Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13332
Xin Wang, Xinwen Nie, Hao Wang, Zhanhong Ren
Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses. Previous studies have shown that Ras, Rho and Rab are closely linked to cardiac hypertrophy and that their overexpression can induce cardiac hypertrophy. Here, we review the functions of small GTPases in cardiac hypertrophy and provide additional insights and references for the prevention and treatment of cardiac hypertrophy.
{"title":"Roles of small GTPases in cardiac hypertrophy (Review).","authors":"Xin Wang, Xinwen Nie, Hao Wang, Zhanhong Ren","doi":"10.3892/mmr.2024.13332","DOIUrl":"10.3892/mmr.2024.13332","url":null,"abstract":"<p><p>Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses. Previous studies have shown that Ras, Rho and Rab are closely linked to cardiac hypertrophy and that their overexpression can induce cardiac hypertrophy. Here, we review the functions of small GTPases in cardiac hypertrophy and provide additional insights and references for the prevention and treatment of cardiac hypertrophy.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/mmr.2024.13314
Zhiheng Dong, Haibin Guan, Lu Wang, Lijuan Liang, Yifan Zang, Lan Wu, Lidao Bao
Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. Carthamus tinctorius L. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both in vitro and in vivo. Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.
{"title":"<i>Carthamus tinctorius</i> <i>L.</i> inhibits hepatic fibrosis and hepatic stellate cell activation by targeting the PI3K/Akt/mTOR pathway.","authors":"Zhiheng Dong, Haibin Guan, Lu Wang, Lijuan Liang, Yifan Zang, Lan Wu, Lidao Bao","doi":"10.3892/mmr.2024.13314","DOIUrl":"10.3892/mmr.2024.13314","url":null,"abstract":"<p><p>Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. <i>Carthamus tinctorius L.</i> (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both <i>in vitro</i> and <i>in vivo</i>. Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13328
Hyunju Liu, Hosouk Joung
Ginkgolic acid (GA), isolated from the leaves and seed coats of Ginkgo biloba, exerts several biological effects, including antitumor, antibacterial, anti‑HIV and anti‑inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7‑AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody‑based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7‑AAD staining. However, Ki67 staining indicates that GA exerted dose‑dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin‑heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal‑regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.
{"title":"Ginkgolic acid regulates myogenic development by influencing the proliferation and differentiation of C2C12 myoblast cells.","authors":"Hyunju Liu, Hosouk Joung","doi":"10.3892/mmr.2024.13328","DOIUrl":"https://doi.org/10.3892/mmr.2024.13328","url":null,"abstract":"<p><p>Ginkgolic acid (GA), isolated from the leaves and seed coats of <i>Ginkgo biloba</i>, exerts several biological effects, including antitumor, antibacterial, anti‑HIV and anti‑inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7‑AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody‑based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7‑AAD staining. However, Ki67 staining indicates that GA exerted dose‑dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin‑heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal‑regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13327
Haijing Yang, Yan Zhang, Lu Zhang, Xiaojuan Tan, Min Zhi, Chunmei Wang
Periodontitis, a common oral disease characterized by the progressive infiltration of bacteria, is a leading cause of adult tooth loss. Periodontal stem cells (PDLSCs) possess good self‑renewal and multi‑potential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. The present study aimed to analyze the roles of Wnt7B and frizzled4 (FZD4) in the osteogenic differentiation and macrophage polarization during periodontitis using an in vitro cell model. First, Wnt7B expression in the periodontitis‑affected gingival tissue of patients and lipopolysaccharide (LPS)‑stimulated PDLSCs was assessed using the GSE23586 dataset and western blot analysis, respectively. In Wnt7B‑overexpressing PDLSCs exposed to LPS, the capacity of osteogenic differentiation was evaluated by detecting alkaline phosphatase activity, the level of Alizarin Red S staining and the expression of genes related to osteogenic differentiation. Subsequently, conditioned medium from PDLSCs overexpressing Wnt7B was used for M0 macrophage culture. The expression of CD86 and INOS was examined using immunofluorescence staining and western blot analysis. In addition, reverse transcription‑quantitative PCR was employed to examine the expression of TNF‑α, IL‑6 and IL‑1β in macrophages. The binding between Wnt7B and FZD4 was estimated using co‑immunoprecipitation. In addition, FZD4 was silenced to perform the rescue experiments to elucidate the regulatory mechanism between Wnt7B and FZD4. The results demonstrated a decreased expression of Wnt7B in periodontitis‑affected gingival tissue and in LPS‑exposed PDLSCs. Wnt7B overexpression promoted the osteogenic differentiation of LPS‑exposed PDLSCs and suppressed the M1 polarization of macrophages. Additionally, Wnt7B bound to FZD4 and upregulated FZD4 expression. FZD4 silencing reversed the effects of Wnt7B overexpression on the osteogenic differentiation in LPS‑exposed PDLSCs and the M1 polarization of macrophages. In summary, Wnt7B plays an anti‑periodontitis role by binding FZD4 to strengthen the osteogenic differentiation of LPS‑stimulated PDLSCs and suppress the M1 polarization of macrophages.
