The advancement of tumor cell metastasis is significantly influenced by epithelial‑to‑mesenchymal transition (EMT), and metastasis is a prominent contributor to the mortality of patients diagnosed with colorectal cancer (CRC). AT‑rich interactive domain‑containing protein 1A (ARID1A), which acts as a tumor suppressor, frequently exhibits a loss‑of‑function mutation in metastatic CRC tissues. However, the underlying molecular mechanisms of ARID1A relating to EMT remain poorly understood. The present study aimed to clarify the association between ARID1A and EMT regulation in human CRC cells. The investigation into the loss of ARID1A expression in tissues from patients with CRC was performed using immunohistochemistry. Furthermore, ARID1A‑overexpressing SW48 cells were established using lentiviruses carrying human full‑length ARID1A. The results revealed that overexpression of ARID1A induced cellular morphological changes by promoting the tight junction molecule zonula occludens 1 (ZO‑1) and the adherens junction molecule E‑cadherin, whereas it decreased the intermediate filament protein vimentin. The results of reverse transcription‑quantitative PCR also confirmed that ARID1A overexpression upregulated the mRNA expression levels of TJP1/ZO‑1 and CDH1/E‑cadherin, and downregulated VIM/vimentin and zinc finger E‑box binding homeobox 1 expression, which are considered epithelial and mesenchymal markers, respectively. In addition, the overexpression of ARID1A in CRC cells resulted in a suppression of cell motility and migratory capabilities. The present study also demonstrated that the tumor suppressor ARID1A was commonly absent in CRC tissues. Notably, ARID1A overexpression could reverse the EMT‑like phenotype and inhibit cell migration through alterations in EMT‑related markers, leading to the inhibition of malignant progression. In conclusion, ARID1A may serve as a biomarker and therapeutic target in the clinical management of metastatic CRC.
{"title":"<i>ARID1A</i> overexpression inhibits colorectal cancer cell migration through the regulation of epithelial‑mesenchymal transition.","authors":"Sasithorn Wanna-Udom, Siripat Aluksanasuwan, Keerakarn Somsuan, Wariya Mongkolwat, Natthiya Sakulsak","doi":"10.3892/mmr.2024.13325","DOIUrl":"https://doi.org/10.3892/mmr.2024.13325","url":null,"abstract":"<p><p>The advancement of tumor cell metastasis is significantly influenced by epithelial‑to‑mesenchymal transition (EMT), and metastasis is a prominent contributor to the mortality of patients diagnosed with colorectal cancer (CRC). AT‑rich interactive domain‑containing protein 1A (ARID1A), which acts as a tumor suppressor, frequently exhibits a loss‑of‑function mutation in metastatic CRC tissues. However, the underlying molecular mechanisms of ARID1A relating to EMT remain poorly understood. The present study aimed to clarify the association between ARID1A and EMT regulation in human CRC cells. The investigation into the loss of ARID1A expression in tissues from patients with CRC was performed using immunohistochemistry. Furthermore, <i>ARID1A</i>‑overexpressing SW48 cells were established using lentiviruses carrying human full‑length <i>ARID1A</i>. The results revealed that overexpression of <i>ARID1A</i> induced cellular morphological changes by promoting the tight junction molecule zonula occludens 1 (ZO‑1) and the adherens junction molecule E‑cadherin, whereas