首页 > 最新文献

Nanotechnology Reviews最新文献

英文 中文
High-performance lithium–selenium batteries enabled by nitrogen-doped porous carbon from peanut meal 花生粕中掺氮多孔碳实现高性能锂硒电池
3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2023-0130
Xiangyu Xu, Linyue Li, Sheng Yu, Siao Zhu, Hannah M. Johnson, Yunlei Zhou, Fei Gao, Linfang Wang, Zhoulu Wang, Yutong Wu, Xiang Liu, Yi Zhang, Shan Jiang
Abstract Biomass-derived porous carbon displays a great potential for lithium–selenium (Li–Se) batteries owing to its green resource and inherent structural advantages, which can effectively restrict the shuttle effect of Se cathode. Peanut meal, by-product of the extraction of peanut oil, is a promising precursor for N-doped porous carbon. However, peanut meal is difficult to be activated in solution due to its high hydrophobicity. Thus, non-reports have been available for peanut meal-derived porous carbon used as Li–Se battery cathode host. In this work, we have innovatively proposed a very simple method of activating peanut meal by directly physically grinding the activator with the peanut meal and then annealing it to convert it into nitrogen-doped three-dimensional porous carbon (N-PC) with rich nanoscale pore size structures, which is then used as the Se host for Li–Se batteries. The N-PC shows a high specific surface area of 938.872 m 2 g −1 . The Se/N-PC composite cathode delivers a specific capacity of 461.4 mA h g −1 for 250 cycles at 0.2 C, corresponding to a high-capacity retention of 97.2%. Moreover, the Se/N-PC composite maintains a high capacity over 340.1 mA h g −1 after 1,000 cycles at a high current density of 2 C. Our work effectively resolves the hydrophobic biomass activation problem and manufactures abundant and low-cost Se host for Li–Se batteries.
生物质衍生多孔碳由于其绿色资源和固有的结构优势,在锂硒电池中显示出巨大的潜力,可以有效地限制Se阴极的穿梭效应。花生油萃取副产物花生粕是一种很有前途的氮掺杂多孔碳前驱体。然而,由于花生粉的高疏水性,在溶液中很难被活化。因此,花生粕衍生多孔碳用作锂硒电池正极主体的研究尚无报道。在这项工作中,我们创新地提出了一种非常简单的激活花生粉的方法,即直接用花生粉物理研磨激活剂,然后退火将其转化为具有丰富纳米级孔径结构的氮掺杂三维多孔碳(N-PC),然后将其用作Li-Se电池的Se主体。N-PC的比表面积高达938.872 m2 g−1。Se/N-PC复合阴极在0.2℃下循环250次,比容量为461.4 mA h g−1,相当于97.2%的高容量保留率。此外,在2℃的高电流密度下,Se/N-PC复合材料在1000次循环后仍保持超过340.1 mA h g−1的高容量,有效地解决了疏水生物质活化问题,为Li-Se电池制造了丰富且低成本的Se宿主。
{"title":"High-performance lithium–selenium batteries enabled by nitrogen-doped porous carbon from peanut meal","authors":"Xiangyu Xu, Linyue Li, Sheng Yu, Siao Zhu, Hannah M. Johnson, Yunlei Zhou, Fei Gao, Linfang Wang, Zhoulu Wang, Yutong Wu, Xiang Liu, Yi Zhang, Shan Jiang","doi":"10.1515/ntrev-2023-0130","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0130","url":null,"abstract":"Abstract Biomass-derived porous carbon displays a great potential for lithium–selenium (Li–Se) batteries owing to its green resource and inherent structural advantages, which can effectively restrict the shuttle effect of Se cathode. Peanut meal, by-product of the extraction of peanut oil, is a promising precursor for N-doped porous carbon. However, peanut meal is difficult to be activated in solution due to its high hydrophobicity. Thus, non-reports have been available for peanut meal-derived porous carbon used as Li–Se battery cathode host. In this work, we have innovatively proposed a very simple method of activating peanut meal by directly physically grinding the activator with the peanut meal and then annealing it to convert it into nitrogen-doped three-dimensional porous carbon (N-PC) with rich nanoscale pore size structures, which is then used as the Se host for Li–Se batteries. The N-PC shows a high specific surface area of 938.872 m 2 g −1 . The Se/N-PC composite cathode delivers a specific capacity of 461.4 mA h g −1 for 250 cycles at 0.2 C, corresponding to a high-capacity retention of 97.2%. Moreover, the Se/N-PC composite maintains a high capacity over 340.1 mA h g −1 after 1,000 cycles at a high current density of 2 C. Our work effectively resolves the hydrophobic biomass activation problem and manufactures abundant and low-cost Se host for Li–Se batteries.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136258330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent updates in nanotechnological advances for wound healing: A narrative review 纳米技术在伤口愈合中的最新进展:叙述性回顾
3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2023-0129
Hitesh Chopra, Yugal Kishore Mohanta, Saurov Mahanta, Tapan Kumar Mohanta, Inderbir Singh, Satya Kumar Avula, Sarada Prasanna Mallick, Ali A. Rabaan, Hajir AlSaihati, Ahmed Alsayyah, Mohammed Alissa, Hussain R. Alturaifi, Bader AlAlwan, Mohamed S. Attia, Sandip Chakraborty, Kuldeep Dhama
Abstract The repair and remodeling of injured tissues, known as wound healing, is a multifaceted process. The use of nanotechnology to speed up the healing process of wounds by promoting the right kind of mobility through different mechanisms has shown a lot of promise. Several nanotechnologies with novel properties have emerged in recent years, each of which targets a different issue associated with wound-healing processes. Through their antibacterial, anti-inflammatory, and angiogenic actions, nanomaterials may alter the wound microenvironment from a non-healing to a healing state. Wound dressings including hydrogels, gelatin sponges, films, and bandages may all benefit from the use of nanoparticles (NPs) to keep harmful microbes out. The addition of bioactive substances like antibiotics, NPs, and growth factors to certain dressings may further boost their efficacy. In conclusion, this review sheds light on wound healing that may be aided by the special features of materials based on nanotechnology. Although nanomaterials for wound healing show great promise, further study is needed before this promising area can convert its findings into consumer-friendly solutions.
