Pub Date : 2024-09-17DOI: 10.1038/s41550-024-02351-3
Jared Bryan, Julien de Wit, Meng Sun, Zoë L. de Beurs, Richard H. D. Townsend
Hot Jupiters are expected to form far from their host star and move to a close-in, circular orbit through a smooth, monotonic decay due to mild and constant tidal dissipation. Yet, systems exhibiting planet-induced stellar pulsations have recently been found, suggesting unexpectedly strong tidal interactions. Here we combine stellar evolution and tide models to show that dynamical tides raised by eccentric gas giants can excite chains of resonance locks with several modes, which enriches the dynamics seen in single-mode resonance locking of circularized systems. These series of resonance locks yield orders of magnitude larger changes in eccentricity and harmonic pulsations relative to those expected from a single episode of resonance locking or non-resonant tidal interactions. Resonances become more frequent as a star evolves off the main sequence, which provides an alternative explanation for the origin of some stellar pulsators and leads to the concept of ‘dormant migrating giants’. Evolution trajectories are characterized by competing episodes of inward and outward migration and the spin-up or spin-down of the star, which are sensitive to the system parameters. This is a new challenge in modelling migration paths and in contextualizing the observed populations of giant exoplanets and stellar binaries. This sensitivity, however, offers a new window for constraining the stellar properties of planetary hosts through tidal asteroseismology. A state-of-the-art model for planet–star interactions shows that migrating planets may coevolve with their pulsating stars through episodic resonances that drive substantial orbital migration and produce detectable tidal oscillations.
{"title":"The coevolution of migrating planets and their pulsating stars through episodic resonance locking","authors":"Jared Bryan, Julien de Wit, Meng Sun, Zoë L. de Beurs, Richard H. D. Townsend","doi":"10.1038/s41550-024-02351-3","DOIUrl":"10.1038/s41550-024-02351-3","url":null,"abstract":"Hot Jupiters are expected to form far from their host star and move to a close-in, circular orbit through a smooth, monotonic decay due to mild and constant tidal dissipation. Yet, systems exhibiting planet-induced stellar pulsations have recently been found, suggesting unexpectedly strong tidal interactions. Here we combine stellar evolution and tide models to show that dynamical tides raised by eccentric gas giants can excite chains of resonance locks with several modes, which enriches the dynamics seen in single-mode resonance locking of circularized systems. These series of resonance locks yield orders of magnitude larger changes in eccentricity and harmonic pulsations relative to those expected from a single episode of resonance locking or non-resonant tidal interactions. Resonances become more frequent as a star evolves off the main sequence, which provides an alternative explanation for the origin of some stellar pulsators and leads to the concept of ‘dormant migrating giants’. Evolution trajectories are characterized by competing episodes of inward and outward migration and the spin-up or spin-down of the star, which are sensitive to the system parameters. This is a new challenge in modelling migration paths and in contextualizing the observed populations of giant exoplanets and stellar binaries. This sensitivity, however, offers a new window for constraining the stellar properties of planetary hosts through tidal asteroseismology. A state-of-the-art model for planet–star interactions shows that migrating planets may coevolve with their pulsating stars through episodic resonances that drive substantial orbital migration and produce detectable tidal oscillations.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1387-1398"},"PeriodicalIF":12.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1038/s41550-024-02345-1
