首页 > 最新文献

Nanoscale Advances最新文献

英文 中文
Engineering Au single-atom sites embedded in TiO2 nanostructures for boosting photocatalytic methane oxidation.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1039/d4na00947a
Qui Thanh Hoai Ta, Ly Tan Nhiem

Photocatalytic methane oxidation under mild conditions using single-atom catalysts remains an advanced technology. In this work, gold single atoms (Au SAs) were introduced onto TiO2 nanostructures using a simple method. The resulting performance demonstrated effective conversion of methane into H2 and C2 products at room temperature. The as-synthesized Au SA/TiO2 exhibited a high hydrogen production rate of 2190 μmol g-1, with selectivity reaching up to 58% under optimized conditions. The methane oxidation mechanism was investigated, revealing a methyl radical pathway for generating value-added chemicals. This research provides a strategy for photocatalytic methane conversion over single-atom-supported photocatalysts.

{"title":"Engineering Au single-atom sites embedded in TiO<sub>2</sub> nanostructures for boosting photocatalytic methane oxidation.","authors":"Qui Thanh Hoai Ta, Ly Tan Nhiem","doi":"10.1039/d4na00947a","DOIUrl":"10.1039/d4na00947a","url":null,"abstract":"<p><p>Photocatalytic methane oxidation under mild conditions using single-atom catalysts remains an advanced technology. In this work, gold single atoms (Au SAs) were introduced onto TiO<sub>2</sub> nanostructures using a simple method. The resulting performance demonstrated effective conversion of methane into H<sub>2</sub> and C<sub>2</sub> products at room temperature. The as-synthesized Au SA/TiO<sub>2</sub> exhibited a high hydrogen production rate of 2190 μmol g<sup>-1</sup>, with selectivity reaching up to 58% under optimized conditions. The methane oxidation mechanism was investigated, revealing a methyl radical pathway for generating value-added chemicals. This research provides a strategy for photocatalytic methane conversion over single-atom-supported photocatalysts.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrroloquinoline quinone-loaded coaxial nanofibers prevent oxidative stress after spinal cord injury.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1039/d4na00885e
Sara Ibrahim, Mohammed Ismail, Taghrid Abdelrahman, Mona Sharkawy, Ahmed Abdellatif, Nageh K Allam

Oxidative stress plays a major role in the secondary injury of the spinal cord tissue due to the high lipid content of nervous tissue. In the present study, coaxial nanofibers were loaded with the natural antioxidant pyrroloquinoline quinone (PQQ) and used as an implantable drug-delivery system and a scaffold post-SCI. The obtained data show that the concentration of NO and the activity of inducible nitric oxide synthase (iNOS) were significantly (P < 0.05) increased in the spinal cord injury (SCI) group. These levels were significantly decreased following treatment with nanofibers/PQQ. Implantation of nanofibers/PQQ resulted in a significant (P < 0.05) drop in the level of malondialdehyde (MDA) compared to the SCI group. The application of nanofibers loaded with PQQ after SCI caused a significant (P < 0.05) elevation of superoxide dismutase (SOD) and catalase (CAT) activity in the spinal cord tissue. The present work shows the protective role of coaxial nanofibers loaded with PQQ against oxidative stress in spinal cord injury. The reversal of oxidative stress with PQQ can lead to better outcomes following spinal cord injury.