损伤组织的修复和重塑,即伤口愈合,是一个多方面的过程。利用纳米技术通过不同的机制促进适当的移动性来加速伤口的愈合过程已经显示出很大的前景。近年来出现了几种具有新特性的纳米技术,每种纳米技术都针对与伤口愈合过程相关的不同问题。通过其抗菌、抗炎和血管生成的作用,纳米材料可以改变伤口微环境从非愈合状态到愈合状态。包括水凝胶、明胶海绵、薄膜和绷带在内的伤口敷料都可能受益于纳米颗粒(NPs)的使用,以防止有害微生物进入。在某些敷料中添加抗生素、NPs和生长因子等生物活性物质可能会进一步提高其功效。总之,这篇综述揭示了基于纳米技术的材料的特殊特性可能有助于伤口愈合。虽然纳米材料在伤口愈合方面显示出巨大的希望,但在这个有前途的领域将其发现转化为消费者友好的解决方案之前,还需要进一步的研究。
{"title":"Recent updates in nanotechnological advances for wound healing: A narrative review","authors":"Hitesh Chopra, Yugal Kishore Mohanta, Saurov Mahanta, Tapan Kumar Mohanta, Inderbir Singh, Satya Kumar Avula, Sarada Prasanna Mallick, Ali A. Rabaan, Hajir AlSaihati, Ahmed Alsayyah, Mohammed Alissa, Hussain R. Alturaifi, Bader AlAlwan, Mohamed S. Attia, Sandip Chakraborty, Kuldeep Dhama","doi":"10.1515/ntrev-2023-0129","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0129","url":null,"abstract":"Abstract The repair and remodeling of injured tissues, known as wound healing, is a multifaceted process. The use of nanotechnology to speed up the healing process of wounds by promoting the right kind of mobility through different mechanisms has shown a lot of promise. Several nanotechnologies with novel properties have emerged in recent years, each of which targets a different issue associated with wound-healing processes. Through their antibacterial, anti-inflammatory, and angiogenic actions, nanomaterials may alter the wound microenvironment from a non-healing to a healing state. Wound dressings including hydrogels, gelatin sponges, films, and bandages may all benefit from the use of nanoparticles (NPs) to keep harmful microbes out. The addition of bioactive substances like antibiotics, NPs, and growth factors to certain dressings may further boost their efficacy. In conclusion, this review sheds light on wound healing that may be aided by the special features of materials based on nanotechnology. Although nanomaterials for wound healing show great promise, further study is needed before this promising area can convert its findings into consumer-friendly solutions.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136371564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical performance of date palm fiber-reinforced concrete modified with nano-activated carbon 纳米活性炭改性枣椰树纤维增强混凝土的力学性能
IF 7.4 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2022-0564
M. Adamu, Y. Ibrahim, O. S. Ahmed, Q. Drmosh
Abstract Date palm fiber (DPF) is an easily processed, low cost, and accessible natural fiber. It has mostly been used in composites for non-structural applications. For DPF to be utilized in cementitious composites for structural applications, ways to reduce its harmful effect on compressive strength must be devised. Therefore, in this study, nano-activated carbon (NAC), due to its filler effects, was used as an additive to produce the DPF-reinforced concrete (DPFRC). To produce the DPFRC, 0, 1, 2, and 3% by cement weight of DPF and NAC were added. The fresh properties, strength, and microstructure of the concrete were examined. The findings revealed that DPF decreased the consistency, density, and compressive strength. Additionally, it increases the porosity in the concrete microstructure. The addition of up to 1% NAC significantly improved the compressive, flexural, and split tensile strengths of the concrete, while it decreased the harmful impact of up to 2% DPF on the DPFRC’s strength. The split tensile and flexural strengths of the concrete were enhanced with the addition of up to 2% DPF without any NAC. The addition of up to 2% NAC densified the DPFRC’s microstructure by refining and filling the pores generated by the DPF. The multivariable statistical models developed to estimate the mechanical properties of the DPFRC containing DPF and NAC were very significant with a very high degree of precision.