{"title":"Wnt7B enhances the osteogenic differentiation of lipopolysaccharide-stimulated human periodontal ligament stem cells and inhibits the M1 polarization of macrophages by binding FZD4.","authors":"Haijing Yang, Yan Zhang, Lu Zhang, Xiaojuan Tan, Min Zhi, Chunmei Wang","doi":"10.3892/mmr.2024.13327","DOIUrl":"https://doi.org/10.3892/mmr.2024.13327","url":null,"abstract":"<p><p>Periodontitis, a common oral disease characterized by the progressive infiltration of bacteria, is a leading cause of adult tooth loss. Periodontal stem cells (PDLSCs) possess good self‑renewal and multi‑potential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. The present study aimed to analyze the roles of Wnt7B and frizzled4 (FZD4) in the osteogenic differentiation and macrophage polarization during periodontitis using an <i>in vitro</i> cell model. First, Wnt7B expression in the periodontitis‑affected gingival tissue of patients and lipopolysaccharide (LPS)‑stimulated PDLSCs was assessed using the GSE23586 dataset and western blot analysis, respectively. In Wnt7B‑overexpressing PDLSCs exposed to LPS, the capacity of osteogenic differentiation was evaluated by detecting alkaline phosphatase activity, the level of Alizarin Red S staining and the expression of genes related to osteogenic differentiation. Subsequently, conditioned medium from PDLSCs overexpressing Wnt7B was used for M0 macrophage culture. The expression of CD86 and INOS was examined using immunofluorescence staining and western blot analysis. In addition, reverse transcription‑quantitative PCR was employed to examine the expression of TNF‑α, IL‑6 and IL‑1β in macrophages. The binding between Wnt7B and FZD4 was estimated using co‑immunoprecipitation. In addition, FZD4 was silenced to perform the rescue experiments to elucidate the regulatory mechanism between Wnt7B and FZD4. The results demonstrated a decreased expression of Wnt7B in periodontitis‑affected gingival tissue and in LPS‑exposed PDLSCs. Wnt7B overexpression promoted the osteogenic differentiation of LPS‑exposed PDLSCs and suppressed the M1 polarization of macrophages. Additionally, Wnt7B bound to FZD4 and upregulated FZD4 expression. FZD4 silencing reversed the effects of Wnt7B overexpression on the osteogenic differentiation in LPS‑exposed PDLSCs and the M1 polarization of macrophages. In summary, Wnt7B plays an anti‑periodontitis role by binding FZD4 to strengthen the osteogenic differentiation of LPS‑stimulated PDLSCs and suppress the M1 polarization of macrophages.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-06DOI: 10.3892/mmr.2024.13321
Mei He, Yuexin Yu, Shuwei Ning, Jingxian Han, Zhikun Guo
The regulation of cardiac function by the nuclear transcription factor signal transducer and activator of transcription 4 (STAT4) has been recently recognized. Nevertheless, the role and mechanisms of action of STAT4 in myocardial ischemia‑reperfusion (I/R) injury remain unknown. Consequently, the present study constructed a rat model of I/R by ligation of the left anterior descending coronary artery. Following sacrifice, the rat hearts were excised and analyzed to investigated the effects of STAT4 on I/R‑induced myocardial injury. Western blotting demonstrated that expression of STAT4 decreased significantly in the rat model of cardiac I/R and in H9C2 cells that were subjected to hypoxia and reoxygenation (H/R). The overexpression of STAT4 in H9C2 cells reduced cell damage and apoptosis induced by H/R. Furthermore, both in vivo and in vitro, the level of PI3K decreased significantly. Although the AKT protein expression levels were not altered, the AKT phosphorylation levels decreased significantly. STAT4 overexpression enhanced the expression of PI3K and AKT in the H9C2 cells. On the whole, the present study demonstrated that STAT4 alleviated I/R‑induced myocardial injury through the PI3K/AKT signaling pathway.
