Pub Date : 2024-10-01Epub Date: 2024-03-28DOI: 10.1111/omi.12463
Felipe Barros Matoso, Francisco Montagner, Fabiana Soares Grecca, Pabulo Henrique Rampelotto, Patrícia Maria Poli Kopper
This study aimed to characterize the taxonomic composition of intraradicular multispecies biofilms (IMB) formed in situ in a model to reproduce clinical conditions. Twelve palatal roots of maxillary molars had its canals prepared. Two roots were randomly selected to sterility control. Ten intraoral prosthetic appliances with lateral slots were fabricated. The roots were positioned in the slots with the canal access open to the oral cavity. Eight volunteers wore the appliance for 21 days, and two wore it at two different time points. One root from each appliance was removed and stored at -20°C until DNA extraction and sequencing (n = 10). Biofilm was analyzed using next-generation sequencing and bioinformatics. The V4 hyper-variable region of the 16SrRNA gene was amplified and sequenced. For data analyses, the mothur pipeline was used for 16SrRNA processing, and subsequent analyses of the sequence dataset were performed in R using the Microbiome Analyst R package. The taxonomy-based analysis of bacterial communities identified 562 operational taxonomic units (OTUs), which belonged to 93 genera, 44 families, and 8 phyla. Bacterial colonization was different for each biofilm, and samples did not have the same group of bacteria. Alpha and beta diversity analysis revealed some general patterns of sample clustering. A core microbiome of prevalent OTUs and genera was identified. IMBs were heterogeneous when analyzed individually, but some diversity patterns were found after sample clustering. The experimental model seemed to reproduce the actual biofilm composition in endodontic infections, which suggests that it may be used to evaluate disinfection protocols.
{"title":"Microbial composition and diversity in intraradicular biofilm formed in situ: New concepts based on next-generation sequencing.","authors":"Felipe Barros Matoso, Francisco Montagner, Fabiana Soares Grecca, Pabulo Henrique Rampelotto, Patrícia Maria Poli Kopper","doi":"10.1111/omi.12463","DOIUrl":"10.1111/omi.12463","url":null,"abstract":"<p><p>This study aimed to characterize the taxonomic composition of intraradicular multispecies biofilms (IMB) formed in situ in a model to reproduce clinical conditions. Twelve palatal roots of maxillary molars had its canals prepared. Two roots were randomly selected to sterility control. Ten intraoral prosthetic appliances with lateral slots were fabricated. The roots were positioned in the slots with the canal access open to the oral cavity. Eight volunteers wore the appliance for 21 days, and two wore it at two different time points. One root from each appliance was removed and stored at -20°C until DNA extraction and sequencing (n = 10). Biofilm was analyzed using next-generation sequencing and bioinformatics. The V4 hyper-variable region of the 16SrRNA gene was amplified and sequenced. For data analyses, the mothur pipeline was used for 16SrRNA processing, and subsequent analyses of the sequence dataset were performed in R using the Microbiome Analyst R package. The taxonomy-based analysis of bacterial communities identified 562 operational taxonomic units (OTUs), which belonged to 93 genera, 44 families, and 8 phyla. Bacterial colonization was different for each biofilm, and samples did not have the same group of bacteria. Alpha and beta diversity analysis revealed some general patterns of sample clustering. A core microbiome of prevalent OTUs and genera was identified. IMBs were heterogeneous when analyzed individually, but some diversity patterns were found after sample clustering. The experimental model seemed to reproduce the actual biofilm composition in endodontic infections, which suggests that it may be used to evaluate disinfection protocols.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"393-406"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-10DOI: 10.1111/omi.12448
Zixue Lei, Qizhao Ma, Yeting Tu, Yang Qiu, Tao Gong, Yongwang Lin, Xuedong Zhou, Yuqing Li
Periodontitis is a common oral bacterial infection characterized by inflammatory responses. Its high prevalence lowers the quality of life for individuals and increases the global economic and disease burden. As microorganisms in dental plaque are responsible for this oral disease, antibacterial drug treatments are effective strategies for preventing and treating periodontitis. In this study, we investigated the inhibitory effect of nicotinamide (NAM), a vitamin B3 derivative, on the growth and virulence of Porphyromonas gingivalis, a key member of the red complex. Our findings revealed that NAM inhibited bacterial growth and gingipain activities, which played a dominant role in protein hydrolysis and heme acquisition. NAM decreased hemagglutination and hemolysis abilities and changed hemin and hemoglobin binding capacities, controlling bacterial infection through a starvation strategy by blocking access to growth-essential nutrients from the outside and reducing bacterial virulence. Several experiments in an animal model showed the effectiveness of NAM in preventing alveolar bone loss and reducing inflammatory cell infiltration, shedding light on its potential therapeutic applicability.