摘要椰枣纤维(DPF)是一种易于加工、成本低、易得的天然纤维。它主要用于非结构应用的复合材料。为了将DPF用于结构应用的水泥基复合材料,必须设计出减少其对抗压强度有害影响的方法。因此,在本研究中,纳米活性炭(NAC)由于其填料作用,被用作生产DPF钢筋混凝土(DPFRC)的添加剂。为了生产DPFRC,加入0、1、2和3%(水泥重量)的DPF和NAC。对混凝土的新特性、强度和微观结构进行了检测。研究结果表明,DPF降低了稠度、密度和抗压强度。此外,它增加了混凝土微观结构中的孔隙率。添加高达1%的NAC显著提高了混凝土的抗压、弯曲和劈拉强度,同时降低了高达2%的DPF对DPFRC强度的有害影响。在不添加任何NAC的情况下,添加高达2%的DPF可提高混凝土的劈拉强度和弯曲强度。添加高达2%的NAC通过细化和填充DPF产生的孔隙来致密DPFRC的微观结构。为估计含有DPF和NAC的DPFRC的机械性能而开发的多变量统计模型非常重要,具有非常高的精度。
{"title":"Mechanical performance of date palm fiber-reinforced concrete modified with nano-activated carbon","authors":"M. Adamu, Y. Ibrahim, O. S. Ahmed, Q. Drmosh","doi":"10.1515/ntrev-2022-0564","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0564","url":null,"abstract":"Abstract Date palm fiber (DPF) is an easily processed, low cost, and accessible natural fiber. It has mostly been used in composites for non-structural applications. For DPF to be utilized in cementitious composites for structural applications, ways to reduce its harmful effect on compressive strength must be devised. Therefore, in this study, nano-activated carbon (NAC), due to its filler effects, was used as an additive to produce the DPF-reinforced concrete (DPFRC). To produce the DPFRC, 0, 1, 2, and 3% by cement weight of DPF and NAC were added. The fresh properties, strength, and microstructure of the concrete were examined. The findings revealed that DPF decreased the consistency, density, and compressive strength. Additionally, it increases the porosity in the concrete microstructure. The addition of up to 1% NAC significantly improved the compressive, flexural, and split tensile strengths of the concrete, while it decreased the harmful impact of up to 2% DPF on the DPFRC’s strength. The split tensile and flexural strengths of the concrete were enhanced with the addition of up to 2% DPF without any NAC. The addition of up to 2% NAC densified the DPFRC’s microstructure by refining and filling the pores generated by the DPF. The multivariable statistical models developed to estimate the mechanical properties of the DPFRC containing DPF and NAC were very significant with a very high degree of precision.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42198908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antifouling induced by surface wettability of poly(dimethyl siloxane) and its nanocomposites 聚二甲基硅氧烷及其纳米复合材料表面润湿性的防污作用
IF 7.4 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2022-0552
Zhoukun He, Na Wang, Xiaochen Yang, Linpeng Mu, Zhuo Wang, Jie Su, Mingdong Luo, Junlong Li, Fei Deng, Xiaorong Lan
Abstract Antifouling technologies have attracted considerable attention in recent years, as numerous fouling phenomena pertaining to inorganic, organic, bio-, and composite foulants substantially affect daily life. Poly(dimethyl siloxane) (PDMS) has several practical applications; however, it possesses limited resistance to inorganic, organic, or biofoulants such as proteins or bacteria. Among the antifouling strategies reported thus far, antifouling induced by surface wettability (AFISW) is an exceptional strategy with considerable potential. It presents numerous advantages such as a physical working mechanism, eco-friendliness, and facile material fabrication process. To achieve AFISW, PDMS can be modified with several nanomaterials to tune its surface wettability to meet antifouling requirements. This article presents a systematic review of the existing research on AFISW in PDMS to achieve improved antifouling performance. Specifically, we first provide a background on fouling, focusing on the different types of fouling and antifouling mechanisms. Then, we provide a comprehensive review of AFISW based on four types of surface wettability, namely, superhydrophilicity, hydrophilicity, hydrophobicity, and superhydrophobicity. Finally, we discuss suitable AFISW strategies for different types of fouling mechanisms based on PDMS and its nanocomposites. This review will help researchers design and fabricate various polymeric materials and their nanocomposites with tailored surface wettability for AFISW applications.