Francesco D’Eugenio, Pablo G. Pérez-González, Roberto Maiolino, Jan Scholtz, Michele Perna, Chiara Circosta, Hannah Übler, Santiago Arribas, Torsten Böker, Andrew J. Bunker, Stefano Carniani, Stephane Charlot, Jacopo Chevallard, Giovanni Cresci, Emma Curtis-Lake, Gareth C. Jones, Nimisha Kumari, Isabella Lamperti, Tobias J. Looser, Eleonora Parlanti, Hans-Walter Rix, Brant Robertson, Bruno Rodríguez Del Pino, Sandro Tacchella, Giacomo Venturi, Chris J. Willott
The most massive galaxies in the Universe stopped forming stars due to the time-integrated feedback from central supermassive black holes (SMBHs). However, the exact quenching mechanism is not yet understood, because local massive galaxies were quenched billions of years ago. Here we present JWST/NIRSpec integral-field spectroscopy observations of GS-10578, a massive, quiescent galaxy at redshift z = 3.064 ± 0.002. From its spectrum, we measure a stellar mass M⋆ = 1.6 ± 0.2 × 1011 M⊙ and a dynamical mass Mdyn = 2.0 ± 0.5 × 1011 M⊙. Half of its stellar mass formed at z = 3.7–4.6, and the system is now quiescent, with a current star-formation rate of less than 19 M⊙ yr−1. We detect ionized- and neutral-gas outflows traced by [O iii] emission and Na i absorption, with mass outflow rates 0.14–2.9 and 30–100 M⊙ yr−1, respectively. Outflow velocities reach vout ≈ 1,000 km s−1, comparable to the galaxy escape velocity. GS-10578 hosts an active galactic nucleus, evidence that these outflows are due to SMBH feedback. The neutral outflow rate is higher than the star-formation rate. Hence, this is direct evidence for ejective SMBH feedback, with a mass loading capable of interrupting star formation by rapidly removing its fuel. Stellar kinematics show ordered rotation, with spin parameter $${lambda }_{{{{R}}}_{{rm{e}}}}=0.62pm 0.07$$ , meaning GS-10578 is rotation-supported. This study presents direct evidence for ejective active galactic nucleus feedback in a massive, recently quenched galaxy, thus helping to clarify how SMBHs quench their hosts. The high value of $${lambda }_{{{{R}}}_{{rm{e}}}}$$ implies that quenching can occur without destroying the stellar disk. A massive galaxy hosting an accreting supermassive black hole two billion years after the Big Bang shows fast neutral-gas outflows that are capable of stopping star formation by removing its fuel while the stars keep rotating in a disk.
{"title":"A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z = 3","authors":"Francesco D’Eugenio, Pablo G. Pérez-González, Roberto Maiolino, Jan Scholtz, Michele Perna, Chiara Circosta, Hannah Übler, Santiago Arribas, Torsten Böker, Andrew J. Bunker, Stefano Carniani, Stephane Charlot, Jacopo Chevallard, Giovanni Cresci, Emma Curtis-Lake, Gareth C. Jones, Nimisha Kumari, Isabella Lamperti, Tobias J. Looser, Eleonora Parlanti, Hans-Walter Rix, Brant Robertson, Bruno Rodríguez Del Pino, Sandro Tacchella, Giacomo Venturi, Chris J. Willott","doi":"10.1038/s41550-024-02345-1","DOIUrl":"10.1038/s41550-024-02345-1","url":null,"abstract":"The most massive galaxies in the Universe stopped forming stars due to the time-integrated feedback from central supermassive black holes (SMBHs). However, the exact quenching mechanism is not yet understood, because local massive galaxies were quenched billions of years ago. Here we present JWST/NIRSpec integral-field spectroscopy observations of GS-10578, a massive, quiescent galaxy at redshift z = 3.064 ± 0.002. From its spectrum, we measure a stellar mass M⋆ = 1.6 ± 0.2 × 1011 M⊙ and a dynamical mass Mdyn = 2.0 ± 0.5 × 1011 M⊙. Half of its stellar mass formed at z = 3.7–4.6, and the system is now quiescent, with a current star-formation rate of less than 19 M⊙ yr−1. We detect