{"title":"Pyrroloquinoline quinone-loaded coaxial nanofibers prevent oxidative stress after spinal cord injury.","authors":"Sara Ibrahim, Mohammed Ismail, Taghrid Abdelrahman, Mona Sharkawy, Ahmed Abdellatif, Nageh K Allam","doi":"10.1039/d4na00885e","DOIUrl":"10.1039/d4na00885e","url":null,"abstract":"<p><p>Oxidative stress plays a major role in the secondary injury of the spinal cord tissue due to the high lipid content of nervous tissue. In the present study, coaxial nanofibers were loaded with the natural antioxidant pyrroloquinoline quinone (PQQ) and used as an implantable drug-delivery system and a scaffold post-SCI. The obtained data show that the concentration of NO and the activity of inducible nitric oxide synthase (iNOS) were significantly (<i>P</i> < 0.05) increased in the spinal cord injury (SCI) group. These levels were significantly decreased following treatment with nanofibers/PQQ. Implantation of nanofibers/PQQ resulted in a significant (<i>P</i> < 0.05) drop in the level of malondialdehyde (MDA) compared to the SCI group. The application of nanofibers loaded with PQQ after SCI caused a significant (<i>P</i> < 0.05) elevation of superoxide dismutase (SOD) and catalase (CAT) activity in the spinal cord tissue. The present work shows the protective role of coaxial nanofibers loaded with PQQ against oxidative stress in spinal cord injury. The reversal of oxidative stress with PQQ can lead to better outcomes following spinal cord injury.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective modal excitation in a multimode nanoslit by interference of surface plasmon waves. 表面等离子体波干涉下多模纳米狭缝的选择性模态激发。
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1039/d4na00862f
Marcos Valero, Luis-Angel Mayoral-Astorga, Howard Northfield, Hyung Woo Choi, Israel De Leon, Mallar Ray, Pierre Berini

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere. A key innovation lies in the ability to tune the interference pattern by altering the geometrical properties of the gold nanoslit such that one, two or more resonance modes are supported in the nanoslit. Our experimental results validate the approach of our design and modelling process, demonstrating the potential to fine-tune geometrical parameters such as grating coupler pitch, depth, duty cycle, and nanoslit dimensions to alter the transmitted radiation pattern and the transmittance. We demonstrate the ability of a grating coupler to induce focusing of SPP waves to an arbitrary location on chip by illuminating with a converging Gaussian beam. Additionally, we observed far-field interference patterns linked to the multimodal operation of the nanoslit.

表面等离子体干涉在高精度传感等光学测量中得到了广泛的应用。在本文中,我们介绍了一种表面等离子体干涉仪,该干涉仪具有排列成阵列的潜力,可用于并行复用应用。干涉仪的特点是两个光栅耦合器,激发表面等离子激元(SPP)波沿着金-空气界面传播,然后在金纳米缝处汇聚,在那里它们进行干涉。一个关键的创新在于能够通过改变金纳米狭缝的几何特性来调整干涉模式,从而在纳米狭缝中支持一种、两种或更多的共振模式。我们的实验结果验证了我们的设计方法和建模过程,展示了微调几何参数(如光栅耦合器间距、深度、占空比和纳米狭缝尺寸)以改变透射辐射模式和透射率的潜力。我们演示了一个光栅耦合器的能力,以诱导聚焦SPP波到任意位置的芯片与会聚高斯光束照射。此外,我们观察到与纳米狭缝的多模态操作有关的远场干涉模式。
{"title":"Selective modal excitation in a multimode nanoslit by interference of surface plasmon waves.","authors":"Marcos Valero, Luis-Angel Mayoral-Astorga, Howard Northfield, Hyung Woo Choi, Israel De Leon, Mallar Ray, Pierre Berini","doi":"10.1039/d4na00862f","DOIUrl":"10.1039/d4na00862f","url":null,"abstract":"<p><p>Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere. A key innovation lies in the ability to tune the interference pattern by altering the geometrical properties of the gold nanoslit such that one, two or more resonance modes are supported in the nanoslit. Our experimental results validate the approach of our design and modelling process, demonstrating the potential to fine-tune geometrical parameters such as grating coupler pitch, depth, duty cycle, and nanoslit dimensions to alter the transmitted radiation pattern and the transmittance. We demonstrate the ability of a grating coupler to induce focusing of SPP waves to an arbitrary location on chip by illuminating with a converging Gaussian beam. Additionally, we observed far-field interference patterns linked to the multimodal operation of the nanoslit.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the structure-property correlations of pyrolyzed phenolic resin as a function of degree of carbonization.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1039/d4na00824c
Ivan Gallegos, Vikas Varshney, Josh Kemppainen, Gregory M Odegard