{"title":"Nicotinamide employs a starvation strategy against Porphyromonas gingivalis virulence by inhibiting the heme uptake system and gingipain activities.","authors":"Zixue Lei, Qizhao Ma, Yeting Tu, Yang Qiu, Tao Gong, Yongwang Lin, Xuedong Zhou, Yuqing Li","doi":"10.1111/omi.12448","DOIUrl":"10.1111/omi.12448","url":null,"abstract":"<p><p>Periodontitis is a common oral bacterial infection characterized by inflammatory responses. Its high prevalence lowers the quality of life for individuals and increases the global economic and disease burden. As microorganisms in dental plaque are responsible for this oral disease, antibacterial drug treatments are effective strategies for preventing and treating periodontitis. In this study, we investigated the inhibitory effect of nicotinamide (NAM), a vitamin B<sub>3</sub> derivative, on the growth and virulence of Porphyromonas gingivalis, a key member of the red complex. Our findings revealed that NAM inhibited bacterial growth and gingipain activities, which played a dominant role in protein hydrolysis and heme acquisition. NAM decreased hemagglutination and hemolysis abilities and changed hemin and hemoglobin binding capacities, controlling bacterial infection through a starvation strategy by blocking access to growth-essential nutrients from the outside and reducing bacterial virulence. Several experiments in an animal model showed the effectiveness of NAM in preventing alveolar bone loss and reducing inflammatory cell infiltration, shedding light on its potential therapeutic applicability.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"321-333"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.
{"title":"Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm.","authors":"Wenxin Luo, Mengdie Zhang, Xuedong Zhou, Xin Xu, Xingqun Cheng","doi":"10.1111/omi.12451","DOIUrl":"10.1111/omi.12451","url":null,"abstract":"<p><p>Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"261-269"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-16DOI: 10.1111/omi.12450
Jinlian Tan, Gwyneth J Lamont, David A Scott
Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.
{"title":"Tobacco-enhanced biofilm formation by Porphyromonas gingivalis and other oral microbes.","authors":"Jinlian Tan, Gwyneth J Lamont, David A Scott","doi":"10.1111/omi.12450","DOIUrl":"10.1111/omi.12450","url":null,"abstract":"<p><p>Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"270-290"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-21DOI: 10.1111/omi.12456
Fiona F Hager-Mair, Susanne Bloch, Christina Schäffer
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
{"title":"Glycolanguage of the oral microbiota.","authors":"Fiona F Hager-Mair, Susanne Bloch, Christina Schäffer","doi":"10.1111/omi.12456","DOIUrl":"10.1111/omi.12456","url":null,"abstract":"<p><p>The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"291-320"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-04DOI: 10.1111/omi.12458
Aidan D Moylan, Dhara T Patel, Claire O'Brien, Edward J A Schuler, Annie N Hinson, Richard T Marconi, Daniel P Miller
Pathobionts associated with periodontitis, such as Treponema denticola, must possess numerous sensory transduction systems to adapt to the highly dynamic subgingival environment. To date, the signaling pathways utilized by T. denticola to rapidly sense and respond to environmental stimuli are mainly unknown. Bis-(3'-5') cyclic diadenosine monophosphate (c-di-AMP) is a nucleotide secondary messenger that regulates osmolyte transport, central metabolism, biofilm development, and pathogenicity in many bacteria but is uncharacterized in T. denticola. Here, we studied c-di-AMP signaling in T. denticola to understand how it contributes to T. denticola physiology. We demonstrated that T. denticola produces c-di-AMP and identified enzymes that function in the synthesis (TDE1909) and hydrolysis (TDE0027) of c-di-AMP. To investigate how c-di-AMP may impact T. denticola cellular processes, a screening assay was performed to identify putative c-di-AMP receptor proteins. This approach identified TDE0087, annotated as a potassium uptake protein, as the first T. denticola c-di-AMP binding protein. As potassium homeostasis is critical for maintaining turgor pressure, we demonstrated that T. denticola c-di-AMP concentrations are impacted by osmolarity, suggesting that c-di-AMP negatively regulates potassium uptake in hypoosmotic solutions. Collectively, this study demonstrates T. denticola utilizes c-di-AMP signaling, identifies c-di-AMP metabolism proteins, identifies putative receptor proteins, and correlates c-di-AMP signaling to osmoregulation.