ionized- and neutral-gas outflows traced by [O iii] emission and Na i absorption, with mass outflow rates 0.14–2.9 and 30–100 M⊙ yr−1, respectively. Outflow velocities reach vout ≈ 1,000 km s−1, comparable to the galaxy escape velocity. GS-10578 hosts an active galactic nucleus, evidence that these outflows are due to SMBH feedback. The neutral outflow rate is higher than the star-formation rate. Hence, this is direct evidence for ejective SMBH feedback, with a mass loading capable of interrupting star formation by rapidly removing its fuel. Stellar kinematics show ordered rotation, with spin parameter $${lambda }_{{{{R}}}_{{rm{e}}}}=0.62pm 0.07$$ , meaning GS-10578 is rotation-supported. This study presents direct evidence for ejective active galactic nucleus feedback in a massive, recently quenched galaxy, thus helping to clarify how SMBHs quench their hosts. The high value of $${lambda }_{{{{R}}}_{{rm{e}}}}$$ implies that quenching can occur without destroying the stellar disk. A massive galaxy hosting an accreting supermassive black hole two billion years after the Big Bang shows fast neutral-gas outflows that are capable of stopping star formation by removing its fuel while the stars keep rotating in a disk.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1443-1456"},"PeriodicalIF":12.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02345-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1038/s41550-024-02383-9
Stefano Facchini, Leonardo Testi, Elizabeth Humphreys, Mathieu Vander Donckt, Andrea Isella, Ramon Wrzosek, Alain Baudry, Malcom D. Gray, Anita M. S. Richards, Wouter Vlemmings
{"title":"Author Correction: Resolved ALMA observations of water in the inner astronomical units of the HL Tau disk","authors":"Stefano Facchini, Leonardo Testi, Elizabeth Humphreys, Mathieu Vander Donckt, Andrea Isella, Ramon Wrzosek, Alain Baudry, Malcom D. Gray, Anita M. S. Richards, Wouter Vlemmings","doi":"10.1038/s41550-024-02383-9","DOIUrl":"10.1038/s41550-024-02383-9","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1487-1487"},"PeriodicalIF":12.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02383-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41550-024-02322-8
D. Harvey
The nature of dark matter remains one of the greatest unanswered questions in science. The largest concentrations of dark matter appear to lie in galaxy clusters. By modifying the properties of dark matter, the distribution of mass in clusters is altered in an observable way. However, uncertain astrophysical mechanisms also alter the mass distribution, often mimicking the effect of different dark matter properties. Here I present a machine learning method that ‘learns’, from simulations, how the impact of dark matter self-interactions differs from that of astrophysical feedback. In the idealized case, my algorithm is 80% accurate at identifying whether a galaxy cluster harbours collisionless dark matter, dark matter with a self interaction cross-section, σDM/m = 0.1 cm2 g−1 or dark matter with σDM/m = 1 cm2 g−1. It is found that weak-lensing information primarily differentiates self-interacting dark matter, whereas X-ray information disentangles different models of astrophysical feedback. The data are forward modelled to imitate observations from Euclid and Chandra, and it is found that the model has a statistical error of σDM/m < 0.01 cm2 g−1 and is insensitive to shape-measurement bias and photometric-redshift errors. This method represents a way to analyse data from upcoming telescopes that are an order of magnitude more precise and many orders faster than current methods, enabling us to explore the properties of dark matter like never before. Machine learning provides an opportunity to probe dark matter in massive galaxy clusters, more precisely and hundreds of times faster than current methods.