{"title":"Effects of STAT4 on myocardial ischemia‑reperfusion injury and the underlying mechanisms.","authors":"Mei He, Yuexin Yu, Shuwei Ning, Jingxian Han, Zhikun Guo","doi":"10.3892/mmr.2024.13321","DOIUrl":"10.3892/mmr.2024.13321","url":null,"abstract":"<p><p>The regulation of cardiac function by the nuclear transcription factor signal transducer and activator of transcription 4 (STAT4) has been recently recognized. Nevertheless, the role and mechanisms of action of STAT4 in myocardial ischemia‑reperfusion (I/R) injury remain unknown. Consequently, the present study constructed a rat model of I/R by ligation of the left anterior descending coronary artery. Following sacrifice, the rat hearts were excised and analyzed to investigated the effects of STAT4 on I/R‑induced myocardial injury. Western blotting demonstrated that expression of STAT4 decreased significantly in the rat model of cardiac I/R and in H9C2 cells that were subjected to hypoxia and reoxygenation (H/R). The overexpression of STAT4 in H9C2 cells reduced cell damage and apoptosis induced by H/R. Furthermore, both <i>in vivo</i> and <i>in vitro</i>, the level of PI3K decreased significantly. Although the AKT protein expression levels were not altered, the AKT phosphorylation levels decreased significantly. STAT4 overexpression enhanced the expression of PI3K and AKT in the H9C2 cells. On the whole, the present study demonstrated that STAT4 alleviated I/R‑induced myocardial injury through the PI3K/AKT signaling pathway.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cholangiocarcinoma (CCA) is an extremely aggressive malignancy arising from the epithelial cells lining the bile ducts. It presents a substantial global health issue, with the highest incidence rates, ranging from 40‑100 cases/100,000 individuals, found in Southeast Asia, where liver fluke infection is endemic. In Europe and America, incidence rates range from 0.4‑2 cases/100,000 individuals. Globally, mortality rates range from 0.2‑2 deaths/100,000 person‑years and are increasing in most countries. Chemotherapy is the primary treatment for advanced CCA due to limited options from late‑stage diagnosis, but its efficacy is hindered by drug‑resistant phenotypes. In a previous study, proteomics analysis of drug‑resistant CCA cell lines (KKU‑213A‑FR and KKU‑213A‑GR) and the parental KKU‑213A line identified cullin 3 (Cul3) as markedly overexpressed in drug‑resistant cells. Cul3, a scaffold protein within CUL3‑RING ubiquitin ligase complexes, is crucial for ubiquitination and proteasome degradation, yet its role in drug‑resistant CCA remains to be elucidated. The present study aimed to elucidate the role of Cul3 in drug‑resistant CCA cell lines. Reverse transcription‑quantitative PCR and western blot analyses confirmed significantly elevated Cul3 mRNA and protein levels in drug‑resistant cell lines compared with the parental control. Short interfering RNA‑mediated Cul3 knockdown sensitized cells to 5‑fluorouracil and gemcitabine and inhibited cell proliferation, colony formation, migration and invasion. In addition, Cul3 knockdown induced G0/G1 cell cycle arrest and suppressed key cell cycle regulatory proteins, cyclin D, cyclin‑dependent kinase (CDK)4 and CDK6. Bioinformatics analysis of CCA patient samples using The Cancer Genome Atlas data revealed Cul3 upregulation in CCA tissues compared with normal bile duct tissues. STRING analysis of upregulated proteins in drug‑resistant CCA cell lines identified a highly interactive Cul3 network, including COMM Domain Containing 3, Ariadne RBR E3 ubiquitin protein ligase 1, Egl nine homolog 1, Proteasome 26S Subunit Non‑ATPase 13, DExH‑box helicase 9 and small nuclear ribonucleoprotein polypeptide G, which showed a positive correlation with Cul3 in CCA tissues. Knocking down Cul3 significantly suppressed the mRNA expression of these genes, suggesting that Cul3 may act as an upstream regulator of them. Gene Ontology analysis revealed that the majority of these genes were categorized under binding function, metabolic process, cellular anatomical entity, protein‑containing complex and protein‑modifying enzyme. Taken together, these findings highlighted the biological and clinical significance of Cul3 in drug resistance and progression of CCA.
