L. Fomina, Christopher C. Leon, M. Bizarro, A. Baeza, V. Gómez-Vidales, L. E. Sansores, R. Salcedo
In the last decades the interest in organic conductors has growth, so they have become the object of study of many research groups that are interested in developing new materials with important conducting properties. The charge transfer complexes (CTC) represent an important kind of organic conductors, because they exhibit high conductivity values, as well as versatility for their design. In this work, the charge transfer complex (CTC) formed by substituted pyrrole and tetrathiofulvalene (TTF) was obtained by means electrochemical synthesis, the resultant colored mix was characterized by Mass spectrometry, NMR and EPR studies, its intrinsic electronic behavior was measured by a four point probe method, besides theoretical calculations were carried out on the possible structures of the resultant molecular adduct. All the results show that there is a net transfer of an electron between both organic moieties in a solution giving place to a semiconductor species.
{"title":"TTF derivative of 2,5-aromatic disubstituted pyrroles, experimental and theoretical study","authors":"L. Fomina, Christopher C. Leon, M. Bizarro, A. Baeza, V. Gómez-Vidales, L. E. Sansores, R. Salcedo","doi":"10.1557/OPL.2016.73","DOIUrl":"https://doi.org/10.1557/OPL.2016.73","url":null,"abstract":"In the last decades the interest in organic conductors has growth, so they have become the object of study of many research groups that are interested in developing new materials with important conducting properties. The charge transfer complexes (CTC) represent an important kind of organic conductors, because they exhibit high conductivity values, as well as versatility for their design. In this work, the charge transfer complex (CTC) formed by substituted pyrrole and tetrathiofulvalene (TTF) was obtained by means electrochemical synthesis, the resultant colored mix was characterized by Mass spectrometry, NMR and EPR studies, its intrinsic electronic behavior was measured by a four point probe method, besides theoretical calculations were carried out on the possible structures of the resultant molecular adduct. All the results show that there is a net transfer of an electron between both organic moieties in a solution giving place to a semiconductor species.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81766283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Activation of carbon using polypyrrole as activating agent is searched through Molecular Modeling. The Geometry Optimizations carried out helped to observe carbon effect when is attacked by a polymer in order to give an estimation of the pore size diameter of carbon. In this first approximation pore size diameters is about 30 % with respect to BET (Brunauer, P. Emmett y E. Teller) isotherms experimental data.
通过分子模拟研究了以聚吡咯为活化剂活化碳的方法。几何优化有助于观察聚合物对碳的影响,从而估计碳的孔径。在第一个近似中,孔径相对于BET (Brunauer, P. Emmett y . E. Teller)等温线实验数据约为30%。
{"title":"Geometry Optimization as Molecular Modeling on Activating Carbon with Polypirrole","authors":"Y. Aguilar, J. Sánchez","doi":"10.1557/OPL.2016.72","DOIUrl":"https://doi.org/10.1557/OPL.2016.72","url":null,"abstract":"Activation of carbon using polypyrrole as activating agent is searched through Molecular Modeling. The Geometry Optimizations carried out helped to observe carbon effect when is attacked by a polymer in order to give an estimation of the pore size diameter of carbon. In this first approximation pore size diameters is about 30 % with respect to BET (Brunauer, P. Emmett y E. Teller) isotherms experimental data.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89430162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biopolymers as Novel Tool for Self-Sealing and Self-Healing of Mortar","authors":"A. Mignon, P. Dubruel, S. Vlierberghe, N. Belie","doi":"10.1557/OPL.2016.3","DOIUrl":"https://doi.org/10.1557/OPL.2016.3","url":null,"abstract":"","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89937157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Balcázar-Pérez, G. Ramírez-García, S. Gutiérrez, R. Galindo
Magnetic nanoparticles (MNPs) are a class of materials that can be manipulated under the influence of an external magnetic field. Thanks to the ability of the MNPs to be guided by an external magnetic field that is like "action at a distance", combined with their low cytotoxicity and the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of biological entities [1, 2]. This work is focused on the synthesis of magnetite nanoparticles by varied methods, their functionalization with nickel tetrasulfonated phthalocyanine, and the corresponding physicochemical characterization and colloidal stability studies in biologically compatible media. The in vitro production of singlet oxygen by these nanoparticles through photochemical stimulation in ultraviolet and visible region was evaluated, resulting in 4.5 and 4 µM respectly to magnetite synthetized in the group. The increase reactive oxygen species concentration in the cellular environment can result in modification and damage of cellular components, and potentially, cell death and necrosis. Therefore, these materials offer the promise of revolutionary tools for photodynamic therapy and hyperthermia, which are attractive strategies for cancer therapy without systemic toxicity.