it decreased the intermediate filament protein vimentin. The results of reverse transcription‑quantitative PCR also confirmed that <i>ARID1A</i> overexpression upregulated the mRNA expression levels of <i>TJP1</i>/ZO‑1 and <i>CDH1</i>/E‑cadherin, and downregulated VIM/vimentin and zinc finger E‑box binding homeobox 1 expression, which are considered epithelial and mesenchymal markers, respectively. In addition, the overexpression of <i>ARID1A</i> in CRC cells resulted in a suppression of cell motility and migratory capabilities. The present study also demonstrated that the tumor suppressor ARID1A was commonly absent in CRC tissues. Notably, <i>ARID1A</i> overexpression could reverse the EMT‑like phenotype and inhibit cell migration through alterations in EMT‑related markers, leading to the inhibition of malignant progression. In conclusion, ARID1A may serve as a biomarker and therapeutic target in the clinical management of metastatic CRC.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13334
Yi-Ming Wang, Lan-Shuan Feng, Ao Xu, Xiao-Han Ma, Miao-Tiao Zhang, Jie Zhang
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
{"title":"Copper ions: The invisible killer of cardiovascular disease (Review).","authors":"Yi-Ming Wang, Lan-Shuan Feng, Ao Xu, Xiao-Han Ma, Miao-Tiao Zhang, Jie Zhang","doi":"10.3892/mmr.2024.13334","DOIUrl":"10.3892/mmr.2024.13334","url":null,"abstract":"<p><p>Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13330
Jinghui Jin, Juan Nan, Yanpo Si, Xiaohui Chen, Haibo Wang, Xiaowei Wang, Jingwang Huang, Tao Guo
Lung cancer has the highest incidence and mortality rates of all cancer types in China and therefore represents a serious threat to human health. In the present study, the mechanism of rabdoternin E against the proliferation of the lung cancer cell line A549 was explored. It was found that rabdoternin E caused the accumulation of large amounts of reactive oxygen species (ROS), promoted cell S phase arrest by reducing the expression of CDK2 and cyclin A2, induced apoptosis by increasing the Bax/Bcl‑2 ratio and promoted the phosphorylation of proteins in the ROS/p38 MAPK/JNK signaling pathway, which is associated with apoptosis and ferroptosis. In addition, it was also found that Z‑VAD‑FMK (an apoptosis inhibitor), ferrostatin‑1 (ferroptosis inhibitor) and N‑acetylcysteine (a ROS inhibitor) could partially or greatly reverse the cytotoxicity of rabdoternin E to A549 cells. Similarly, NAC (N‑acetylcysteine) treatment notably inhibited the rabdoternin E‑stimulated p38 MAPK and JNK activation. Furthermore, in vivo experiments in mice revealed that Rabdoternin E markedly reduced tumor volume and weight and regulated the expression levels of apoptosis and ferroptosis‑related proteins (including Ki67, Bcl‑2, Bax, glutathione peroxidase 4, solute carrier family 7 member 11 and transferrin) in the tumor tissues of mice. Histopathological observation confirmed that the number of tumor cells decreased markedly after administration of rabdoternin E. Taken together, rabdoternin E induced apoptosis and ferroptosis of A549 cells by activating the ROS/p38 MAPK/JNK signaling pathway. Therefore, the results of the present study showed that rabdoternin E is not toxic to MCF‑7 cells (normal lung cells), had no significant effect on body weight and was effective and therefore may be a novel therapeutic treatment for lung cancer.