{"title":"Characterization of c-di-AMP signaling in the periodontal pathobiont, Treponema denticola.","authors":"Aidan D Moylan, Dhara T Patel, Claire O'Brien, Edward J A Schuler, Annie N Hinson, Richard T Marconi, Daniel P Miller","doi":"10.1111/omi.12458","DOIUrl":"10.1111/omi.12458","url":null,"abstract":"<p><p>Pathobionts associated with periodontitis, such as Treponema denticola, must possess numerous sensory transduction systems to adapt to the highly dynamic subgingival environment. To date, the signaling pathways utilized by T. denticola to rapidly sense and respond to environmental stimuli are mainly unknown. Bis-(3'-5') cyclic diadenosine monophosphate (c-di-AMP) is a nucleotide secondary messenger that regulates osmolyte transport, central metabolism, biofilm development, and pathogenicity in many bacteria but is uncharacterized in T. denticola. Here, we studied c-di-AMP signaling in T. denticola to understand how it contributes to T. denticola physiology. We demonstrated that T. denticola produces c-di-AMP and identified enzymes that function in the synthesis (TDE1909) and hydrolysis (TDE0027) of c-di-AMP. To investigate how c-di-AMP may impact T. denticola cellular processes, a screening assay was performed to identify putative c-di-AMP receptor proteins. This approach identified TDE0087, annotated as a potassium uptake protein, as the first T. denticola c-di-AMP binding protein. As potassium homeostasis is critical for maintaining turgor pressure, we demonstrated that T. denticola c-di-AMP concentrations are impacted by osmolarity, suggesting that c-di-AMP negatively regulates potassium uptake in hypoosmotic solutions. Collectively, this study demonstrates T. denticola utilizes c-di-AMP signaling, identifies c-di-AMP metabolism proteins, identifies putative receptor proteins, and correlates c-di-AMP signaling to osmoregulation.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"354-367"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The worldwide prevalence of periodontitis is considerably high, and its pathogenic mechanisms must be investigated and understood in order to improve clinical treatment outcomes and reduce the disease prevalence and burden. The exacerbation of the host immune system induced by oral microbial dysbiosis and the subsequent tissue destruction are the hallmarks of the periodontitis. However, the oral bacteria involved in periodontitis are not fully understood. We used the Oxford Nanopore Technologies (ONT) sequencing system to analyze metagenomic information in subgingival dental plaque from periodontitis and non-periodontitis patients. The number of Lactobacillus zeae (L. zeae) in the periodontitis patients was 17.55-fold higher than in the non-periodontitis patients, suggesting that L. zeae is a novel periodontitis-associated pathogen. Although several Lactobacillus species are used in vivo as probiotics to treat periodontitis and compete with Porphyromonas gingivalis (P. gingivalis), the roles of L. zeae in periodontitis progression, and the relationship between L. zeae and P. gingivalis needs to be investigated.