胆管癌(Colangiocarcinoma,CCA)是一种由胆管上皮细胞引起的侵袭性极强的恶性肿瘤。它是一个重大的全球健康问题,在肝吸虫感染流行的东南亚,发病率最高,为 40-100 例/100,000 人。在欧洲和美洲,发病率为 0.4-2 例/100,000 人。在全球范围内,死亡率为 0.2-2 例/100,000 人年,并且在大多数国家呈上升趋势。由于晚期诊断选择有限,化疗是晚期 CCA 的主要治疗方法,但其疗效受到耐药表型的阻碍。在之前的一项研究中,对耐药CCA细胞系(KKU-213A-FR和KKU-213A-GR)和亲本KKU-213A细胞系进行的蛋白质组学分析发现,cullin 3(Cul3)在耐药细胞中明显过表达。Cul3是CUL3-RING泛素连接酶复合物中的支架蛋白,对泛素化和蛋白酶体降解至关重要,但它在耐药CCA中的作用仍有待阐明。本研究旨在阐明Cul3在耐药CCA细胞系中的作用。逆转录-定量 PCR 和 Western 印迹分析证实,与亲代对照相比,耐药细胞株的 Cul3 mRNA 和蛋白水平明显升高。短干扰RNA介导的Cul3敲除使细胞对5-氟尿嘧啶和吉西他滨敏感,并抑制细胞增殖、集落形成、迁移和侵袭。此外,Cul3敲除还能诱导G0/G1细胞周期停滞,抑制关键细胞周期调控蛋白、细胞周期蛋白D、细胞周期蛋白依赖性激酶(CDK)4和CDK6。利用癌症基因组图谱(The Cancer Genome Atlas)数据对CCA患者样本进行的生物信息学分析表明,与正常胆管组织相比,Cul3在CCA组织中上调。对耐药CCA细胞系中上调蛋白的STRING分析发现了一个高度交互的Cul3网络,包括COMM Domain Containing 3、Ariadne RBR E3泛素蛋白连接酶1、Egl nine homolog 1、蛋白酶体26S亚基非ATP酶13、DEXH-box螺旋酶9和小核核糖核蛋白多肽G,这些蛋白与CCA组织中的Cul3呈正相关。敲除 Cul3 能显著抑制这些基因的 mRNA 表达,表明 Cul3 可能是这些基因的上游调控因子。基因本体分析表明,这些基因大部分被归类为结合功能、代谢过程、细胞解剖实体、含蛋白复合物和蛋白修饰酶。综上所述,这些发现凸显了Cul3在CCA耐药和进展中的生物学和临床意义。
{"title":"Knockdown of cullin 3 inhibits progressive phenotypes and increases chemosensitivity in cholangiocarcinoma cells.","authors":"Kandawasri Pratummanee, Kankamol Kerdkumthong, Sittiruk Roytrakul, Phonprapavee Tantimetta, Phanthipha Runsaeng, Sompop Saeheng, Sumalee Obchoei","doi":"10.3892/mmr.2024.13322","DOIUrl":"10.3892/mmr.2024.13322","url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) is an extremely aggressive malignancy arising from the epithelial cells lining the bile ducts. It presents a substantial global health issue, with the highest incidence rates, ranging from 40‑100 cases/100,000 individuals, found in Southeast Asia, where liver fluke infection is endemic. In Europe and America, incidence rates range from 0.4‑2 cases/100,000 individuals. Globally, mortality rates range from 0.2‑2 deaths/100,000 person‑years and are increasing in most countries. Chemotherapy is the primary treatment for advanced CCA due to limited options from late‑stage diagnosis, but its efficacy is hindered by drug‑resistant phenotypes. In a previous study, proteomics analysis of drug‑resistant CCA cell lines (KKU‑213A‑FR and KKU‑213A‑GR) and the parental KKU‑213A line identified cullin 3 (Cul3) as markedly overexpressed in drug‑resistant cells. Cul3, a scaffold protein within CUL3‑RING ubiquitin ligase complexes, is crucial for ubiquitination and proteasome degradation, yet its role in drug‑resistant CCA remains to be elucidated. The present study aimed to elucidate the role of Cul3 in drug‑resistant CCA cell lines. Reverse transcription‑quantitative PCR and western blot analyses confirmed significantly elevated Cul3 mRNA and protein levels in drug‑resistant cell lines compared with the parental control. Short interfering RNA‑mediated Cul3 knockdown sensitized cells to 5‑fluorouracil and gemcitabine and inhibited cell proliferation, colony formation, migration and invasion. In addition, Cul3 knockdown induced G<sub>0</sub>/G<sub>1</sub> cell cycle arrest and suppressed key cell cycle regulatory proteins, cyclin D, cyclin‑dependent kinase (CDK)4 