肺癌是中国发病率和死亡率最高的癌症,严重威胁着人类健康。本研究探讨了芸苔素 E抑制肺癌细胞株A549增殖的机制。研究发现,鸦胆子素E可导致大量活性氧(ROS)积累,通过降低CDK2和细胞周期蛋白A2的表达促进细胞S期停滞,通过增加Bax/Bcl-2比值诱导细胞凋亡,并促进ROS/p38 MAPK/JNK信号通路中蛋白质的磷酸化,而ROS/p38 MAPK/JNK信号通路与细胞凋亡和铁凋亡相关。此外,研究还发现 Z-VAD-FMK(一种细胞凋亡抑制剂)、ferrostatin-1(一种铁凋亡抑制剂)和 N-乙酰半胱氨酸(一种 ROS 抑制剂)可以部分或大部分逆转雷公藤多苷 E 对 A549 细胞的细胞毒性。同样,NAC(N-乙酰半胱氨酸)也能显著抑制鸦胆子素 E 刺激的 p38 MAPK 和 JNK 激活。此外,小鼠体内实验表明,鸦胆子素 E 能显著减少肿瘤体积和重量,并调节小鼠肿瘤组织中凋亡和铁蛋白(包括 Ki67、Bcl-2、Bax、谷胱甘肽过氧化物酶 4、溶质运载家族 7 成员 11 和转铁蛋白)的表达水平。总之,鸦胆子素 E 通过激活 ROS/p38 MAPK/JNK 信号通路诱导 A549 细胞凋亡和铁凋亡。因此,本研究结果表明,鸦胆子素 E 对 MCF-7 细胞(正常肺细胞)无毒性,对体重无明显影响,并且有效,因此可能是一种新型的肺癌治疗方法。
{"title":"Exploring the therapeutic potential of rabdoternin E in lung cancer treatment: Targeting the ROS/p38 MAPK/JNK signaling pathway.","authors":"Jinghui Jin, Juan Nan, Yanpo Si, Xiaohui Chen, Haibo Wang, Xiaowei Wang, Jingwang Huang, Tao Guo","doi":"10.3892/mmr.2024.13330","DOIUrl":"10.3892/mmr.2024.13330","url":null,"abstract":"<p><p>Lung cancer has the highest incidence and mortality rates of all cancer types in China and therefore represents a serious threat to human health. In the present study, the mechanism of rabdoternin E against the proliferation of the lung cancer cell line A549 was explored. It was found that rabdoternin E caused the accumulation of large amounts of reactive oxygen species (ROS), promoted cell S phase arrest by reducing the expression of CDK2 and cyclin A2, induced apoptosis by increasing the Bax/Bcl‑2 ratio and promoted the phosphorylation of proteins in the ROS/p38 MAPK/JNK signaling pathway, which is associated with apoptosis and ferroptosis. In addition, it was also found that Z‑VAD‑FMK (an apoptosis inhibitor), ferrostatin‑1 (ferroptosis inhibitor) and N‑acetylcysteine (a ROS inhibitor) could partially or greatly reverse the cytotoxicity of rabdoternin E to A549 cells. Similarly, NAC (N‑acetylcysteine) treatment notably inhibited the rabdoternin E‑stimulated p38 MAPK and JNK activation. Furthermore, <i>in vivo</i> experiments in mice revealed that Rabdoternin E markedly reduced tumor volume and weight and regulated the expression levels of apoptosis and ferroptosis‑related proteins (including Ki67, Bcl‑2, Bax, glutathione peroxidase 4, solute carrier family 7 member 11 and transferrin) in the tumor tissues of mice. Histopathological observation confirmed that the number of tumor cells decreased markedly after administration of rabdoternin E. Taken together, rabdoternin E induced apoptosis and ferroptosis of A549 cells by activating the ROS/p38 MAPK/JNK signaling pathway. Therefore, the results of the present study showed that rabdoternin E is not toxic to MCF‑7 cells (normal lung cells), had no significant effect on body weight and was effective and therefore may be a novel therapeutic treatment for lung cancer.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study aimed to validate the association between core cuproptosis genes (CRGs) and Alzheimer's disease (AD) from both bioinformatics and experimental perspectives and also to develop a risk prediction model. To this end, 78 human‑derived temporal back samples were analyzed from GSE109887, and the biological functions of the resulting CRGs were explored by cluster analysis, weighted gene co‑expression network analysis and similar methods to identify the best machine model. Moreover, an external dataset GSE33000 and a nomogram were used to validate the model. The mRNA and protein expression of CRGs were validated using the SH‑SY5Y cell model and the Sprague‑Dawley rat animal model. The RT‑qPCR and western blotting results showed that the mRNA and protein expression content of dihydrolipoamide dehydrogenase, ferredoxin 1, glutaminase and pyruvate dehydrogenase E1 subunit β decreased, and the expression of dihydrolipoamide branched chain transacylase E2 increased in AD, which supported the bioinformatic analysis results. The CRG expression alterations affected the aggregation and infiltration of certain immune cells. The present study also confirmed the accuracy and validity of AD diagnostic models and nomograms, and validated the association between five CRGs and AD, indicating a significant difference between patients with AD and healthy individuals. Therefore, CRGs are expected to serve as relevant biomarkers for the diagnosis and prognostic monitoring of AD.