Methods: Both L. zeae and P. gingivalis were inoculated in the ligature-implant site of periodontitis mice. We collected mouse gingival crevicular fluid to analyze inflammatory cytokine secretion using a multiplex assay. Intact or sliced mouse maxilla tissue was used for micro-computed tomography analysis or hematoxylin and eosin staining, immunohistochemistry, and tartrate-resistant acid phosphatase staining to evaluate alveolar bone loss, neutrophil infiltration, and osteoclast activation, respectively.
Results: We observed that L. zeae competed with P. gingivalis, and it increased inflammatory cytokine secretion at the ligature-implant site. Similar to P. gingivalis, L. zeae promoted ligature-induced neutrophile infiltration, osteoclast activation, and alveolar bone loss.
Discussion: We, therefore, concluded that L. zeae accelerated the progression of periodontitis in the ligature-induced periodontitis mouse model.
导言:牙周炎在全球的发病率相当高,必须研究和了解其致病机制,以改善临床治疗效果,降低疾病的发病率和负担。口腔微生物菌群失调引起的宿主免疫系统恶化和随后的组织破坏是牙周炎的特征。然而,人们对牙周炎所涉及的口腔细菌并不完全了解。我们使用牛津纳米孔技术(ONT)测序系统分析了牙周炎和非牙周炎患者龈下牙菌斑中的元基因组信息。牙周炎患者中的玉米乳杆菌(L. zeae)数量是非牙周炎患者的 17.55 倍,这表明玉米乳杆菌是一种新型的牙周炎相关病原体。尽管多种乳酸杆菌被用作治疗牙周炎的益生菌,并与牙龈卟啉单胞菌(P. gingivalis)竞争,但L. zeae在牙周炎进展中的作用以及L. zeae与P. gingivalis之间的关系仍有待研究:方法:在牙周炎小鼠的结扎-种植部位接种 L. zeae 和 P. gingivalis。我们收集了小鼠牙龈缝隙液,使用多重检测法分析炎症细胞因子的分泌情况。用完整或切片的小鼠上颌骨组织进行微型计算机断层扫描分析,或用苏木精和伊红染色、免疫组化和耐酒石酸磷酸酶染色分别评估牙槽骨损失、中性粒细胞浸润和破骨细胞活化:结果:我们观察到,L. zeae与牙龈脓毒性杆菌竞争,并增加了结扎-种植部位的炎性细胞因子分泌。与牙龈脓毒性球菌相似,L. zeae促进了结扎引起的嗜中性粒细胞浸润、破骨细胞活化和牙槽骨流失:因此,我们得出结论:在结扎诱导的牙周炎小鼠模型中,L. zeae会加速牙周炎的发展。
{"title":"Oral Lactobacillus zeae exacerbates the pathological manifestation of periodontitis in a mouse model.","authors":"Yi-Wen Chen, Yu-Wen Hou, Chuang-Wei Wang, Shih-Jung Cheng, Wei-Ting Kuo, Chun-Pin Lin, Hsin-Han Hou","doi":"10.1111/omi.12455","DOIUrl":"10.1111/omi.12455","url":null,"abstract":"<p><strong>Introduction: </strong>The worldwide prevalence of periodontitis is considerably high, and its pathogenic mechanisms must be investigated and understood in order to improve clinical treatment outcomes and reduce the disease prevalence and burden. The exacerbation of the host immune system induced by oral microbial dysbiosis and the subsequent tissue destruction are the hallmarks of the periodontitis. However, the oral bacteria involved in periodontitis are not fully understood. We used the Oxford Nanopore Technologies (ONT) sequencing system to analyze metagenomic information in subgingival dental plaque from periodontitis and non-periodontitis patients. The number of Lactobacillus zeae (L. zeae) in the periodontitis patients was 17.55-fold higher than in the non-periodontitis patients, suggesting that L. zeae is a novel periodontitis-associated pathogen. Although several Lactobacillus species are used in vivo as probiotics to treat periodontitis and compete with Porphyromonas gingivalis (P. gingivalis), the roles of L. zeae in periodontitis progression, and the relationship between L. zeae and P. gingivalis needs to be investigated.</p><p><strong>Methods: </strong>Both L. zeae and P. gingivalis were inoculated in the ligature-implant site of periodontitis mice. We collected mouse gingival crevicular fluid to analyze inflammatory cytokine secretion using a multiplex assay. Intact or sliced mouse maxilla tissue was used for micro-computed tomography analysis or hematoxylin and eosin staining, immunohistochemistry, and tartrate-resistant acid phosphatase staining to evaluate alveolar bone loss, neutrophil infiltration, and osteoclast activation, respectively.</p><p><strong>Results: </strong>We observed that L. zeae competed with P. gingivalis, and it increased inflammatory cytokine secretion at the ligature-implant site. Similar to P. gingivalis, L. zeae promoted ligature-induced neutrophile infiltration, osteoclast activation, and alveolar bone loss.</p><p><strong>Discussion: </strong>We, therefore, concluded that L. zeae accelerated the progression of periodontitis in the ligature-induced periodontitis mouse model.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"344-353"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalie K. Anselmi, Stephen T. Vanyo, Nicholas D. Clark, Dayron M. Leyva Rodriguez, Megan M. Jones, Sara Rosenthal, Dhara Patel, Richard T. Marconi, Michelle B. Visser