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties in situ. This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis. First, the crosslinked resin is pyrolyzed and the resulting char yield and mass density are verified to match experimental values, establishing the model's powerful predictive capabilities. Young's modulus, yield stress, Poisson's ratio, and thermal conductivity are calculated for the polymerized structure, intermediate pyrolyzed structures, and fully pyrolyzed structure to reveal structure-property correlations, and the evolution of properties are linked to observed structural features. It is determined that reduction in fractional free volume and densification of the resin during pyrolysis contribute significantly to the increase in thermomechanical properties of the skeletal phenolic matrix. A complex interplay of the formation of six-membered carbon rings at the expense of five and seven-membered carbon rings is revealed to affect thermal conductivity. Increased anisotropy was observed in the latter stages of pyrolysis due to the development of aligned aromatic structures. Experimentally validated predictive atomistic models are a key first step to multiscale process modeling of C/C composites to optimize next-generation materials.

{"title":"Investigating the structure-property correlations of pyrolyzed phenolic resin as a function of degree of carbonization.","authors":"Ivan Gallegos, Vikas Varshney, Josh Kemppainen, Gregory M Odegard","doi":"10.1039/d4na00824c","DOIUrl":"10.1039/d4na00824c","url":null,"abstract":"<p><p>Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties <i>in situ</i>. This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis. First, the crosslinked resin is pyrolyzed and the resulting char yield and mass density are verified to match experimental values, establishing the model's powerful predictive capabilities. Young's modulus, yield stress, Poisson's ratio, and thermal conductivity are calculated for the polymerized structure, intermediate pyrolyzed structures, and fully pyrolyzed structure to reveal structure-property correlations, and the evolution of properties are linked to observed structural features. It is determined that reduction in fractional free volume and densification of the resin during pyrolysis contribute significantly to the increase in thermomechanical properties of the skeletal phenolic matrix. A complex interplay of the formation of six-membered carbon rings at the expense of five and seven-membered carbon rings is revealed to affect thermal conductivity. Increased anisotropy was observed in the latter stages of pyrolysis due to the development of aligned aromatic structures. Experimentally validated predictive atomistic models are a key first step to multiscale process modeling of C/C composites to optimize next-generation materials.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-assisted synthesis of highly photoluminescent core/shell CuInZnSe/ZnS quantum dots as photovoltaic absorbers. 微波辅助合成高光致发光核/壳型CuInZnSe/ZnS量子点作为光伏吸收剂。
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1039/d4na00893f
Shubham Shishodia, Hervé Rinnert, Lavinia Balan, Jordane Jasniewski, Stéphanie Bruyère, Ghouti Medjahdi, Thomas Gries, Raphaël Schneider

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using N-acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.5 exhibit the highest PL quantum yield (54%) and the longest PL lifetime (515 ns) originating from the recombination of donor-acceptor pairs. The potential of CIZSe/ZnS QDs as photoabsorbers in QD-sensitized solar cells was also evaluated. An adequate type-II band alignment is observed between TiO2 and CIZSe/ZnS QDs, indicating that photogenerated electrons in CIZSe/ZnS QDs could efficiently be injected into TiO2.