and CDK6. Bioinformatics analysis of CCA patient samples using The Cancer Genome Atlas data revealed Cul3 upregulation in CCA tissues compared with normal bile duct tissues. STRING analysis of upregulated proteins in drug‑resistant CCA cell lines identified a highly interactive Cul3 network, including COMM Domain Containing 3, Ariadne RBR E3 ubiquitin protein ligase 1, Egl nine homolog 1, Proteasome 26S Subunit Non‑ATPase 13, DExH‑box helicase 9 and small nuclear ribonucleoprotein polypeptide G, which showed a positive correlation with Cul3 in CCA tissues. Knocking down Cul3 significantly suppressed the mRNA expression of these genes, suggesting that Cul3 may act as an upstream regulator of them. Gene Ontology analysis revealed that the majority of these genes were categorized under binding function, metabolic process, cellular anatomical entity, protein‑containing complex and protein‑modifying enzyme. Taken together, these findings highlighted the biological and clinical significance of Cul3 in drug resistance and progression of CCA.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/mmr.2024.13319
Yan Wang, Yamin Fan, Yanzi Zhou, Tianwang Chen, Shangfu Xu, Juan Liu, Lisheng Li
Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from Scutellaria baicalensis, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non‑targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT‑PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT‑PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT‑induced PAH in rats by reducing the Warburg effect.
{"title":"Oroxylin A, a broad‑spectrum anticancer agent, relieves monocrotaline‑induced pulmonary arterial hypertension by inhibiting the Warburg effect in rats.","authors":"Yan Wang, Yamin Fan, Yanzi Zhou, Tianwang Chen, Shangfu Xu, Juan Liu, Lisheng Li","doi":"10.3892/mmr.2024.13319","DOIUrl":"10.3892/mmr.2024.13319","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from <i>Scutellaria baicalensis</i>, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non‑targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT‑PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT‑PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT‑induced PAH in rats by reducing the Warburg effect.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13326
Zhen Liu, Lin Mao, Linlin Wang, Hong Zhang, Xiaoxia Hu
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, concerning the Transwell cell migration and invasion assays shown in Fig. 4Ba and 4Ca on p. 215, quite a large number of the data panels contained overlapping sections, such that data panels which were intended to show the results from differently performed experiments had been derived from a smaller number of original sources. After having considered this matter, in view of the number of overlapping data panels that were identified, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal on account of a lack of confidence in the presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 21: 209-219, 2020; DOI: 10.3892/mmr.2019.10809].