Numerous Treponema species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well‐characterized species Treponema denticola. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host–microbial interaction. Treponema maltophilum and Treponema lecithinolyticum species are also prominent during periodontitis but are relatively understudied. Msp‐like membrane surface proteins exist in T. maltophilum (MspA) and T. lecithinolyticum (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large β‐barrel structures composed of 20 all‐next‐neighbor antiparallel β strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X‐114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane‐associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in Escherichia coli also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.
{"title":"Topology and functional characterization of major outer membrane proteins of Treponema maltophilum and Treponema lecithinolyticum","authors":"Natalie K. Anselmi, Stephen T. Vanyo, Nicholas D. Clark, Dayron M. Leyva Rodriguez, Megan M. Jones, Sara Rosenthal, Dhara Patel, Richard T. Marconi, Michelle B. Visser","doi":"10.1111/omi.12484","DOIUrl":"https://doi.org/10.1111/omi.12484","url":null,"abstract":"Numerous <jats:italic>Treponema</jats:italic> species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well‐characterized species <jats:italic>Treponema denticola</jats:italic>. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host–microbial interaction. <jats:italic>Treponema maltophilum</jats:italic> and <jats:italic>Treponema lecithinolyticum</jats:italic> species are also prominent during periodontitis but are relatively understudied. Msp‐like membrane surface proteins exist in <jats:italic>T. maltophilum</jats:italic> (MspA) and <jats:italic>T. lecithinolyticum</jats:italic> (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large β‐barrel structures composed of 20 all‐next‐neighbor antiparallel β strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X‐114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane‐associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in <jats:italic>Escherichia coli</jats:italic> also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"4 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2023-05-24DOI: 10.1111/omi.12417
Kendall S Stocke, Richard J Lamont
One-carbon metabolism (OCM) pathways are responsible for several functions, producing a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl) that are required for the synthesis of various amino acids and other biomolecules such as purines, thymidylate, redox regulators, and, in most microbes, folate. As humans must acquire folate from the diet, folate production is a target for antimicrobials such as sulfonamides. OCM impacts the regulation of microbial virulence such that in a number of instances, limiting the availability of para-aminobenzoic acid (pABA), an essential OCM precursor, causes a reduction in pathogenicity. Porphyromonas gingivalis, however, displays increased pathogenicity in response to lower pABA levels, and exogenous pABA exerts a calming influence on heterotypic communities of P. gingivalis with pABA-producing partner species. Differential responses to pABA may reflect both the physiology of the organisms and their host microenvironment. OCM plays an integral role in regulating the global rate of protein translation, where the alarmones ZMP and ZTP sense insufficient stores of intracellular folate and coordinate adaptive responses to compensate and restore folate to sufficient levels. The emerging interconnections between OCM, protein synthesis, and context-dependent pathogenicity provide novel insights into the dynamic host-microbe interface.