摘要近年来,防污技术引起了人们的极大关注,因为许多与无机、有机、生物和复合污垢有关的污垢现象严重影响了日常生活。聚二甲基硅氧烷(PDMS)具有多种实际应用;然而,它对无机、有机或生物污垢如蛋白质或细菌具有有限的抗性。在迄今为止报道的防污策略中,表面润湿性引起的防污(AFISW)是一种具有相当潜力的特殊策略。它具有许多优点,如物理工作机制、生态友好和易于材料制造工艺。为了实现AFISW,PDMS可以用几种纳米材料进行改性,以调节其表面润湿性,从而满足防污要求。本文系统地回顾了AFISW在PDMS中的现有研究,以提高防污性能。具体来说,我们首先提供了污垢的背景,重点介绍了不同类型的污垢和防污机理。然后,我们基于四种类型的表面润湿性,即超亲水性、亲水性、疏水性和超疏水性,对AFISW进行了全面的综述。最后,我们讨论了基于PDMS及其纳米复合材料的适用于不同类型污垢机制的AFISW策略。这篇综述将帮助研究人员设计和制造各种聚合物材料及其纳米复合材料,这些材料具有针对AFISW应用的定制表面润湿性。
{"title":"Antifouling induced by surface wettability of poly(dimethyl siloxane) and its nanocomposites","authors":"Zhoukun He, Na Wang, Xiaochen Yang, Linpeng Mu, Zhuo Wang, Jie Su, Mingdong Luo, Junlong Li, Fei Deng, Xiaorong Lan","doi":"10.1515/ntrev-2022-0552","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0552","url":null,"abstract":"Abstract Antifouling technologies have attracted considerable attention in recent years, as numerous fouling phenomena pertaining to inorganic, organic, bio-, and composite foulants substantially affect daily life. Poly(dimethyl siloxane) (PDMS) has several practical applications; however, it possesses limited resistance to inorganic, organic, or biofoulants such as proteins or bacteria. Among the antifouling strategies reported thus far, antifouling induced by surface wettability (AFISW) is an exceptional strategy with considerable potential. It presents numerous advantages such as a physical working mechanism, eco-friendliness, and facile material fabrication process. To achieve AFISW, PDMS can be modified with several nanomaterials to tune its surface wettability to meet antifouling requirements. This article presents a systematic review of the existing research on AFISW in PDMS to achieve improved antifouling performance. Specifically, we first provide a background on fouling, focusing on the different types of fouling and antifouling mechanisms. Then, we provide a comprehensive review of AFISW based on four types of surface wettability, namely, superhydrophilicity, hydrophilicity, hydrophobicity, and superhydrophobicity. Finally, we discuss suitable AFISW strategies for different types of fouling mechanisms based on PDMS and its nanocomposites. This review will help researchers design and fabricate various polymeric materials and their nanocomposites with tailored surface wettability for AFISW applications.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42801246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent research progress on the stimuli-responsive smart membrane: A review 刺激反应型智能膜的研究进展
IF 7.4 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2022-0538
Yi Pan, Yapeng Liu, Shuangchun Yang, Changqing Zhang, Z. Ullah
Abstract The smart membrane is a new type of functional membrane. The performance of this membrane is changed according to the variations in external physical and chemical signals. This membrane has become an essential focus in specific recognition, catalysis, selective permeation, and other fields. However, the problems of this membrane are weak anti-pollution ability, poor response performance, and inability of mass production. Therefore, scholars have done a lot of research on improving this membrane by modification, grafting polymerization, phase transformation, and in situ cross-linking copolymerization. This review provides a comparative investigation and summary of smart membranes, including temperature, light, electric field, magnetic field, pH, and specific molecular and ion-responsive membranes. Moreover, the authors also introduce the preparation process, selectivity, optimization and improvement of membranes, and their application fields. Finally, the authors’ perspective on the current key issues and directions of these fields for future development are also discussed.
摘要智能膜是一种新型的功能膜。这种膜的性能根据外部物理和化学信号的变化而变化。该膜已成为特异性识别、催化、选择性渗透等领域的重要研究热点。然而,这种膜的问题是抗污染能力弱、响应性能差、无法大规模生产。因此,学者们通过改性、接枝聚合、相变和原位交联共聚等方法对该膜进行了大量的改进研究。这篇综述对智能膜进行了比较研究和总结,包括温度、光照、电场、磁场、pH以及特定的分子和离子响应膜。此外,作者还介绍了膜的制备工艺、选择性、优化和改进及其应用领域。最后,还讨论了作者对当前关键问题的看法以及这些领域未来发展的方向。
{"title":"Recent research progress on the stimuli-responsive smart membrane: A review","authors":"Yi Pan, Yapeng Liu, Shuangchun Yang, Changqing Zhang, Z. Ullah","doi":"10.1515/ntrev-2022-0538","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0538","url":null,"abstract":"Abstract The smart membrane is a new type of functional membrane. The performance of this membrane is changed according to the variations in external physical and chemical signals. This membrane has become an essential focus in specific recognition, catalysis, selective permeation, and other fields. However, the problems of this membrane are weak anti-pollution ability, poor response performance, and inability of mass production. Therefore, scholars have done a lot of research on improving this membrane by modification, grafting polymerization, phase transformation, and in situ cross-linking copolymerization. This review provides a comparative investigation and summary of smart membranes, including temperature, light, electric field, magnetic field, pH, and specific molecular and ion-responsive membranes. Moreover, the authors also introduce the preparation process, selectivity, optimization and improvement of membranes, and their application fields. Finally, the authors’ perspective on the current key issues and directions of these fields for future development are also discussed.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45879836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of CaO addition on the CuW composite containing micro- and nano-sized tungsten particles synthesized via aluminothermic coupling with silicothermic reduction CaO添加对硅热还原铝热偶联合成含微米和纳米钨颗粒的CuW复合材料的影响