{"title":"A deep-learning algorithm to disentangle self-interacting dark matter and AGN feedback models","authors":"D. Harvey","doi":"10.1038/s41550-024-02322-8","DOIUrl":"10.1038/s41550-024-02322-8","url":null,"abstract":"The nature of dark matter remains one of the greatest unanswered questions in science. The largest concentrations of dark matter appear to lie in galaxy clusters. By modifying the properties of dark matter, the distribution of mass in clusters is altered in an observable way. However, uncertain astrophysical mechanisms also alter the mass distribution, often mimicking the effect of different dark matter properties. Here I present a machine learning method that ‘learns’, from simulations, how the impact of dark matter self-interactions differs from that of astrophysical feedback. In the idealized case, my algorithm is 80% accurate at identifying whether a galaxy cluster harbours collisionless dark matter, dark matter with a self interaction cross-section, σDM/m = 0.1 cm2 g−1 or dark matter with σDM/m = 1 cm2 g−1. It is found that weak-lensing information primarily differentiates self-interacting dark matter, whereas X-ray information disentangles different models of astrophysical feedback. The data are forward modelled to imitate observations from Euclid and Chandra, and it is found that the model has a statistical error of σDM/m < 0.01 cm2 g−1 and is insensitive to shape-measurement bias and photometric-redshift errors. This method represents a way to analyse data from upcoming telescopes that are an order of magnitude more precise and many orders faster than current methods, enabling us to explore the properties of dark matter like never before. Machine learning provides an opportunity to probe dark matter in massive galaxy clusters, more precisely and hundreds of times faster than current methods.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 10","pages":"1332-1342"},"PeriodicalIF":12.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41550-024-02349-x
Susanne Pfalzner, Amith Govind, Simon Portegies Zwart
Unlike the Solar System planets, thousands of smaller bodies beyond Neptune orbit the Sun on eccentric (e > 0.1 and i > 3°) orbits. While migration of the giant planets during the early stages of Solar System evolution could have induced substantial scattering of trans-Neptunian objects (TNOs), this process cannot account for the small number of distant TNOs (rp > 60 au) outside the planets’ reach. The alternative scenario of the close flyby of another star can instead produce all these TNO features simultaneously, but the possible parameter space for such an encounter is vast. Here we compare observed TNO properties with thousands of flyby simulations to determine the specific properties of a flyby that reproduces all the different dynamical TNO populations, their locations and their relative abundances, and find that a $$0.{8}_{-0.1}^{+0.1},{M}_{odot }$$ star passing at a distance of rp = 110 ± 10 au, inclined by i = 70° $${,}_{-10}^{+5}$$ , gives a near-perfect match. This flyby also replicates the retrograde TNO population, which has proved difficult to explain. Such a flyby is reasonably frequent; at least 140 million solar-type stars in the Milky Way are likely to have experienced a similar one. In light of these results, we predict that the upcoming Vera Rubin telescope will reveal that distant and retrograde TNOs are relatively common. The rocky disk surrounding the young Sun may have experienced a close flyby of another star. Simulations show that a highly inclined flyby of a star slightly smaller than the Sun at 100 au almost perfectly reproduces the orbits of the numerous small objects beyond Neptune.
与太阳系行星不同,海王星以外的数千个较小天体以偏心(e > 0.1 和 i >3°)轨道绕太阳运行。虽然在太阳系演化的早期阶段,巨行星的迁移可能会引起大量的跨海王星天体(TNOs)的散落,但这一过程无法解释行星覆盖范围之外的少量遥远的 TNOs(rp > 60 au)。另一种情况是近距离飞越另一颗恒星,这种情况可以同时产生所有这些 TNO 特征,但是这种相遇的可能参数空间非常大。在这里,我们将观测到的 TNO 特性与数千次飞越模拟进行了比较,以确定能够再现所有不同动态 TNO 群体、它们的位置和相对丰度的飞越的具体特性,并发现一颗 (0.{8}_{-0.1}^{+0.1},{M}_{odot }) 恒星在 rp = 110 ± 10 au 的距离上通过,倾斜度为 i = 70°({,}_{-10}^{+5}),给出了一个近乎完美的匹配。这次飞越也复制了逆行的 TNO 星群,事实证明这很难解释。这种飞掠相当频繁;银河系中至少有 1.4 亿颗太阳型恒星可能经历过类似的飞掠。鉴于这些结果,我们预测即将到来的维拉-鲁宾望远镜将揭示遥远的逆行 TNOs 是相对常见的。