以n -乙酰半胱氨酸(NAC)和柠檬酸钠为封盖剂,在微波辐射下高效合成了水分散核壳型CuInZnSe/ZnS (CIZSe/ZnS)量子点。随着CIZSe芯中Zn: Cu摩尔比的变化,CIZSe/ZnS量子点的光致发光波长可在593 ~ 733 nm范围内调谐。Zn: Cu比为0.5制备的CIZSe/ZnS量子点表现出最高的发光量子产率(54%)和最长的发光寿命(515 ns)。本文还对CIZSe/ZnS量子点在量子点敏化太阳能电池中作为光吸收剂的潜力进行了评价。在TiO2和CIZSe/ZnS量子点之间观察到充分的ii型带对准,表明CIZSe/ZnS量子点中的光生电子可以有效地注入到TiO2中。
{"title":"Microwave-assisted synthesis of highly photoluminescent core/shell CuInZnSe/ZnS quantum dots as photovoltaic absorbers.","authors":"Shubham Shishodia, Hervé Rinnert, Lavinia Balan, Jordane Jasniewski, Stéphanie Bruyère, Ghouti Medjahdi, Thomas Gries, Raphaël Schneider","doi":"10.1039/d4na00893f","DOIUrl":"10.1039/d4na00893f","url":null,"abstract":"<p><p>Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using <i>N</i>-acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.5 exhibit the highest PL quantum yield (54%) and the longest PL lifetime (515 ns) originating from the recombination of donor-acceptor pairs. The potential of CIZSe/ZnS QDs as photoabsorbers in QD-sensitized solar cells was also evaluated. An adequate type-II band alignment is observed between TiO<sub>2</sub> and CIZSe/ZnS QDs, indicating that photogenerated electrons in CIZSe/ZnS QDs could efficiently be injected into TiO<sub>2</sub>.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy. 金纳米颗粒尺寸和涂层对肿瘤治疗中放射敏化和活性氧生成的影响。
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 DOI: 10.1039/d4na00773e
E Loscertales, R López-Méndez, J Mateo, L M Fraile, J M Udias, A Espinosa, S España

Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms. This study focuses on evaluating the chemical and biological radiosensitizing effects of AuNPs exposed to ionizing radiation (0-50 Gy), specifically their production of reactive oxygen species (ROS) and their impact on cancer cells. ROS generated by AuNPs of varying sizes and coatings were quantified using fluorescence probes for hydroxyl radicals (HO·) and singlet oxygen (1O2). The radiosensitizing effects on MDA-MB-231 cancer cells were assessed via clonogenic assays. Our results show a clear dependence of ROS production on AuNP size. Interestingly, PEG-capped AuNPs did not significantly enhance HO· production but greatly increased 1O2 production, suggesting that multiple reactive species contribute to the radiosensitization process. Clonogenic assays confirmed that PEG-capped AuNPs produced stronger radiosensitizing effects than citrate-capped AuNPs, with smaller AuNPs providing more pronounced biological effects. This study underscores the importance of conducting both chemical and biological evaluations to fully understand the radiosensitization efficacy of AuNPs.

放射治疗是一种常见的癌症治疗方法,但通常会损害周围的健康组织,导致不必要的副作用。尽管技术进步旨在提高靶向性,但最大限度地减少对正常细胞的暴露仍然是一个重大挑战。高z纳米粒子,如金纳米粒子(AuNPs),正被探索作为纳米放射增敏剂,通过物理、生物和化学机制来增强癌症治疗。本研究的重点是评估暴露于电离辐射(0-50 Gy)的AuNPs的化学和生物放射增敏效应,特别是它们产生的活性氧(ROS)及其对癌细胞的影响。利用荧光探针测定羟基自由基(HO·)和单线态氧(1O2),定量测定不同尺寸和涂层的AuNPs产生的ROS。通过克隆实验评估其对MDA-MB-231癌细胞的放射增敏作用。我们的研究结果表明活性氧的产生明显依赖于AuNP的大小。有趣的是,peg封顶的AuNPs并没有显著提高HO·的产生,但却大大增加了1O2的产生,这表明多种活性物质参与了放射致敏过程。克隆实验证实,peg封顶的AuNPs比柠檬酸封顶的AuNPs具有更强的放射致敏效应,较小的AuNPs提供更明显的生物效应。本研究强调了进行化学和生物学评估以充分了解AuNPs放射增敏效果的重要性。
{"title":"Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy.","authors":"E Loscertales, R López-Méndez, J Mateo, L M Fraile, J M Udias, A Espinosa, S España","doi":"10.1039/d4na00773e","DOIUrl":"10.1039/d4na00773e","url":null,"abstract":"<p><p>Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms. This study focuses on evaluating the chemical and biological radiosensitizing effects of AuNPs exposed to ionizing radiation (0-50 Gy), specifically their production of reactive oxygen species (ROS) and their impact on cancer cells. ROS generated by AuNPs of varying sizes and coatings were quantified using fluorescence probes for hydroxyl radicals (HO·) and singlet oxygen (<sup>1</sup>O<sub>2</sub>). The radiosensitizing effects on MDA-MB-231 cancer cells were assessed <i>via</i> clonogenic assays. Our results show a clear dependence of ROS production on AuNP size. Interestingly, PEG-capped AuNPs did not significantly enhance HO· production but greatly increased <sup>1</sup>O<sub>2</sub> production, suggesting that multiple reactive species contribute to the radiosensitization process. Clonogenic assays confirmed that PEG-capped AuNPs produced stronger radiosensitizing effects than citrate-capped AuNPs, with smaller AuNPs providing more pronounced biological effects. This study underscores the importance of conducting both chemical and biological evaluations to fully understand the radiosensitization efficacy of AuNPs.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engaging a highly fluorescent conjugated polymer network for probing endogenous hypochlorite in macrophage cells: improved sensitivity via signal amplification. 利用高荧光共轭聚合物网络探测巨噬细胞内源性次氯酸盐:通过信号放大提高灵敏度。
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1039/d4na00728j
Rikitha S Fernandes, Neelam Gupta, Ch Sanjay, Anamika, Ambati Himaja, Balaram Ghosh, Biplab Kumar Kuila, Nilanjan Dey