{"title":"Construction and validation of a bioinformatics‑based screen for cuproptosis‑related genes and risk model for Alzheimer's disease.","authors":"Rui Hu, Zhen Xiao, Mingyu Qiao, Chaoyu Liu, Guiyou Wu, Yunyi Wang, Mingyou Dong, Zhongshi Huang","doi":"10.3892/mmr.2024.13318","DOIUrl":"10.3892/mmr.2024.13318","url":null,"abstract":"<p><p>The present study aimed to validate the association between core cuproptosis genes (CRGs) and Alzheimer's disease (AD) from both bioinformatics and experimental perspectives and also to develop a risk prediction model. To this end, 78 human‑derived temporal back samples were analyzed from GSE109887, and the biological functions of the resulting CRGs were explored by cluster analysis, weighted gene co‑expression network analysis and similar methods to identify the best machine model. Moreover, an external dataset GSE33000 and a nomogram were used to validate the model. The mRNA and protein expression of CRGs were validated using the SH‑SY5Y cell model and the Sprague‑Dawley rat animal model. The RT‑qPCR and western blotting results showed that the mRNA and protein expression content of dihydrolipoamide dehydrogenase, ferredoxin 1, glutaminase and pyruvate dehydrogenase E1 subunit β decreased, and the expression of dihydrolipoamide branched chain transacylase E2 increased in AD, which supported the bioinformatic analysis results. The CRG expression alterations affected the aggregation and infiltration of certain immune cells. The present study also confirmed the accuracy and validity of AD diagnostic models and nomograms, and validated the association between five CRGs and AD, indicating a significant difference between patients with AD and healthy individuals. Therefore, CRGs are expected to serve as relevant biomarkers for the diagnosis and prognostic monitoring of AD.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
{"title":"Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review).","authors":"Kexin Chen, Qiuhong Li, Yangyi Li, Donghui Jiang, Ligang Chen, Jun Jiang, Shengbiao Li, Chunxiang Zhang","doi":"10.3892/mmr.2024.13324","DOIUrl":"10.3892/mmr.2024.13324","url":null,"abstract":"<p><p>The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13329
Peng Li, Juhai Chen, Mingdong Wang, Qi Wang, Xingde Liu
Following acute myocardial infarction, the recovery of blood flow leads to myocardial ischemia‑reperfusion (MI/R) injury, which is primarily characterized by the activation of inflammatory signals, microvascular obstruction, increased oxidative stress and excessive Ca2+ overload. It has also been demonstrated that platelets can exacerbate MI/R injury by releasing reactive oxygen species, inflammatory factors and chemokines, while also obstructing microvessels through thrombus formation. As a bioactive molecule with proinflammatory and chemotactic properties, lipocalin 2 (LCN2) exhibits a positive correlation with obesity, hyperglycemia, hypertriglyceridemia and insulin resistance index, which are all significant risk factors for ischemic cardiomyopathy. Notably, the potential role of LCN2 in promoting atherosclerosis may be related to its influence on the function of macrophages, smooth muscle cells and endothelial cells, but its effect on platelet function has not yet been reported. In the present study, the effect of a high‑fat diet (HFD) on LCN2 expression was determined by detecting LCN2 expression levels in the liver and serum samples of mice through reverse transcription‑quantitative PCR and enzyme linked immunosorbent assay, respectively. The effect of LCN2 on platelet function was evaluated by examining whether LCN2 affected platelet activation, aggregation, adhesion, clot retraction and P‑selectin expression. To determine whether LCN2 aggravated MI/R injury in HFD‑fed mice by affecting platelet and inflammatory cell recruitment, wild‑type and LCN2 knockout mice fed a HFD were subjected to MI/R injury, then hearts were collected for hematoxylin and eosin staining and 2,3,5‑triphenyltetrazolium chloride staining, and immunohistochemistry was employed to detect the expression of CD42b, Ly6G, CD3 and B220. Based on observing the upregulation of LCN2 expression in mice fed a HFD, the present study further confirmed that LCN2 could accelerate platelet activation, aggregation and adhesion. Moreover, in vivo studies validated that knockout of LCN2 not only mitigated MI/R injury, but also inhibited the recruitment of platelets and inflammatory cells in myocardial tissue following ischemia‑reperfusion. In conclusion, the current findings suggested that the effect of HFD‑induced LCN2 on aggravating MI/R injury may totally or partially dependent on its promotion of platelet function.