{"title":"Synthesis and characterization of functionalized nano magnetite with phthalocyanines for use in photodynamic therapy","authors":"M. A. Balcázar-Pérez, G. Ramírez-García, S. Gutiérrez, R. Galindo","doi":"10.1557/OPL.2016.43","DOIUrl":"https://doi.org/10.1557/OPL.2016.43","url":null,"abstract":"Magnetic nanoparticles (MNPs) are a class of materials that can be manipulated under the influence of an external magnetic field. Thanks to the ability of the MNPs to be guided by an external magnetic field that is like \"action at a distance\", combined with their low cytotoxicity and the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of biological entities [1, 2]. This work is focused on the synthesis of magnetite nanoparticles by varied methods, their functionalization with nickel tetrasulfonated phthalocyanine, and the corresponding physicochemical characterization and colloidal stability studies in biologically compatible media. The in vitro production of singlet oxygen by these nanoparticles through photochemical stimulation in ultraviolet and visible region was evaluated, resulting in 4.5 and 4 µM respectly to magnetite synthetized in the group. The increase reactive oxygen species concentration in the cellular environment can result in modification and damage of cellular components, and potentially, cell death and necrosis. Therefore, these materials offer the promise of revolutionary tools for photodynamic therapy and hyperthermia, which are attractive strategies for cancer therapy without systemic toxicity.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85758468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this work was to study the deformation behavior of an Armco iron after severe plastic deformation by equal channel angular pressing (ECAP). Particular attention was paid to predict the dislocation density by different approaches like the model proposed by Bergstrom. Experimental measures of dislocation density by different techniques are used in the discussion. Cylindrical samples of ARMCO iron (8mm of diameter, 60mm of length) were subjected to ECAP deformation using a die with an intersecting channel of Φ=90° and outer arc of curvature of ψ= 37° die. Samples were deformed for up to 16 ECAP passes following route Bc. The mechanical properties of the material were measured after each pass by tensile tests. The original grain size of the annealed iron (70 μm) was drastically reduced after ECAP reaching grain sizes close to 300nm after 16 passes.
{"title":"Dislocation study of ARMCO iron processed by ECAP","authors":"J. A. Muñoz, O. Higuera, J. Cabrera","doi":"10.1557/OPL.2016.81","DOIUrl":"https://doi.org/10.1557/OPL.2016.81","url":null,"abstract":"The aim of this work was to study the deformation behavior of an Armco iron after severe plastic deformation by equal channel angular pressing (ECAP). Particular attention was paid to predict the dislocation density by different approaches like the model proposed by Bergstrom. Experimental measures of dislocation density by different techniques are used in the discussion. Cylindrical samples of ARMCO iron (8mm of diameter, 60mm of length) were subjected to ECAP deformation using a die with an intersecting channel of Φ=90° and outer arc of curvature of ψ= 37° die. Samples were deformed for up to 16 ECAP passes following route Bc. The mechanical properties of the material were measured after each pass by tensile tests. The original grain size of the annealed iron (70 μm) was drastically reduced after ECAP reaching grain sizes close to 300nm after 16 passes.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86865055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Cheng, J. Cheng, B. Valdez, M. Schorr, J. Bastidas
{"title":"Study of Corrosion Inhibition Behavior of Vappro 844 Via Colloid Formation","authors":"N. Cheng, J. Cheng, B. Valdez, M. Schorr, J. Bastidas","doi":"10.1557/OPL.2016.96","DOIUrl":"https://doi.org/10.1557/OPL.2016.96","url":null,"abstract":"","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85946700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Korzun, V. Sobol', M. Rusu, Ruben M. Savizky, A. A. Fadzeyeva, I. I. Maroz, A. N. Gavrilenko, V. Matukhin, M. Lux‐Steiner
The CuInSe2 and CuSbSe2 ternary compounds and alloys of the (CuSbSe2)1-x⋅(CuInSe2)x system with the mole fraction of CuInSe2 (x) equal to 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, and 0.95 were prepared and the phase relations in this system were investigated by X-ray powder diffraction, optical microscopy, and scanning electron microscopy. It was shown that the alloys of the CuSbSe2-CuInSe2 system are biphasic at room temperature in the whole range of compositions, and the limits of solubility for CuSbSe2 in CuInSe2 and for CuInSe2 in CuSbSe2 do not exceed 0.001 mole fraction.
