首页 > 最新文献

Nature Astronomy最新文献

英文 中文
Seeing disks in context 从背景中看磁盘
IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-20 DOI: 10.1038/s41550-024-02355-z
Paul Woods
{"title":"Seeing disks in context","authors":"Paul Woods","doi":"10.1038/s41550-024-02355-z","DOIUrl":"10.1038/s41550-024-02355-z","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High hopes for high energy 对高能量寄予厚望
IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-20 DOI: 10.1038/s41550-024-02356-y
While the early 2020s are seeing a resurgence in new space-based X-ray missions — including the NASA-led Imaging X-ray Polarimetry Explorer — a stalwart of the field, Chandra, faces an uncertain future.
虽然在 2020 年代初,新的天基 X 射线任务(包括美国国家航空航天局领导的成像 X 射线极化探测器)正在重新崛起,但该领域的中坚力量钱德拉却面临着不确定的未来。
{"title":"High hopes for high energy","authors":"","doi":"10.1038/s41550-024-02356-y","DOIUrl":"10.1038/s41550-024-02356-y","url":null,"abstract":"While the early 2020s are seeing a resurgence in new space-based X-ray missions — including the NASA-led Imaging X-ray Polarimetry Explorer — a stalwart of the field, Chandra, faces an uncertain future.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41550-024-02356-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interior as the dominant water reservoir in super-Earths and sub-Neptunes 内部是超地球和次海王星的主要储水层
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-20 DOI: 10.1038/s41550-024-02347-z
Haiyang Luo, Caroline Dorn, Jie Deng

Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water.

水是系外行星的重要组成部分,它的分布,即是在表面还是在内部深处,从根本上影响着行星的性质。水在大多数系外行星中的分布是由极端条件下未知的分配系数决定的。在这里,我们首先进行了ab initio分子动力学模拟,研究了水在1000 GPa以下的金属-硅酸盐分配系数,然后通过考虑水含量对密度、熔融温度和水分配的影响,建立了行星内部模型。我们的计算结果表明,在高压下,水与铁的分区强于与硅酸盐的分区,因此,水会优先留在行星的内核中。我们的行星内部模型的结果对以前想象的水世界的概念提出了挑战:大部分(甚至超过 95%)体积水预算可以储存在地核和地幔深处,而不是表面。对于质量大于~6 M⨁的行星和地球大小的行星(质量较低,水预算较小)来说,大部分水存在于行星内核深处。对于给定质量的行星来说,假设水在表面还是在深处会影响半径达15-25%。以前根据质量-半径数据认为贫水的系外行星实际上可能富含水。
{"title":"The interior as the dominant water reservoir in super-Earths and sub-Neptunes","authors":"Haiyang Luo, Caroline Dorn, Jie Deng","doi":"10.1038/s41550-024-02347-z","DOIUrl":"https://doi.org/10.1038/s41550-024-02347-z","url":null,"abstract":"<p>Water is an important component of exoplanets, with its distribution, that is, whether at the surface or deep inside, fundamentally influencing the planetary properties. The distribution of water in most exoplanets is determined by yet-unknown partition coefficients at extreme conditions. Here we first conduct ab initio molecular dynamics simulations to investigate the metal–silicate partition coefficients of water up to 1,000 GPa and then model planet interiors by considering the effects of water content on density, melting temperature and water partitioning. Our calculations reveal that water strongly partitions into iron over silicate at high pressures and, thus, would preferentially stay in a planet’s core. The results of our planet interior model challenge the notion of water worlds as imagined before: the majority of the bulk water budget (even more than 95%) can be stored deep within the core and the mantle, and not at the surface. For planets more massive than ~6 M<sub><span>⨁</span></sub> and Earth-size planets (of lower mass and small water budgets), the majority of water resides deep in the cores of planets. Whether water is assumed to be at the surface or at depth can affect the radius up to 15–25% for a given mass. The exoplanets previously believed to be water-poor on the basis of mass–radius data may actually be rich in water.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning reveals the merging history of nearby galaxies 机器学习揭示附近星系的合并历史
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-16 DOI: 10.1038/s41550-024-02335-3
A probabilistic machine learning method trained on cosmological simulations is used to determine whether stars in 10,000 nearby galaxies formed internally or were accreted from other galaxies during merging events. The model predicts that only 20% of the stellar mass in present day galaxies is the result of past mergers.
利用在宇宙学模拟基础上训练的概率机器学习方法来确定附近一万个星系中的恒星是在内部形成的,还是在合并过程中从其他星系吸积而来的。该模型预测,当今星系中只有 20% 的恒星质量是过去星系合并的结果。
{"title":"Machine learning reveals the merging history of nearby galaxies","authors":"","doi":"10.1038/s41550-024-02335-3","DOIUrl":"https://doi.org/10.1038/s41550-024-02335-3","url":null,"abstract":"A probabilistic machine learning method trained on cosmological simulations is used to determine whether stars in 10,000 nearby galaxies formed internally or were accreted from other galaxies during merging events. The model predicts that only 20% of the stellar mass in present day galaxies is the result of past mergers.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An early giant planet instability recorded in asteroidal meteorites 小行星陨石中记录的早期巨行星不稳定性
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-15 DOI: 10.1038/s41550-024-02340-6
Graham Harper Edwards, C. Brenhin Keller, Elisabeth R. Newton, Cameron W. Stewart