{"title":"High‑fat diet‑induced LCN2 exacerbates myocardial ischemia‑reperfusion injury by enhancing platelet activation.","authors":"Peng Li, Juhai Chen, Mingdong Wang, Qi Wang, Xingde Liu","doi":"10.3892/mmr.2024.13329","DOIUrl":"10.3892/mmr.2024.13329","url":null,"abstract":"<p><p>Following acute myocardial infarction, the recovery of blood flow leads to myocardial ischemia‑reperfusion (MI/R) injury, which is primarily characterized by the activation of inflammatory signals, microvascular obstruction, increased oxidative stress and excessive Ca<sup>2+</sup> overload. It has also been demonstrated that platelets can exacerbate MI/R injury by releasing reactive oxygen species, inflammatory factors and chemokines, while also obstructing microvessels through thrombus formation. As a bioactive molecule with proinflammatory and chemotactic properties, lipocalin 2 (LCN2) exhibits a positive correlation with obesity, hyperglycemia, hypertriglyceridemia and insulin resistance index, which are all significant risk factors for ischemic cardiomyopathy. Notably, the potential role of LCN2 in promoting atherosclerosis may be related to its influence on the function of macrophages, smooth muscle cells and endothelial cells, but its effect on platelet function has not yet been reported. In the present study, the effect of a high‑fat diet (HFD) on LCN2 expression was determined by detecting LCN2 expression levels in the liver and serum samples of mice through reverse transcription‑quantitative PCR and enzyme linked immunosorbent assay, respectively. The effect of LCN2 on platelet function was evaluated by examining whether LCN2 affected platelet activation, aggregation, adhesion, clot retraction and P‑selectin expression. To determine whether LCN2 aggravated MI/R injury in HFD‑fed mice by affecting platelet and inflammatory cell recruitment, wild‑type and LCN2 knockout mice fed a HFD were subjected to MI/R injury, then hearts were collected for hematoxylin and eosin staining and 2,3,5‑triphenyltetrazolium chloride staining, and immunohistochemistry was employed to detect the expression of CD42b, Ly6G, CD3 and B220. Based on observing the upregulation of LCN2 expression in mice fed a HFD, the present study further confirmed that LCN2 could accelerate platelet activation, aggregation and adhesion. Moreover, <i>in vivo</i> studies validated that knockout of LCN2 not only mitigated MI/R injury, but also inhibited the recruitment of platelets and inflammatory cells in myocardial tissue following ischemia‑reperfusion. In conclusion, the current findings suggested that the effect of HFD‑induced LCN2 on aggravating MI/R injury may totally or partially dependent on its promotion of platelet function.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2E, 3E, 4E and 5E, and the Transwell migration assay data shown in Fig. 2D, were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time (some of which have already been retracted). Moreover, data were also found to be duplicated comparing the data panels in Figs. 3D and 4D, such that data which were intended to have shown the results from differently performed experiments had been derived from the same original source. In view of the fact that certain of the abovementioned data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 22: 4163‑4172, 2020; DOI: 10.3892/mmr.2020.11498].