{"title":"Trajectory of the stellar flyby that shaped the outer Solar System","authors":"Susanne Pfalzner, Amith Govind, Simon Portegies Zwart","doi":"10.1038/s41550-024-02349-x","DOIUrl":"10.1038/s41550-024-02349-x","url":null,"abstract":"Unlike the Solar System planets, thousands of smaller bodies beyond Neptune orbit the Sun on eccentric (e > 0.1 and i > 3°) orbits. While migration of the giant planets during the early stages of Solar System evolution could have induced substantial scattering of trans-Neptunian objects (TNOs), this process cannot account for the small number of distant TNOs (rp > 60 au) outside the planets’ reach. The alternative scenario of the close flyby of another star can instead produce all these TNO features simultaneously, but the possible parameter space for such an encounter is vast. Here we compare observed TNO properties with thousands of flyby simulations to determine the specific properties of a flyby that reproduces all the different dynamical TNO populations, their locations and their relative abundances, and find that a $$0.{8}_{-0.1}^{+0.1},{M}_{odot }$$ star passing at a distance of rp = 110 ± 10 au, inclined by i = 70° $${,}_{-10}^{+5}$$ , gives a near-perfect match. This flyby also replicates the retrograde TNO population, which has proved difficult to explain. Such a flyby is reasonably frequent; at least 140 million solar-type stars in the Milky Way are likely to have experienced a similar one. In light of these results, we predict that the upcoming Vera Rubin telescope will reveal that distant and retrograde TNOs are relatively common. The rocky disk surrounding the young Sun may have experienced a close flyby of another star. Simulations show that a highly inclined flyby of a star slightly smaller than the Sun at 100 au almost perfectly reproduces the orbits of the numerous small objects beyond Neptune.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 11","pages":"1380-1386"},"PeriodicalIF":12.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02349-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41550-024-02321-9
Chuanpeng Hou, Jiansen He, Die Duan, Ziqi Wu, Yajie Chen, Daniel Verscharen, Alexis P. Rouillard, Huichao Li, Liping Yang, Stuart D. Bale
There is renewed interest in heliospheric physics following the recent exploration of the pristine solar wind by the Parker Solar Probe. Magnetic switchback structures are frequently observed in the inner heliosphere, but there are open questions about their origin. Many researchers are investigating the statistical properties of switchbacks and their relationships with wave modes, stream types and solar activity, but the sources of switchbacks remain elusive. Here we report that interplanetary switchbacks originate from magnetic reconnection on the Sun that occurs at chromospheric network boundaries and launch solar jet flows. We link in situ interplanetary measurements and remote-sensing solar observations to establish a connection between interplanetary switchbacks and their solar source region, featuring solar jets, chromospheric network boundaries and photospheric magnetic field evolution. Our findings suggest that joint observations of switchbacks and solar jets provide a better estimate of the contribution of magnetic reconnection to coronal heating and solar wind acceleration. Chuanpeng Hou and co-authors report their findings on the origin of interplanetary switchbacks in solar magnetic reconnection at chromospheric network boundaries. This link between in situ and remote-sensing solar observations is a major step towards understanding coronal heating and solar wind acceleration.
{"title":"The origin of interplanetary switchbacks in reconnection at chromospheric network boundaries","authors":"Chuanpeng Hou, Jiansen He, Die Duan, Ziqi Wu, Yajie Chen, Daniel Verscharen, Alexis P. Rouillard, Huichao Li, Liping Yang, Stuart D. Bale","doi":"10.1038/s41550-024-02321-9","DOIUrl":"10.1038/s41550-024-02321-9","url":null,"abstract":"There is renewed interest in heliospheric physics following the recent exploration of the pristine solar wind by the Parker Solar Probe. Magnetic switchback structures are frequently observed in the inner heliosphere, but there are open questions about their origin. Many researchers are investigating the statistical properties of switchbacks and their relationships with wave modes, stream types and solar activity, but the sources of switchbacks remain elusive. Here we report that interplanetary switchbacks originate from magnetic reconnection on the Sun that occurs at chromospheric network boundaries and launch solar jet flows. We link in situ interplanetary measurements and remote-sensing solar observations to establish a connection between interplanetary switchbacks and their solar source region, featuring solar jets, chromospheric network boundaries and photospheric magnetic field evolution. Our findings suggest that joint observations of switchbacks and solar jets provide a better estimate of the contribution of magnetic reconnection to coronal heating and solar wind acceleration. Chuanpeng Hou and co-authors report their findings on the origin of interplanetary switchbacks in solar magnetic reconnection at chromospheric network boundaries. This link between in situ and remote-sensing solar observations is a major step towards understanding coronal heating and solar wind acceleration.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 10","pages":"1246-1256"},"PeriodicalIF":12.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02321-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}