IF 7.4 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2022-0527
Chu Cheng, Xinyue Wang, K. Song, Zi‐Hao Song, Zhi-he Dou, Mengen Zhang, Haitao Liu, Xiaoheng Li, Liye Niu
Abstract CuW composite fabricated by powder metallurgy using ultrafine metal powders as raw materials has the disadvantages such as uneven microstructure and low compactness. A novel method of synthesizing an as-cast CuW composite ingot via an aluminothermic coupling with silicothermic reduction is presented; a low-melting-point CaO–Al2O3–SiO2 slag is formed by adding CaO as a slag former, effectively reducing Al2O3 inclusion in the CuW composite. In this study, the effects of CaO addition on the novel synthesis of the CuW composite via the aluminothermic coupling with silicothermic reduction are investigated. The result shows that CaO affects the removal of large particles (≥6 µm) but not the removal of small particles (≤4 µm). With the increase in the ratio of CaO ranging from 0 to 1.0, the inclusions in the CuW composites gradually transform from Al2O3 to calcium aluminates, which are conducive to the separation of the metal and slag. The contents of Si and O in the CuW composites gradually decrease from 9.40 and 14.00% to 6.10 and 3.50%, respectively, while those of Al and Ca gradually increase from 2.54 and 0.02% to 3.83 and 0.26%, respectively.
摘要以超细金属粉末为原料,采用粉末冶金方法制备CuW复合材料,存在组织不均匀、致密性差等缺点。提出了一种通过铝热耦合和硅热还原合成铸态CuW复合铸锭的新方法;通过添加CaO作为矿渣形成剂,形成了低熔点CaO–Al2O3–SiO2矿渣,有效减少了CuW复合材料中Al2O3的夹杂。在本研究中,研究了CaO的添加对通过铝热耦合和硅热还原合成CuW复合材料的影响。结果表明,CaO对大颗粒(≥6 µm),但不去除小颗粒(≤4 µm)。随着CaO比例从0到1.0的增加,CuW复合材料中的夹杂物逐渐从Al2O3转变为铝酸钙,这有利于金属和炉渣的分离。CuW复合材料中Si和O的含量分别从9.40%和14.00%逐渐降低到6.10和3.50%,而Al和Ca的含量分别由2.54%和0.02%逐渐增加到3.83%和0.26%。
{"title":"Effects of CaO addition on the CuW composite containing micro- and nano-sized tungsten particles synthesized via aluminothermic coupling with silicothermic reduction","authors":"Chu Cheng, Xinyue Wang, K. Song, Zi‐Hao Song, Zhi-he Dou, Mengen Zhang, Haitao Liu, Xiaoheng Li, Liye Niu","doi":"10.1515/ntrev-2022-0527","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0527","url":null,"abstract":"Abstract CuW composite fabricated by powder metallurgy using ultrafine metal powders as raw materials has the disadvantages such as uneven microstructure and low compactness. A novel method of synthesizing an as-cast CuW composite ingot via an aluminothermic coupling with silicothermic reduction is presented; a low-melting-point CaO–Al2O3–SiO2 slag is formed by adding CaO as a slag former, effectively reducing Al2O3 inclusion in the CuW composite. In this study, the effects of CaO addition on the novel synthesis of the CuW composite via the aluminothermic coupling with silicothermic reduction are investigated. The result shows that CaO affects the removal of large particles (≥6 µm) but not the removal of small particles (≤4 µm). With the increase in the ratio of CaO ranging from 0 to 1.0, the inclusions in the CuW composites gradually transform from Al2O3 to calcium aluminates, which are conducive to the separation of the metal and slag. The contents of Si and O in the CuW composites gradually decrease from 9.40 and 14.00% to 6.10 and 3.50%, respectively, while those of Al and Ca gradually increase from 2.54 and 0.02% to 3.83 and 0.26%, respectively.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49586904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design of functional vancomycin-embedded bio-derived extracellular matrix hydrogels for repairing infectious bone defects 功能性万古霉素包埋生物衍生细胞外基质水凝胶修复感染性骨缺损的设计
IF 7.4 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2022-0524
Qingshuang Dong, Sunfang Chen, Jiuqin Zhou, Jingcheng Liu, Yubin Zou, Jia-Feng Lin, Jun Yao, D. Cai, Danhua Tao, Bing Wu, Bin Fang
Abstract The treatment of infectious bone defects has become a troublesome issue in orthopedics. The disease requires effective anti-infective and bone-reconstruction therapeutic functionalities. In this study, we prepared a novel antibacterial material (vancomycin-impregnated periosteal extracellular matrix [Van-PEM]) by embedding vancomycin in a periosteal extracellular matrix (PEM)-derived hydrogel via physical stirring for the treatment of infectious bone defects. The microstructure, porosity, degradation, and release properties of this antibacterial hydrogel were characterized. The in vitro hemolytic reaction, cytotoxicity, osteogenic ability, and antibacterial properties were also carefully studied. The results showed that the Van-PEM hydrogel possessed a fibrous network structure with high porosity. Moreover, the hydrogel demonstrated slow degradation in vitro and could release vancomycin for at least 1 week. The hydrogel showed no cytotoxicity and possessed good biocompatibility with blood cells. It also promoted osteogenesis and exerted a significant bactericidal effect. Subsequently, the anti-infection and bone-healing abilities of the antibacterial hydrogel were investigated in a rat model of infectious calvarial defects, and the infectious skull defect was successfully cured in vivo. Therefore, Van-PEM hydrogels may represent a promising therapeutic approach for treating infectious bone defects.