本文发表后,一位相关读者提请编者注意,图 2E、3E、4E 和 5E 中显示的某些 Transwell 侵染试验数据以及图 2D 中显示的 Transwell 迁移试验数据,与不同研究机构的不同作者撰写的其他文章中以不同形式出现的数据惊人地相似,而这些文章要么在本文提交给《分子医学报告》之前已经在其他地方发表,要么在同一时间正在考虑发表(其中一些已经撤回)。此外,对比图 3D 和图 4D 的数据面板,还发现有数据重复的情况,即本应显示不同实验结果的数据来自同一原始来源。鉴于上述某些数据显然已在之前发表过,《分子医学报告》编辑决定从期刊上撤下这篇论文。已要求作者就这些问题做出解释,但编辑部没有收到回复。对于给读者带来的不便,编辑深表歉意。[分子医学报告 22: 4163-4172, 2020; DOI: 10.3892/mmr.2020.11498]。
{"title":"[Retracted] SDF1/CXCR4 axis facilitates the angiogenesis via activating the PI3K/AKT pathway in degenerated discs.","authors":"Hanxiang Zhang, Peng Wang, Xiang Zhang, Wenrui Zhao, Honglei Ren, Zhenming Hu","doi":"10.3892/mmr.2024.13331","DOIUrl":"10.3892/mmr.2024.13331","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2E, 3E, 4E and 5E, and the Transwell migration assay data shown in Fig. 2D, were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to <i>Molecular Medicine Reports</i>, or were under consideration for publication at around the same time (some of which have already been retracted). Moreover, data were also found to be duplicated comparing the data panels in Figs. 3D and 4D, such that data which were intended to have shown the results from differently performed experiments had been derived from the same original source. In view of the fact that certain of the abovementioned data had already apparently been published previously, the Editor of <i>Molecular Medicine Reports</i> has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 22: 4163‑4172, 2020; DOI: 10.3892/mmr.2020.11498].</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/mmr.2024.13317
Luis Antonio Flores-López, Sergio Enríquez-Flores, Ignacio De La Mora-De La Mora, Itzhel García-Torres, Gabriel López-Velázquez, Rubí Viedma-Rodríguez, Alejandro Ávalos-Rodríguez, Alejandra Contreras-Ramos, Clara Ortega-Camarillo
Pancreatic β‑cells are the only cells that synthesize insulin to regulate blood glucose levels. Various conditions can affect the mass of pancreatic β‑cells and decrease insulin levels. Diabetes mellitus is a disease characterized by insulin resistance and chronic hyperglycemia, mainly due to the loss of pancreatic β‑cells caused by an increase in the rate of apoptosis. Additionally, hyperglycemia has a toxic effect on β‑cells. Although the precise mechanism of glucotoxicity is not fully understood, several mechanisms have been proposed. The most prominent changes are increases in reactive oxygen species, the loss of mitochondrial membrane potential and the activation of the intrinsic pathway of apoptosis due to p53. The present review analyzed the location of p53 in the cytoplasm, mitochondria and nucleus in terms of post‑translational modifications, including phosphorylation, O‑GlcNAcylation and poly‑ADP‑ribosylation, under hyperglycemic conditions. These modifications protect p53 from degradation by the proteasome and, in turn, enable it to regulate the intrinsic pathway of apoptosis through the regulation of anti‑apoptotic and pro‑apoptotic elements. Degradation of p53 occurs in the proteasome and depends on its ubiquitination by Mdm2. Understanding the mechanisms that activate the death of pancreatic β‑cells will allow the proposal of treatment alternatives to prevent the decrease in pancreatic β‑cells.