We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite. Spectroscopic investigations reveal that the CPN forms π-stacked aggregates in aqueous medium, while loose aggregates were observed to be formed in hydrophobic solvents. The fluorogenic CPN demonstrates remarkable selectivity via fluorescence quenching and a blueshift response towards hypochlorite in a semi-aqueous medium, accompanied by a color change under UV light. Such a turn-off fluorescence response, along with the blue shift upon hypochlorite sensing, was attributed to the oxidation of the sulfur atom of the thiophene functionality of the CPN, consequently resulting in suppression of Intramolecular Charge Transfer (ICT) in the corresponding oxidized adduct. The fluorescence intensity of the CPN exhibits a linear response to hypochlorite concentration, achieving a low detection limit of 1.2 nM. Furthermore, the practical applicability was demonstrated by the detection of hypochlorite in water samples and fluorescent test-paper strips. Additionally, the present system is utilized for bio-imaging of endogenous hypochlorite in RAW 264.7 cells.

我们采用了基于三嗪的共轭聚合物网络(CPN)在半水环境中选择性检测次氯酸盐。cpn在气体捕获、分离和吸附等方面得到了广泛的应用,但其π共轭体系的荧光性质尚未得到充分的研究。在此,我们报告了CPN的光物理性质,并研究了它对次氯酸盐的传感能力。光谱学研究表明,CPN在水介质中形成π堆积的聚集体,而在疏水溶剂中形成松散的聚集体。荧光CPN在半水介质中通过荧光猝灭和对次氯酸盐的蓝移响应表现出显著的选择性,并伴有紫外光下的颜色变化。这种关闭荧光响应以及次氯酸盐感应时的蓝移归因于CPN的噻吩功能的硫原子氧化,从而导致相应氧化加合物中的分子内电荷转移(ICT)受到抑制。CPN的荧光强度与次氯酸盐浓度呈线性关系,检测限低至1.2 nM。通过对水样次氯酸盐和荧光试纸条的检测,验证了该方法的实用性。此外,本系统用于RAW 264.7细胞内源性次氯酸盐的生物成像。
{"title":"Engaging a highly fluorescent conjugated polymer network for probing endogenous hypochlorite in macrophage cells: improved sensitivity <i>via</i> signal amplification.","authors":"Rikitha S Fernandes, Neelam Gupta, Ch Sanjay, Anamika, Ambati Himaja, Balaram Ghosh, Biplab Kumar Kuila, Nilanjan Dey","doi":"10.1039/d4na00728j","DOIUrl":"10.1039/d4na00728j","url":null,"abstract":"<p><p>We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite. Spectroscopic investigations reveal that the CPN forms π-stacked aggregates in aqueous medium, while loose aggregates were observed to be formed in hydrophobic solvents. The fluorogenic CPN demonstrates remarkable selectivity <i>via</i> fluorescence quenching and a blueshift response towards hypochlorite in a semi-aqueous medium, accompanied by a color change under UV light. Such a turn-off fluorescence response, along with the blue shift upon hypochlorite sensing, was attributed to the oxidation of the sulfur atom of the thiophene functionality of the CPN, consequently resulting in suppression of Intramolecular Charge Transfer (ICT) in the corresponding oxidized adduct. The fluorescence intensity of the CPN exhibits a linear response to hypochlorite concentration, achieving a low detection limit of 1.2 nM. Furthermore, the practical applicability was demonstrated by the detection of hypochlorite in water samples and fluorescent test-paper strips. Additionally, the present system is utilized for bio-imaging of endogenous hypochlorite in RAW 264.7 cells.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of energy deposition on the luminescence sensitization in porphyrin-functionalized SiO2/ZnO nanoparticles under X-ray excitation.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1039/d4na00640b
Irene Villa, Roberta Crapanzano, Silvia Mostoni, Anne-Laure Bulin, Massimiliano D'Arienzo, Barbara Di Credico, Anna Vedda, Roberto Scotti, Mauro Fasoli

Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO2/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics. Radioluminescence measurements under increasing energy of the ionizing radiation beam up to 10 keV show sensitization of porphyrin moieties on SiO2/ZnO. This can be attributed to an increase in energy deposition promoted by the ZnO nanoparticles, which have a higher density and atomic number. This assumption was confirmed by computational simulations of energy deposition after the first interaction of ionizing radiation with SiO2, ZnO, and air. Indeed, Monte Carlo simulations evidence that, despite a decrease in the absolute number of X-rays interacting within the system while increasing the energy of the beam, at 10 keV, the presence of ZnO is dominant to enhance energy deposition. Hence, these experimental and computational studies evidence the importance of each hybrid nanosystem component in the scintillation process. This work shows how an appropriate choice of constituents, in terms of physicochemical properties and architecture, can favour energy deposition mechanisms under X-ray irradiation and thus can boost the hybrid nanosystems' performance for diverse biomedical scintillation-based applications.

{"title":"The role of energy deposition on the luminescence sensitization in porphyrin-functionalized SiO<sub>2</sub>/ZnO nanoparticles under X-ray excitation.","authors":"Irene Villa, Roberta Crapanzano, Silvia Mostoni, Anne-Laure Bulin, Massimiliano D'Arienzo, Barbara Di Credico, Anna Vedda, Roberto Scotti, Mauro Fasoli","doi":"10.1039/d4na00640b","DOIUrl":"10.1039/d4na00640b","url":null,"abstract":"<p><p>Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO<sub>2</sub>/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics. Radioluminescence measurements under increasing energy of the ionizing radiation beam up to 10 keV show sensitization of porphyrin moieties on SiO<sub>2</sub>/ZnO. This can be attributed to an increase in energy deposition promoted by the ZnO nanoparticles, which have a higher density and atomic number. This assumption was confirmed by computational simulations of energy deposition after the first interaction of ionizing radiation with SiO<sub>2</sub>, ZnO, and air. Indeed, Monte Carlo simulations evidence that, despite a decrease in the absolute number of X-rays interacting within the system while increasing the energy of the beam, at 10 keV, the presence of ZnO is dominant to enhance energy deposition. Hence, these experimental and computational studies evidence the importance of each hybrid nanosystem component in the scintillation process. This work shows how an appropriate choice of constituents, in terms of physicochemical properties and architecture, can favour energy deposition mechanisms under X-ray irradiation and thus can boost the hybrid nanosystems' performance for diverse biomedical scintillation-based applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A customizable wireless potentiostat for assessing Ni(OH)2 decorated vertically aligned MoS2 thin films for electrochemical sensing of dopamine.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1039/d4na00914b
Topias Järvinen, Olli Pitkänen, Tomi Laurila, Minna Mannerkorpi, Simo Saarakkala, Krisztian Kordas

In this study, we show that on-chip grown, vertically aligned MoS2 films that are decorated with Ni(OH)2 catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM. In addition, to facilitate practical implementation of the sensor chips, we also demonstrate a low power wireless cyber-physical system that we designed and accommodated for cyclic voltammetry measurements. The developed cost-effective and portable instrument enables straightforward data acquisition, transfer and visualization through an Android mobile interface, and has an accuracy comparable to reference analysis of our sensors using a commercial table-top laboratory potentiostat.

