mental health crisis extends to planetary science and to assess the severity of anxiety, depressive and stress symptoms. Our 2022 mental health survey of the planetary science community suggests that the severity of anxiety and depressive symptoms in the community is greater than in the general US population. Furthermore, anxiety and depressive symptoms are more severe for graduate students and postdoctoral researchers than any other career stage. Comparing groups within planetary science, we found that anxiety, depressive and/or stress symptoms appear greater among marginalized groups, such as women, people of colour and members of the LGBTQ+ community. A mental health problem is impacting the planetary science community. Improving well-being will promote enhanced research quality and productivity. Anxiety, depression and stress are significantly more present in the planetary science community than in the general US population. More marginalized demographics, such as sexual and gender minorities, early career researchers, and people of colour or multiracial people, are especially affected.
{"title":"A survey of the severity of mental health symptoms in the planetary science community","authors":"David Trang, Christina E. Swafford, Tamar A. Kreps, Steven D. Vance, Jemma Davidson, Justin Filiberto, Lillian R. Ostrach, Christina R. Richey","doi":"10.1038/s41550-024-02293-w","DOIUrl":"10.1038/s41550-024-02293-w","url":null,"abstract":"There is a growing recognition of a mental health crisis within the academic and research communities. Members of the planetary science community have called for healthier work environments to improve mental well-being. As a preliminary step towards improving workplace culture, we sought to determine whether the broader mental health crisis extends to planetary science and to assess the severity of anxiety, depressive and stress symptoms. Our 2022 mental health survey of the planetary science community suggests that the severity of anxiety and depressive symptoms in the community is greater than in the general US population. Furthermore, anxiety and depressive symptoms are more severe for graduate students and postdoctoral researchers than any other career stage. Comparing groups within planetary science, we found that anxiety, depressive and/or stress symptoms appear greater among marginalized groups, such as women, people of colour and members of the LGBTQ+ community. A mental health problem is impacting the planetary science community. Improving well-being will promote enhanced research quality and productivity. Anxiety, depression and stress are significantly more present in the planetary science community than in the general US population. More marginalized demographics, such as sexual and gender minorities, early career researchers, and people of colour or multiracial people, are especially affected.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 6","pages":"691-696"},"PeriodicalIF":12.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rotation is an intrinsic property of stars and provides essential constraints on their structure, formation, evolution and interaction with the interplanetary environment. The Sun provides a unique opportunity to explore stellar rotation from the interior to its atmosphere in great detail. We know that the Sun rotates faster at the equator than at the poles, but how this differential rotation behaves at different atmospheric layers within it is not yet clear. Here we extract the rotation curves of different layers of the solar photosphere and chromosphere by using whole-disk Dopplergrams obtained by the Chinese Hα Solar Explorer (CHASE) for the wavebands Si i (6,560.58 Å), Hα (6,562.81 Å) and Fe i (6,569.21 Å) with a spectral resolution of 0.024 Å. We find that the Sun rotates progressively faster from the photosphere to the chromosphere. For example, at the equator, it increases from 2.81 ± 0.02 μrad s−1 at the bottom of the photosphere to 3.08 ± 0.05 μrad s−1 in the chromosphere. The ubiquitous small-scale magnetic fields and the height-dependent degree of their frozen-in effect with the solar atmosphere are plausible causes of the height-dependent rotation rate. The results have important implications for understanding solar subsurface processes and solar atmospheric dynamics. Spectroscopic observations of the CHASE mission reveal the differential rotation of the solar atmosphere, finding quantitively that the Sun rotates progressively faster from the bottom of the photosphere to the chromosphere.
{"title":"Height-dependent differential rotation of the solar atmosphere detected by CHASE","authors":"Shihao Rao, Chuan Li, Mingde Ding, Jie Hong, Feng Chen, Cheng Fang, Ye Qiu, Zhen Li, Pengfei Chen, Kejun Li, Qi Hao, Yang Guo, Xin Cheng, Yu Dai, Zhixin Peng, Wei You, Yuan Yuan","doi":"10.1038/s41550-024-02299-4","DOIUrl":"10.1038/s41550-024-02299-4","url":null,"abstract":"Rotation is an intrinsic property of stars and provides essential constraints on their structure, formation, evolution and interaction with the interplanetary environment. The Sun provides a unique opportunity to explore stellar rotation from the interior to its atmosphere in great detail. We know that the Sun rotates faster at the equator than at the poles, but how this differential rotation behaves at different atmospheric layers within it is not yet clear. Here we extract the rotation curves of different layers of the solar photosphere and chromosphere by using whole-disk Dopplergrams obtained by the Chinese Hα Solar Explorer (CHASE) for the wavebands Si i (6,560.58 Å), Hα (6,562.81 Å) and Fe i (6,569.21 Å) with a spectral resolution of 0.024 Å. We find that the Sun rotates progressively faster from the photosphere to the chromosphere. For example, at the equator, it increases from 2.81 ± 0.02 μrad s−1 at the bottom of the photosphere to 3.08 ± 0.05 μrad s−1 in the chromosphere. The ubiquitous small-scale magnetic fields and the height-dependent degree of their frozen-in effect with the solar atmosphere are plausible causes of the height-dependent rotation rate. The results have important implications for understanding solar subsurface processes and solar atmospheric dynamics. Spectroscopic observations of the CHASE mission reveal the differential rotation of the solar atmosphere, finding quantitively that the Sun rotates progressively faster from the bottom of the photosphere to the chromosphere.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 9","pages":"1102-1109"},"PeriodicalIF":12.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}