{"title":"One-carbon metabolism and microbial pathogenicity.","authors":"Kendall S Stocke, Richard J Lamont","doi":"10.1111/omi.12417","DOIUrl":"10.1111/omi.12417","url":null,"abstract":"<p><p>One-carbon metabolism (OCM) pathways are responsible for several functions, producing a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl) that are required for the synthesis of various amino acids and other biomolecules such as purines, thymidylate, redox regulators, and, in most microbes, folate. As humans must acquire folate from the diet, folate production is a target for antimicrobials such as sulfonamides. OCM impacts the regulation of microbial virulence such that in a number of instances, limiting the availability of para-aminobenzoic acid (pABA), an essential OCM precursor, causes a reduction in pathogenicity. Porphyromonas gingivalis, however, displays increased pathogenicity in response to lower pABA levels, and exogenous pABA exerts a calming influence on heterotypic communities of P. gingivalis with pABA-producing partner species. Differential responses to pABA may reflect both the physiology of the organisms and their host microenvironment. OCM plays an integral role in regulating the global rate of protein translation, where the alarmones ZMP and ZTP sense insufficient stores of intracellular folate and coordinate adaptive responses to compensate and restore folate to sufficient levels. The emerging interconnections between OCM, protein synthesis, and context-dependent pathogenicity provide novel insights into the dynamic host-microbe interface.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"156-164"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9620985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2023-10-06DOI: 10.1111/omi.12438
Nicholas Clayton, David Pellei, Zhao Lin
Periodontitis is one of the most common inflammatory diseases in humans. The susceptibility to periodontitis is largely determined by the host response, and the severity of inflammation predicts disease progression. Upon microbial insults, host cells undergo massive changes in their transcription program to trigger an appropriate response (inflammation). It is not surprising that successful keystone pathogens have developed specific mechanisms to manipulate the gene expression network in host cells. Emerging data has indicated that epigenetic regulation plays a significant role in inflammation. Acetylation of lysine residues on histones is a major epigenetic modification of chromatin, highly associated with the accessibility of chromatin and activation of transcription. Specific histone acetylation patterns are observed in inflammatory diseases including periodontitis. Bromo- and extraterminal domain (BET) proteins recognize acetylated histones and then recruit transcription factors and transcription elongation complexes to chromatin. BET proteins are regulated in inflammatory diseases and small molecules blocking the function of BET proteins are promising "epi-drugs" for treating inflammatory diseases.
{"title":"Histone acetylation, BET proteins, and periodontal inflammation.","authors":"Nicholas Clayton, David Pellei, Zhao Lin","doi":"10.1111/omi.12438","DOIUrl":"10.1111/omi.12438","url":null,"abstract":"<p><p>Periodontitis is one of the most common inflammatory diseases in humans. The susceptibility to periodontitis is largely determined by the host response, and the severity of inflammation predicts disease progression. Upon microbial insults, host cells undergo massive changes in their transcription program to trigger an appropriate response (inflammation). It is not surprising that successful keystone pathogens have developed specific mechanisms to manipulate the gene expression network in host cells. Emerging data has indicated that epigenetic regulation plays a significant role in inflammation. Acetylation of lysine residues on histones is a major epigenetic modification of chromatin, highly associated with the accessibility of chromatin and activation of transcription. Specific histone acetylation patterns are observed in inflammatory diseases including periodontitis. Bromo- and extraterminal domain (BET) proteins recognize acetylated histones and then recruit transcription factors and transcription elongation complexes to chromatin. BET proteins are regulated in inflammatory diseases and small molecules blocking the function of BET proteins are promising \"epi-drugs\" for treating inflammatory diseases.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"180-189"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}