{"title":"A customizable wireless potentiostat for assessing Ni(OH)<sub>2</sub> decorated vertically aligned MoS<sub>2</sub> thin films for electrochemical sensing of dopamine.","authors":"Topias Järvinen, Olli Pitkänen, Tomi Laurila, Minna Mannerkorpi, Simo Saarakkala, Krisztian Kordas","doi":"10.1039/d4na00914b","DOIUrl":"10.1039/d4na00914b","url":null,"abstract":"<p><p>In this study, we show that on-chip grown, vertically aligned MoS<sub>2</sub> films that are decorated with Ni(OH)<sub>2</sub> catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM. In addition, to facilitate practical implementation of the sensor chips, we also demonstrate a low power wireless cyber-physical system that we designed and accommodated for cyclic voltammetry measurements. The developed cost-effective and portable instrument enables straightforward data acquisition, transfer and visualization through an Android mobile interface, and has an accuracy comparable to reference analysis of our sensors using a commercial table-top laboratory potentiostat.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal carbonization synthesis of amorphous carbon nanoparticles (15-150 nm) with fine-tuning of the size, bulk order, and the consequent impact on antioxidant and photothermal properties.
IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1039/d4na00923a
Francesco Barbero, Elena Destro, Aurora Bellone, Ludovica Di Lorenzo, Valentina Brunella, Guido Perrone, Alessandro Damin, Ivana Fenoglio

Hydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility. However, due to the highly disordered structure, there is still a poor understanding of the mechanism of synthesis of CNPs. Consequently, the modulation of the CNP properties by controlling the synthetic parameters is still a challenge. In this work, a novel and simplified HTC synthetic strategy to obtain non-aggregated glucose derived CNPs in the 15-150 nm size range with precise control of the diameter is presented, together with an advance in the understanding of the reaction mechanism behind the synthesis. Modifications of the synthetic parameters and a post-synthesis hydrothermal process were applied to increase the bulk order of CNPs, resulting in an increase of the photothermal and ROS scavenging activities, without affecting the morphological and colloidal properties of the nanomaterial.

{"title":"Hydrothermal carbonization synthesis of amorphous carbon nanoparticles (15-150 nm) with fine-tuning of the size, bulk order, and the consequent impact on antioxidant and photothermal properties.","authors":"Francesco Barbero, Elena Destro, Aurora Bellone, Ludovica Di Lorenzo, Valentina Brunella, Guido Perrone, Alessandro Damin, Ivana Fenoglio","doi":"10.1039/d4na00923a","DOIUrl":"10.1039/d4na00923a","url":null,"abstract":"<p><p>Hydrothermal carbonization (HTC) of carbohydrates has been reported as a sustainable and green technique to produce carbonaceous micro- and nano-materials. These materials have been developed for several applications, including catalysis, separation science, metal ion adsorption and nanomedicine. Carbon nanoparticles (CNPs) obtained through HTC are particularly interesting for the latter application since they exhibit photothermal properties when irradiated with near-infrared (NIR) light, act as an antioxidant by scavenging reactive oxygen species (ROS), and present good colloidal stability and biocompatibility. However, due to the highly disordered structure, there is still a poor understanding of the mechanism of synthesis of CNPs. Consequently, the modulation of the CNP properties by controlling the synthetic parameters is still a challenge. In this work, a novel and simplified HTC synthetic strategy to obtain non-aggregated glucose derived CNPs in the 15-150 nm size range with precise control of the diameter is presented, together with an advance in the understanding of the reaction mechanism behind the synthesis. Modifications of the synthetic parameters and a post-synthesis hydrothermal process were applied to increase the bulk order of CNPs, resulting in an increase of the photothermal and ROS scavenging activities, without affecting the morphological and colloidal properties of the nanomaterial.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanoscale Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1