Giant planet migration appears widespread among planetary systems in our Galaxy. However, the timescales of this process, which reflect the underlying dynamical mechanisms, are not well constrained, even within the Solar System. As planetary migration scatters smaller bodies onto intersecting orbits, it would have resulted in an epoch of enhanced bombardment in the Solar System’s asteroid belt. Here, to accurately and precisely quantify the timescales of migration, we interrogate thermochronologic data from asteroidal meteorites, which record the thermal imprint of energetic collisions. We present a database of 40K–40Ar system ages from chondrite meteorites and evaluate it with an asteroid-scale thermal code coupled to a Markov chain Monte Carlo inversion. Simulations require bombardment to reproduce the observed age distribution and identify a bombardment event beginning (11.{3}_{-6.6}^{+9.5}, {mathrm{Myr}}) after the Sun formed (50% credible interval). Our results associate a giant planet instability in our Solar System with the dissipation of the gaseous protoplanetary disk.

在我们银河系的行星系统中,巨行星迁移似乎很普遍。然而,即使在太阳系内,这一过程的时间尺度也没有得到很好的制约,而这一尺度反映了基本的动力学机制。由于行星迁移会将较小的天体分散到相交的轨道上,这将导致太阳系小行星带出现一个轰击增强的时代。在这里,为了准确和精确地量化迁移的时间尺度,我们询问了小行星陨石的热年代学数据,这些数据记录了高能碰撞的热印记。我们提供了一个来自软玉陨石的 40K-40Ar 系统年龄数据库,并通过小行星尺度热代码和马尔科夫链蒙特卡罗反演对其进行了评估。模拟需要轰击来重现观测到的年龄分布,并确定了一个轰击事件开始于太阳形成之后(50%可信区间)(11.3}_{-6.6}^{+9.5}, {mathrm{Myr}} )。我们的结果将太阳系的巨行星不稳定性与气态原行星盘的消散联系起来。
{"title":"An early giant planet instability recorded in asteroidal meteorites","authors":"Graham Harper Edwards, C. Brenhin Keller, Elisabeth R. Newton, Cameron W. Stewart","doi":"10.1038/s41550-024-02340-6","DOIUrl":"https://doi.org/10.1038/s41550-024-02340-6","url":null,"abstract":"<p>Giant planet migration appears widespread among planetary systems in our Galaxy. However, the timescales of this process, which reflect the underlying dynamical mechanisms, are not well constrained, even within the Solar System. As planetary migration scatters smaller bodies onto intersecting orbits, it would have resulted in an epoch of enhanced bombardment in the Solar System’s asteroid belt. Here, to accurately and precisely quantify the timescales of migration, we interrogate thermochronologic data from asteroidal meteorites, which record the thermal imprint of energetic collisions. We present a database of <sup>40</sup>K–<sup>40</sup>Ar system ages from chondrite meteorites and evaluate it with an asteroid-scale thermal code coupled to a Markov chain Monte Carlo inversion. Simulations require bombardment to reproduce the observed age distribution and identify a bombardment event beginning <span>(11.{3}_{-6.6}^{+9.5}, {mathrm{Myr}})</span> after the Sun formed (50% credible interval). Our results associate a giant planet instability in our Solar System with the dissipation of the gaseous protoplanetary disk.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant planets migrated shortly after the Solar System’s protoplanetary disk dispersed 巨行星在太阳系原行星盘散开后不久就迁移了
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-15 DOI: 10.1038/s41550-024-02341-5
Early in the history of the Solar System, the giant planets — including Jupiter and Saturn — migrated under gravity into different orbits around the Sun, causing an epoch of chaos and collisions. Radioactive isotopes in asteroids record the thermal imprint of these collisions, and a broad survey of meteorites now constrains the timing of the migration to approximately 11 million years after the Solar System formed.
在太阳系历史的早期,包括木星和土星在内的巨行星在重力作用下迁移到围绕太阳的不同轨道上,造成了一个混乱和碰撞的时代。小行星中的放射性同位素记录了这些碰撞的热印记,现在对陨石的广泛调查将迁移的时间限制在太阳系形成后大约1100万年。
{"title":"Giant planets migrated shortly after the Solar System’s protoplanetary disk dispersed","authors":"","doi":"10.1038/s41550-024-02341-5","DOIUrl":"https://doi.org/10.1038/s41550-024-02341-5","url":null,"abstract":"Early in the history of the Solar System, the giant planets — including Jupiter and Saturn — migrated under gravity into different orbits around the Sun, causing an epoch of chaos and collisions. Radioactive isotopes in asteroids record the thermal imprint of these collisions, and a broad survey of meteorites now constrains the timing of the migration to approximately 11 million years after the Solar System formed.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The complex variability of 55 Cnc e 55 Cnc e 的复杂多变性
IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-15 DOI: 10.1038/s41550-024-02354-0
Luca Maltagliati
{"title":"The complex variability of 55 Cnc e","authors":"Luca Maltagliati","doi":"10.1038/s41550-024-02354-0","DOIUrl":"10.1038/s41550-024-02354-0","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic field enhancement within a remnant 残余物内部的磁场增强
IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-14 DOI: 10.1038/s41550-024-02352-2
Bishwanath Gaire
{"title":"Magnetic field enhancement within a remnant","authors":"Bishwanath Gaire","doi":"10.1038/s41550-024-02352-2","DOIUrl":"10.1038/s41550-024-02352-2","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model test for very-metal-poor giant 极贫金属巨人模型试验
IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-14 DOI: 10.1038/s41550-024-02353-1
Paul Woods
{"title":"Model test for very-metal-poor giant","authors":"Paul Woods","doi":"10.1038/s41550-024-02353-1","DOIUrl":"10.1038/s41550-024-02353-1","url":null,"abstract":"","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Teraelectronvolt gamma-ray emission near globular cluster Terzan 5 as a probe of cosmic ray transport 球状星团泰尔赞 5 附近的太电子伏特伽马射线发射,作为宇宙射线传输的探测器
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-12 DOI: 10.1038/s41550-024-02337-1
Mark R. Krumholz, Roland M. Crocker, Arash Bahramian, Pol Bordas