{"title":"[Retracted] miR‑218 functions as a tumor suppressor gene in cervical cancer.","authors":"Zhen Liu, Lin Mao, Linlin Wang, Hong Zhang, Xiaoxia Hu","doi":"10.3892/mmr.2024.13326","DOIUrl":"https://doi.org/10.3892/mmr.2024.13326","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, concerning the Transwell cell migration and invasion assays shown in Fig. 4Ba and 4Ca on p. 215, quite a large number of the data panels contained overlapping sections, such that data panels which were intended to show the results from differently performed experiments had been derived from a smaller number of original sources. After having considered this matter, in view of the number of overlapping data panels that were identified, the Editor of <i>Molecular Medicine Reports</i> has decided that this paper should be retracted from the Journal on account of a lack of confidence in the presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 21: 209-219, 2020; DOI: 10.3892/mmr.2019.10809].</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanshinone IIA (Tan IIA) may have therapeutic effects on avascular necrosis of the femoral head (ANFH) by targeting bone marrow mesenchymal stem cells (BMSCs). The effect and underlying mechanism of Tan IIA on adipogenesis and osteogenesis ability of BMSCs remain to be elucidated. In the present study BMSCs were treated with osteogenic or adipogenic differentiation medium with or without Tan IIA under hypoxic environment. Osteogenic differentiation potential was evaluated by alkaline phosphatase (ALP) measurement, alizarin red staining and reverse transcription‑quantitative (RT‑q) PCR of osteogenic marker genes. Adipogenic differentiation potential was evaluated with oil red staining and RT‑qPCR of adipogenic marker genes. Detailed mechanism was explored by RNA‑seq and small molecular treatment during osteogenesis and adipogenesis of BMSCs. ALP level, mineralized nodules and expression level of osteogenic marker genes significantly increased following Tan IIA treatment during osteogenic differentiation of BMSCs. Lipid droplet and expression levels of adipogenic marker genes significantly decreased following Tan IIA treatment during adipogenic differentiation of BMSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of RNA‑seq data indicated increased Akt and TGFβ signaling following Tan IIA treatment. Further western blot assay confirmed that Tan IIA significantly activated Akt/cAMP response element‑binding protein signaling and TGFβ/Smad3 signaling. Application of Akti1/2 (an Akt inhibitor) significantly decreased the promotion effect of osteogenesis induced by Tan IIA, while the addition of SB431542 significantly reduced inhibition effect of adipogenesis caused by Tan IIA. Tan IIA could promote osteogenic differentiation potential of BMSCs by activating AKT signaling and suppress adipogenic differentiation potential of BMSCs by activating TGFβ signaling.
{"title":"Tanshinone IIA promotes osteogenic differentiation potential and suppresses adipogenic differentiation potential of bone marrow mesenchymal stem cells.","authors":"Wei Wang, Hangqin Wu, Shujing Feng, Xingrui Huang, Hao Xu, Xinxin Shen, Yajing Fu, Shuchen Fang","doi":"10.3892/mmr.2024.13301","DOIUrl":"10.3892/mmr.2024.13301","url":null,"abstract":"<p><p>Tanshinone IIA (Tan IIA) may have therapeutic effects on avascular necrosis of the femoral head (ANFH) by targeting bone marrow mesenchymal stem cells (BMSCs). The effect and underlying mechanism of Tan IIA on adipogenesis and osteogenesis ability of BMSCs remain to be elucidated. In the present study BMSCs were treated with osteogenic or adipogenic differentiation medium with or without Tan IIA under hypoxic environment. Osteogenic differentiation potential was evaluated by alkaline phosphatase (ALP) measurement, alizarin red staining and reverse transcription‑quantitative (RT‑q) PCR of osteogenic marker genes. Adipogenic differentiation potential was evaluated with oil red staining and RT‑qPCR of adipogenic marker genes. Detailed mechanism was explored by RNA‑seq and small molecular treatment during osteogenesis and adipogenesis of BMSCs. ALP level, mineralized nodules and expression level of osteogenic marker genes significantly increased following Tan IIA treatment during osteogenic differentiation of BMSCs. Lipid droplet and expression levels of adipogenic marker genes significantly decreased following Tan IIA treatment during adipogenic differentiation of BMSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of RNA‑seq data indicated increased Akt and TGFβ signaling following Tan IIA treatment. Further western blot assay confirmed that Tan IIA significantly activated Akt/cAMP response element‑binding protein signaling and TGFβ/Smad3 signaling. Application of Akti1/2 (an Akt inhibitor) significantly decreased the promotion effect of osteogenesis induced by Tan IIA, while the addition of SB431542 significantly reduced inhibition effect of adipogenesis caused by Tan IIA. Tan IIA could promote osteogenic differentiation potential of BMSCs by activating AKT signaling and suppress adipogenic differentiation potential of BMSCs by activating TGFβ signaling.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-02DOI: 10.3892/mmr.2024.13312