摘要感染性骨缺损的治疗已成为骨科的一个难题。这种疾病需要有效的抗感染和骨重建治疗功能。在本研究中,我们通过物理搅拌将万古霉素包埋在骨膜细胞外基质(PEM)衍生的水凝胶中,制备了一种新型抗菌材料(万古霉素浸渍的骨膜细胞外基体[Van PEM]),用于治疗感染性骨缺损。对该抗菌水凝胶的微观结构、孔隙率、降解和释放性能进行了表征。还仔细研究了体外溶血反应、细胞毒性、成骨能力和抗菌性能。结果表明,Van PEM水凝胶具有高孔隙率的纤维网络结构。此外,水凝胶在体外降解缓慢,可以释放万古霉素至少1周。该水凝胶无细胞毒性,与血细胞具有良好的生物相容性。它还能促进成骨,并发挥显著的杀菌作用。随后,在感染性颅骨缺损大鼠模型中研究了抗菌水凝胶的抗感染和骨愈合能力,并在体内成功治愈了感染性颅骨缺陷。因此,Van PEM水凝胶可能是治疗感染性骨缺损的一种很有前途的治疗方法。
{"title":"Design of functional vancomycin-embedded bio-derived extracellular matrix hydrogels for repairing infectious bone defects","authors":"Qingshuang Dong, Sunfang Chen, Jiuqin Zhou, Jingcheng Liu, Yubin Zou, Jia-Feng Lin, Jun Yao, D. Cai, Danhua Tao, Bing Wu, Bin Fang","doi":"10.1515/ntrev-2022-0524","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0524","url":null,"abstract":"Abstract The treatment of infectious bone defects has become a troublesome issue in orthopedics. The disease requires effective anti-infective and bone-reconstruction therapeutic functionalities. In this study, we prepared a novel antibacterial material (vancomycin-impregnated periosteal extracellular matrix [Van-PEM]) by embedding vancomycin in a periosteal extracellular matrix (PEM)-derived hydrogel via physical stirring for the treatment of infectious bone defects. The microstructure, porosity, degradation, and release properties of this antibacterial hydrogel were characterized. The in vitro hemolytic reaction, cytotoxicity, osteogenic ability, and antibacterial properties were also carefully studied. The results showed that the Van-PEM hydrogel possessed a fibrous network structure with high porosity. Moreover, the hydrogel demonstrated slow degradation in vitro and could release vancomycin for at least 1 week. The hydrogel showed no cytotoxicity and possessed good biocompatibility with blood cells. It also promoted osteogenesis and exerted a significant bactericidal effect. Subsequently, the anti-infection and bone-healing abilities of the antibacterial hydrogel were investigated in a rat model of infectious calvarial defects, and the infectious skull defect was successfully cured in vivo. Therefore, Van-PEM hydrogels may represent a promising therapeutic approach for treating infectious bone defects.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45656637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advances in organic–inorganic nanocomposites for cancer imaging and therapy 有机-无机纳米复合材料在癌症成像和治疗中的研究进展
3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2023-0133
Wenhui Xie, Yanli Liu, Juntang Lin
Abstract “All in one” organic–inorganic nanocomposites with high biocompatibility and excellent physicochemical properties have recently attracted special attention in cancer imaging and therapy. Combination of organic and inorganic materials confers the nanocomposites with superior biocompatibility and biodegradability of organic materials, as well as magnetic, mechanical, and optical properties of inorganic materials. Increased endeavors have been made to produce diverse organic–inorganic nanocomposites and investigate their potential applications in cancer treatment. Thus, a systematic review of research progresses of diverse organic–inorganic nanocomposites in cancer imaging and therapy is indispensable. Following a brief overview of nanocomposites synthesis, classification, and functionalization, the current review is focused on comprehensively summarizing representatives of both organic–inorganic nanoscale nanocomposites (including organic-silica, organic-carbon, organic-quantum dots, organic-platinum family metals, organic-gold, organic metal oxides, and other nanocomposites) and organic–inorganic molecular nanocomposites (including metal-organic frameworks, organosilica nanoparticles, and amorphous metal coordination polymer particles), and further analyzing their working mechanism in cancer imaging and therapy. Finally, the challenges and future perspectives of organic–inorganic nanocomposites are addressed for promoting their developments and clinical application in cancer treatment.