{"title":"Pancreatic β‑cell apoptosis in type 2 diabetes is related to post‑translational modifications of p53 (Review).","authors":"Luis Antonio Flores-López, Sergio Enríquez-Flores, Ignacio De La Mora-De La Mora, Itzhel García-Torres, Gabriel López-Velázquez, Rubí Viedma-Rodríguez, Alejandro Ávalos-Rodríguez, Alejandra Contreras-Ramos, Clara Ortega-Camarillo","doi":"10.3892/mmr.2024.13317","DOIUrl":"10.3892/mmr.2024.13317","url":null,"abstract":"<p><p>Pancreatic β‑cells are the only cells that synthesize insulin to regulate blood glucose levels. Various conditions can affect the mass of pancreatic β‑cells and decrease insulin levels. Diabetes mellitus is a disease characterized by insulin resistance and chronic hyperglycemia, mainly due to the loss of pancreatic β‑cells caused by an increase in the rate of apoptosis. Additionally, hyperglycemia has a toxic effect on β‑cells. Although the precise mechanism of glucotoxicity is not fully understood, several mechanisms have been proposed. The most prominent changes are increases in reactive oxygen species, the loss of mitochondrial membrane potential and the activation of the intrinsic pathway of apoptosis due to p53. The present review analyzed the location of p53 in the cytoplasm, mitochondria and nucleus in terms of post‑translational modifications, including phosphorylation, O‑GlcNAcylation and poly‑ADP‑ribosylation, under hyperglycemic conditions. These modifications protect p53 from degradation by the proteasome and, in turn, enable it to regulate the intrinsic pathway of apoptosis through the regulation of anti‑apoptotic and pro‑apoptotic elements. Degradation of p53 occurs in the proteasome and depends on its ubiquitination by Mdm2. Understanding the mechanisms that activate the death of pancreatic β‑cells will allow the proposal of treatment alternatives to prevent the decrease in pancreatic β‑cells.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-06DOI: 10.3892/mmr.2024.13323
Ke Song, Dianyuan Liang, Dingqi Xiao, Aijia Kang, Yixing Ren
Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.
{"title":"Role of bariatric surgery in improving diabetic cardiomyopathy: Molecular mechanisms and therapeutic perspectives (Review).","authors":"Ke Song, Dianyuan Liang, Dingqi Xiao, Aijia Kang, Yixing Ren","doi":"10.3892/mmr.2024.13323","DOIUrl":"10.3892/mmr.2024.13323","url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/mmr.2024.13333
Li Yu, Yuchun Yang, Jiao Wang, Zhen Bao, Meijuan Zheng, Xi Wang, Yu Zhu, Muhuyati Wulasihan
Fibrosis is the basis of structural remodeling in atrial fibrillation (AF), during which inflammation is crucial. Programmed cell death factor 4 (PDCD4) is a newly identified inflammatory gene, with unknown mechanisms of action in AF. The present study aimed to elucidate the effects of PDCD4 on the inflammation and structural remodeling of atrial myocytes. For this purpose, a PDCD4 overexpression plasmid (oePDCD4) and PDCD4 small interfering (si)RNA (siPDCD4) were used to modulate PDCD4 expression in mouse atrial myocytes (HL‑1 cells). The expression of PDCD4 was detected using reverse transcription‑quantitative PCR and western blot analysis. The optimal drug concentrations of peroxisome proliferator‑activated receptor γ (PPARγ) agonist (pioglitazone hydrochloride), NF‑κB inhibitor (CBL0137), PPARγ inhibitor (GW9962) and NF‑κB agonist (betulinic acid) were screened using a Cell Counting Kit‑8 assay. The levels of inflammatory factors were detected using enzyme‑linked immunosorbent assays, the expression levels of fibrosis‑related proteins and NF‑κB subunits were detected using western blot analysis, and the expression of phosphorylated (p‑)p65/p65 was detected using immunofluorescence staining. The results revealed that PDCD4 overexpression increased the levels of fibrotic factors (collagen I, collagen III, fibronectin, α‑smooth muscle actin and matrix metalloproteinase 2), pro‑inflammatory cytokines (IFN‑γ, IL‑6, IL‑17A and TNF‑α) and p‑p65, whereas it reduced the levels of anti‑inflammatory cytokines (IL‑4) in HL‑1 cells. Additionally, treatment with the PPARγ agonist and NF‑κB inhibitor reversed the levels of fibrotic‑, pro‑inflammatory and anti‑inflammatory factors in oePDCD4‑HL‑1 cells. By contrast, PDCD4 silencing exerted the opposite effects on fibrotic factors, pro‑inflammatory cytokines, anti‑inflammatory cytokines and p‑p65. In addition, treatment with the PPARγ inhibitor and NF‑κB agonist reversed the levels of fibrotic‑, pro‑inflammatory and anti‑inflammatory factors in siPDCD4‑HL‑1 cells. In conclusion, the present study demonstrated that PDCD4 may induce inflammation and fibrosis by activating the PPARγ/NF‑κB signaling pathway, thereby promoting the structural remodeling of atrial myocytes in AF.