Hyun-Kyung Song, Jeong-Mi Kim, Eun-Mi Noh, Hyun Jo Youn, Young-Rae Lee
NADPH oxidases (NOXs) are a family of membrane proteins responsible for intracellular reactive oxygen species (ROS) generation by facilitating electron transfer across biological membranes. Despite the established activation of NOXs by protein kinase C (PKC), the precise mechanism through which PKC triggers NOX activation during breast cancer invasion remains unclear. The present study aimed to investigate the role of NOX1 and NOX5 in the invasion of MCF‑7 human breast cancer cells. The expression and activity of NOXs and matrix metalloprotease (MMP)‑9 were assessed by reverse transcription‑quantitative PCR and western blotting, and the activity of MMP‑9 was monitored using zymography. Cellular invasion was assessed using the Matrigel invasion assay, whereas ROS levels were quantified using a FACSCalibur flow cytometer. The findings suggested that NOX1 and NOX5 serve crucial roles in 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced MMP‑9 expression and invasion of MCF‑7 cells. Furthermore, a connection was established between PKC and the NOX1 and 5/ROS signaling pathways in mediating TPA‑induced MMP‑9 expression and cellular invasion. Notably, NOX inhibitors (diphenyleneiodonium chloride and apocynin) significantly attenuated TPA‑induced MMP‑9 expression and invasion in MCF‑7 cells. NOX1‑ and NOX5‑specific small interfering RNAs attenuated TPA‑induced MMP‑9 expression and cellular invasion. In addition, knockdown of NOX1 and NOX5 suppressed TPA‑induced ROS levels. Furthermore, a PKC inhibitor (GF109203X) suppressed TPA‑induced intracellular ROS levels, MMP‑9 expression and NOX activity in MCF‑7 cells. Therefore, NOX1 and NOX5 may serve crucial roles in TPA‑induced MMP‑9 expression and invasion of MCF‑7 breast cancer cells. Furthermore, the present study indicated that TPA‑induced MMP‑9 expression and cellular invasion were mediated through PKC, thus linking the NOX1 and 5/ROS signaling pathways. These findings offer novel insights into the potential mechanisms underlying their anti‑invasive effects in breast cancer.
{"title":"Role of NOX1 and NOX5 in protein kinase C/reactive oxygen species‑mediated MMP‑9 activation and invasion in MCF‑7 breast cancer cells.","authors":"Hyun-Kyung Song, Jeong-Mi Kim, Eun-Mi Noh, Hyun Jo Youn, Young-Rae Lee","doi":"10.3892/mmr.2024.13312","DOIUrl":"10.3892/mmr.2024.13312","url":null,"abstract":"<p><p>NADPH oxidases (NOXs) are a family of membrane proteins responsible for intracellular reactive oxygen species (ROS) generation by facilitating electron transfer across biological membranes. Despite the established activation of NOXs by protein kinase C (PKC), the precise mechanism through which PKC triggers NOX activation during breast cancer invasion remains unclear. The present study aimed to investigate the role of NOX1 and NOX5 in the invasion of MCF‑7 human breast cancer cells. The expression and activity of NOXs and matrix metalloprotease (MMP)‑9 were assessed by reverse transcription‑quantitative PCR and western blotting, and the activity of MMP‑9 was monitored using zymography. Cellular invasion was assessed using the Matrigel invasion assay, whereas ROS levels were quantified using a FACSCalibur flow cytometer. The findings suggested that NOX1 and NOX5 serve crucial roles in 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced MMP‑9 expression and invasion of MCF‑7 cells. Furthermore, a connection was established between PKC and the NOX1 and 5/ROS signaling pathways in mediating TPA‑induced MMP‑9 expression and cellular invasion. Notably, NOX inhibitors (diphenyleneiodonium chloride and apocynin) significantly attenuated TPA‑induced MMP‑9 expression and invasion in MCF‑7 cells. NOX1‑ and NOX5‑specific small interfering RNAs attenuated TPA‑induced MMP‑9 expression and cellular invasion. In addition, knockdown of NOX1 and NOX5 suppressed TPA‑induced ROS levels. Furthermore, a PKC inhibitor (GF109203X) suppressed TPA‑induced intracellular ROS levels, MMP‑9 expression and NOX activity in MCF‑7 cells. Therefore, NOX1 and NOX5 may serve crucial roles in TPA‑induced MMP‑9 expression and invasion of MCF‑7 breast cancer cells. Furthermore, the present study indicated that TPA‑induced MMP‑9 expression and cellular invasion were mediated through PKC, thus linking the NOX1 and 5/ROS signaling pathways. These findings offer novel insights into the potential mechanisms underlying their anti‑invasive effects in breast cancer.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}