“All in one”有机-无机纳米复合材料具有较高的生物相容性和优异的物理化学性能,近年来在癌症成像和治疗方面受到了广泛关注。有机材料和无机材料的结合使纳米复合材料具有有机材料优越的生物相容性和生物可降解性,以及无机材料的磁性、机械和光学性能。人们不断努力生产各种有机-无机纳米复合材料,并研究其在癌症治疗中的潜在应用。因此,对各种有机-无机纳米复合材料在肿瘤成像和治疗中的研究进展进行系统综述是必不可少的。在简要介绍纳米复合材料的合成、分类和功能化的基础上,综述了有机-无机纳米复合材料(包括有机-二氧化硅、有机-碳、有机-量子点、有机-铂族金属、有机-金、有机金属氧化物等)和有机-无机分子纳米复合材料(包括金属-有机框架、有机二氧化硅纳米颗粒、以及无定形金属配位聚合物颗粒),并进一步分析其在肿瘤成像和治疗中的作用机理。最后,对有机-无机纳米复合材料面临的挑战和未来前景进行了展望,以促进其在癌症治疗中的发展和临床应用。
{"title":"Advances in organic–inorganic nanocomposites for cancer imaging and therapy","authors":"Wenhui Xie, Yanli Liu, Juntang Lin","doi":"10.1515/ntrev-2023-0133","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0133","url":null,"abstract":"Abstract “All in one” organic–inorganic nanocomposites with high biocompatibility and excellent physicochemical properties have recently attracted special attention in cancer imaging and therapy. Combination of organic and inorganic materials confers the nanocomposites with superior biocompatibility and biodegradability of organic materials, as well as magnetic, mechanical, and optical properties of inorganic materials. Increased endeavors have been made to produce diverse organic–inorganic nanocomposites and investigate their potential applications in cancer treatment. Thus, a systematic review of research progresses of diverse organic–inorganic nanocomposites in cancer imaging and therapy is indispensable. Following a brief overview of nanocomposites synthesis, classification, and functionalization, the current review is focused on comprehensively summarizing representatives of both organic–inorganic nanoscale nanocomposites (including organic-silica, organic-carbon, organic-quantum dots, organic-platinum family metals, organic-gold, organic metal oxides, and other nanocomposites) and organic–inorganic molecular nanocomposites (including metal-organic frameworks, organosilica nanoparticles, and amorphous metal coordination polymer particles), and further analyzing their working mechanism in cancer imaging and therapy. Finally, the challenges and future perspectives of organic–inorganic nanocomposites are addressed for promoting their developments and clinical application in cancer treatment.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"190 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134883135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The progress of cathode materials in aqueous zinc-ion batteries 水锌离子电池正极材料研究进展
3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2023-0122
Xinchi Zhou, Shan Jiang, Siao Zhu, Shuangfei Xiang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Suchong Tan, Zhengdao Pan, Xingyou Rao, Yutong Wu, Zhoulu Wang, Xiang Liu, Yi Zhang, Yunlei Zhou
Abstract Rechargeable aqueous zinc-ion batteries (AZIBs), a promising energy storage device in the large-scale energy storage market, have attracted extensive attention in recent years due to their high safety, low cost, environmental friendliness, and excellent electrochemical performance. Despite the rapid development of AZIBs technology, challenges such as insufficient energy density and limited cycling life still exist, which hinders the practical application of AZIBs. Due to the critical role that cathode materials play in the electrochemical performance of AZIBs, it is necessary to summarize the progress of cathode materials for AZIBs. In this review, the Zn 2+ storage mechanisms of the cathode materials are analyzed. Subsequently, the representative cathode materials are introduced, and their structures and electrochemical performances are compared. The existing problems and improvement strategies of these cathode materials are summarized in detail. Finally, the future challenges and promising prospects for cathode materials are proposed. This review will guide researchers and manufacturers, benefiting them in designing advanced AZIBs for grid-scale energy storage.