{"title":"PDCD4 promotes inflammation/fibrosis by activating the PPAR‑γ/NF‑κB pathway in mouse atrial myocytes.","authors":"Li Yu, Yuchun Yang, Jiao Wang, Zhen Bao, Meijuan Zheng, Xi Wang, Yu Zhu, Muhuyati Wulasihan","doi":"10.3892/mmr.2024.13333","DOIUrl":"10.3892/mmr.2024.13333","url":null,"abstract":"<p><p>Fibrosis is the basis of structural remodeling in atrial fibrillation (AF), during which inflammation is crucial. Programmed cell death factor 4 (PDCD4) is a newly identified inflammatory gene, with unknown mechanisms of action in AF. The present study aimed to elucidate the effects of PDCD4 on the inflammation and structural remodeling of atrial myocytes. For this purpose, a PDCD4 overexpression plasmid (oePDCD4) and PDCD4 small interfering (si)RNA (siPDCD4) were used to modulate PDCD4 expression in mouse atrial myocytes (HL‑1 cells). The expression of PDCD4 was detected using reverse transcription‑quantitative PCR and western blot analysis. The optimal drug concentrations of peroxisome proliferator‑activated receptor γ (PPARγ) agonist (pioglitazone hydrochloride), NF‑κB inhibitor (CBL0137), PPARγ inhibitor (GW9962) and NF‑κB agonist (betulinic acid) were screened using a Cell Counting Kit‑8 assay. The levels of inflammatory factors were detected using enzyme‑linked immunosorbent assays, the expression levels of fibrosis‑related proteins and NF‑κB subunits were detected using western blot analysis, and the expression of phosphorylated (p‑)p65/p65 was detected using immunofluorescence staining. The results revealed that PDCD4 overexpression increased the levels of fibrotic factors (collagen I, collagen III, fibronectin, α‑smooth muscle actin and matrix metalloproteinase 2), pro‑inflammatory cytokines (IFN‑γ, IL‑6, IL‑17A and TNF‑α) and p‑p65, whereas it reduced the levels of anti‑inflammatory cytokines (IL‑4) in HL‑1 cells. Additionally, treatment with the PPARγ agonist and NF‑κB inhibitor reversed the levels of fibrotic‑, pro‑inflammatory and anti‑inflammatory factors in oePDCD4‑HL‑1 cells. By contrast, PDCD4 silencing exerted the opposite effects on fibrotic factors, pro‑inflammatory cytokines, anti‑inflammatory cytokines and p‑p65. In addition, treatment with the PPARγ inhibitor and NF‑κB agonist reversed the levels of fibrotic‑, pro‑inflammatory and anti‑inflammatory factors in siPDCD4‑HL‑1 cells. In conclusion, the present study demonstrated that PDCD4 may induce inflammation and fibrosis by activating the PPARγ/NF‑κB signaling pathway, thereby promoting the structural remodeling of atrial myocytes in AF.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}