The propagation directions of cosmic rays travelling through interstellar space are repeatedly scattered by fluctuating interstellar magnetic fields. The nature of this scattering is a major unsolved problem in astrophysics, one that has resisted solution largely due to a lack of direct observational constraints on the scattering rate. Here we show that very high-energy γ-ray emission from the globular cluster Terzan 5, which has unexpectedly been found to be displaced from the cluster, presents a direct probe of this process. We show that this displacement is naturally explained by cosmic rays accelerated in the bow shock around the cluster, which then propagate a finite distance before scattering processes re-orient enough of them towards Earth to produce a detectable γ-ray signal. The angular distance between the cluster and the signal places tight constraints on the scattering rate, which we show are consistent with a model in which scattering is primarily due to excitation of magnetic waves by the cosmic rays themselves. The analysis method we develop here will make it possible to use sources with similarly displaced non-thermal X-ray and tera-electronvolt γ-ray signals as direct probes of cosmic ray scattering across a range of Galactic environments.

宇宙射线穿过星际空间时,其传播方向会被波动的星际磁场反复散射。这种散射的性质是天体物理学中一个尚未解决的重大问题,主要由于缺乏对散射率的直接观测约束,这个问题一直没有得到解决。在这里,我们展示了来自球状星团 Terzan 5 的高能 γ 射线辐射,它是对这一过程的直接探测。我们的研究表明,这种位移可以很自然地解释为宇宙射线在星团周围的弓形冲击中被加速,然后传播一段有限的距离,然后散射过程将足够多的宇宙射线重新定向到地球,从而产生可探测到的γ射线信号。星团和信号之间的角距离对散射率有严格的限制,我们的研究表明,这与散射主要是由于宇宙射线本身激发磁波的模型是一致的。我们在这里开发的分析方法将使我们有可能利用具有类似位移的非热 X 射线和太电子伏特 γ 射线信号源来直接探测一系列银河环境中的宇宙射线散射。
{"title":"Teraelectronvolt gamma-ray emission near globular cluster Terzan 5 as a probe of cosmic ray transport","authors":"Mark R. Krumholz, Roland M. Crocker, Arash Bahramian, Pol Bordas","doi":"10.1038/s41550-024-02337-1","DOIUrl":"https://doi.org/10.1038/s41550-024-02337-1","url":null,"abstract":"<p>The propagation directions of cosmic rays travelling through interstellar space are repeatedly scattered by fluctuating interstellar magnetic fields. The nature of this scattering is a major unsolved problem in astrophysics, one that has resisted solution largely due to a lack of direct observational constraints on the scattering rate. Here we show that very high-energy γ-ray emission from the globular cluster Terzan 5, which has unexpectedly been found to be displaced from the cluster, presents a direct probe of this process. We show that this displacement is naturally explained by cosmic rays accelerated in the bow shock around the cluster, which then propagate a finite distance before scattering processes re-orient enough of them towards Earth to produce a detectable γ-ray signal. The angular distance between the cluster and the signal places tight constraints on the scattering rate, which we show are consistent with a model in which scattering is primarily due to excitation of magnetic waves by the cosmic rays themselves. The analysis method we develop here will make it possible to use sources with similarly displaced non-thermal X-ray and tera-electronvolt γ-ray signals as direct probes of cosmic ray scattering across a range of Galactic environments.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1