摘要:可充电水锌离子电池(azib)由于其高安全性、低成本、环境友好性和优异的电化学性能,近年来受到了广泛的关注,是大规模储能市场上一种很有前景的储能装置。尽管azib技术发展迅速,但仍然存在能量密度不足、循环寿命有限等挑战,阻碍了azib的实际应用。由于正极材料对azib的电化学性能起着至关重要的作用,因此有必要对azib正极材料的研究进展进行总结。本文对正极材料的zn2 +储存机理进行了分析。随后,介绍了具有代表性的正极材料,并对其结构和电化学性能进行了比较。详细总结了这些正极材料存在的问题及改进策略。最后,对正极材料未来面临的挑战和前景进行了展望。该综述将指导研究人员和制造商设计用于电网规模储能的先进azib。
{"title":"The progress of cathode materials in aqueous zinc-ion batteries","authors":"Xinchi Zhou, Shan Jiang, Siao Zhu, Shuangfei Xiang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Suchong Tan, Zhengdao Pan, Xingyou Rao, Yutong Wu, Zhoulu Wang, Xiang Liu, Yi Zhang, Yunlei Zhou","doi":"10.1515/ntrev-2023-0122","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0122","url":null,"abstract":"Abstract Rechargeable aqueous zinc-ion batteries (AZIBs), a promising energy storage device in the large-scale energy storage market, have attracted extensive attention in recent years due to their high safety, low cost, environmental friendliness, and excellent electrochemical performance. Despite the rapid development of AZIBs technology, challenges such as insufficient energy density and limited cycling life still exist, which hinders the practical application of AZIBs. Due to the critical role that cathode materials play in the electrochemical performance of AZIBs, it is necessary to summarize the progress of cathode materials for AZIBs. In this review, the Zn 2+ storage mechanisms of the cathode materials are analyzed. Subsequently, the representative cathode materials are introduced, and their structures and electrochemical performances are compared. The existing problems and improvement strategies of these cathode materials are summarized in detail. Finally, the future challenges and promising prospects for cathode materials are proposed. This review will guide researchers and manufacturers, benefiting them in designing advanced AZIBs for grid-scale energy storage.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"367 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hygrothermal bending analysis of sandwich nanoplates with FG porous core and piezomagnetic faces via nonlocal strain gradient theory 基于非局部应变梯度理论的FG多孔芯压磁夹层纳米板的热湿弯曲分析
3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1515/ntrev-2023-0123
Rabab A. Alghanmi
Abstract The bending of sandwich nanoplates made of functionally graded (FG) porous core and electromagnetic layers is explored for the first time through a nonlocal strain gradient theory and a four-unknown shear deformation theory. The proposed model can account for both nonlocal and strain gradient impacts. Therefore, the stiffness enhancement and stiffness reduction processes of sandwich nanoplates are observed. The porosities in the nanoplate are modeled with even and uneven distribution patterns. Six equations of equilibrium are constructed by using virtual work principle. The effects of the porosity factor, externally applied electric and magnetic fields, nonlocal parameter, strain gradient parameter, temperature and moisture parameters, aspect ratio, and side-to-thickness ratio on the static behaviors of FG sandwich nanoplates for simply supported boundary conditions are demonstrated using a parametric study. This article offers comparison treatments for the bending investigation of smart sandwich nanoplates, which can be used in a variety of computational methods. According to the results, deflections induced by negative electric and magnetic potentials behave differently than those brought on by positive electric and magnetic potentials. Other important findings are reached that should aid in the development and implementation of electromagnetic sandwich nanoplate structures.
通过非局部应变梯度理论和四未知剪切变形理论,首次探讨了功能梯度多孔核与电磁层夹心纳米板的弯曲问题。该模型可以同时考虑非局部和应变梯度的影响。因此,观察了夹层纳米板的刚度增强和刚度降低过程。采用均匀分布和不均匀分布两种模式来模拟纳米板的孔隙度。利用虚功原理构造了6个平衡方程。通过参数化研究,研究了孔隙率因子、外加电场和磁场、非局部参数、应变梯度参数、温度和湿度参数、长径比和边厚比对简支边界条件下FG夹芯纳米板静态行为的影响。本文提供了智能夹层纳米板弯曲研究的比较处理方法,可用于多种计算方法。结果表明,负电势和磁势引起的偏转与正电势和磁势引起的偏转行为不同。其他重要的发现应该有助于电磁三明治纳米板结构的发展和实施。
{"title":"Hygrothermal bending analysis of sandwich nanoplates with FG porous core and piezomagnetic faces <i>via</i> nonlocal strain gradient theory","authors":"Rabab A. Alghanmi","doi":"10.1515/ntrev-2023-0123","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0123","url":null,"abstract":"Abstract The bending of sandwich nanoplates made of functionally graded (FG) porous core and electromagnetic layers is explored for the first time through a nonlocal strain gradient theory and a four-unknown shear deformation theory. The proposed model can account for both nonlocal and strain gradient impacts. Therefore, the stiffness enhancement and stiffness reduction processes of sandwich nanoplates are observed. The porosities in the nanoplate are modeled with even and uneven distribution patterns. Six equations of equilibrium are constructed by using virtual work principle. The effects of the porosity factor, externally applied electric and magnetic fields, nonlocal parameter, strain gradient parameter, temperature and moisture parameters, aspect ratio, and side-to-thickness ratio on the static behaviors of FG sandwich nanoplates for simply supported boundary conditions are demonstrated using a parametric study. This article offers comparison treatments for the bending investigation of smart sandwich nanoplates, which can be used in a variety of computational methods. According to the results, deflections induced by negative electric and magnetic potentials behave differently than those brought on by positive electric and magnetic potentials. Other important findings are reached that should aid in the development and implementation of electromagnetic sandwich nanoplate structures.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135595501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanotechnology Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1