{"title":"Preparation and Phase Relations in the CuSbSe2 – CuInSe2 System","authors":"B. Korzun, V. Sobol', M. Rusu, Ruben M. Savizky, A. A. Fadzeyeva, I. I. Maroz, A. N. Gavrilenko, V. Matukhin, M. Lux‐Steiner","doi":"10.1557/OPL.2016.59","DOIUrl":"https://doi.org/10.1557/OPL.2016.59","url":null,"abstract":"The CuInSe2 and CuSbSe2 ternary compounds and alloys of the (CuSbSe2)1-x⋅(CuInSe2)x system with the mole fraction of CuInSe2 (x) equal to 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, and 0.95 were prepared and the phase relations in this system were investigated by X-ray powder diffraction, optical microscopy, and scanning electron microscopy. It was shown that the alloys of the CuSbSe2-CuInSe2 system are biphasic at room temperature in the whole range of compositions, and the limits of solubility for CuSbSe2 in CuInSe2 and for CuInSe2 in CuSbSe2 do not exceed 0.001 mole fraction.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78223068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Guadalupe Pineda-Pimentel, S. R. Vasquez‐Garcia, N. Flores-Ramírez, Juan Carlos Farías-Sánchez
Chitosan is biocompatible polymer has a great commercial interest because it can be processed in a sort of devices varying in shape and size, such as membranes, gels and nanoparticles. Mostly, the cell’s attachment and proliferation are very positive on nanostructurated materials with a three-dimensional formation. An irreversible network can be produced by covalently binding the polymer to the cross-linker molecules. Chitosan nanoparticles were prepared using glutaraldehyde as cross-linker. This crosss-liker mostly reacts with chitosan amino groups. In order to control and understand the physical characteristics of chitosan nanoparticle, in this work is showed the molecular behavior of chitosan/glutaraldehyde from the viewpoint of molecular interactions base in a series of molecular dynamics (MD) computer simulation. The results indicated the conformations of both molecules, which had a significant influence on the molecular association. The chitosan chains were uniformly distributed presenting a high flexibility and preference for the relaxed two-fold helix. This was due to the various associations such as intramolecular chitosan interactions –O-H···O-C-. While the chitosan-glutaraldehyde associations were due to the positive net charge density of hydrogens in the chitosan plus - H 2 N···C=O associations. In solid state chitosan nano and microparticles were analyzed by scanning electron microscopy (SEM). According to the micrographs results, the nanoparticles presented a monomorphism with piles of particles arranged in linear order which was consistent with the conformations determined by simulation.
壳聚糖是一种生物相容性聚合物,具有很大的商业价值,因为它可以加工成各种形状和大小的设备,如膜、凝胶和纳米颗粒。大多数情况下,细胞在具有三维结构的纳米结构材料上的附着和增殖是非常积极的。通过将聚合物与交联剂分子共价结合,可以产生不可逆网络。以戊二醛为交联剂制备了壳聚糖纳米颗粒。这种类交叉剂主要与壳聚糖氨基反应。为了控制和了解壳聚糖纳米颗粒的物理特性,本工作从分子相互作用的角度对壳聚糖/戊二醛的分子行为进行了一系列分子动力学(MD)计算机模拟。结果表明,两种分子的构象对分子结合有显著影响。壳聚糖链分布均匀,具有较高的柔韧性和对松弛双螺旋结构的偏好。这是由于壳聚糖分子内相互作用- o - h··O-C-等各种关联。壳聚糖-戊二醛缔合是由于壳聚糖中氢的正电荷密度加上- H 2 N···C=O缔合。采用扫描电子显微镜(SEM)对固态壳聚糖的纳米颗粒和微颗粒进行了分析。显微观察结果显示,纳米颗粒呈单晶结构,颗粒堆呈线性排列,与模拟所得构象一致。
{"title":"Conformational and Morphological Study of Chitosan Nanohydrogels by MD Simulation and SEM","authors":"María Guadalupe Pineda-Pimentel, S. R. Vasquez‐Garcia, N. Flores-Ramírez, Juan Carlos Farías-Sánchez","doi":"10.1557/OPL.2016.45","DOIUrl":"https://doi.org/10.1557/OPL.2016.45","url":null,"abstract":"Chitosan is biocompatible polymer has a great commercial interest because it can be processed in a sort of devices varying in shape and size, such as membranes, gels and nanoparticles. Mostly, the cell’s attachment and proliferation are very positive on nanostructurated materials with a three-dimensional formation. An irreversible network can be produced by covalently binding the polymer to the cross-linker molecules. Chitosan nanoparticles were prepared using glutaraldehyde as cross-linker. This crosss-liker mostly reacts with chitosan amino groups. In order to control and understand the physical characteristics of chitosan nanoparticle, in this work is showed the molecular behavior of chitosan/glutaraldehyde from the viewpoint of molecular interactions base in a series of molecular dynamics (MD) computer simulation. The results indicated the conformations of both molecules, which had a significant influence on the molecular association. The chitosan chains were uniformly distributed presenting a high flexibility and preference for the relaxed two-fold helix. This was due to the various associations such as intramolecular chitosan interactions –O-H···O-C-. While the chitosan-glutaraldehyde associations were due to the positive net charge density of hydrogens in the chitosan plus - H 2 N···C=O associations. In solid state chitosan nano and microparticles were analyzed by scanning electron microscopy (SEM). According to the micrographs results, the nanoparticles presented a monomorphism with piles of particles arranged in linear order which was consistent with the conformations determined by simulation.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78590046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. López, M. Ramírez-Argáez, A. Amaro-Villeda, C. A. Gonzalez
A very realistic 1:17 scale physical model of a 140-ton gas-stirred industrial steel ladle was used to evaluate flow patterns measured by Particle Image Velocimetry (PIV), considering a three-phase system (air-water-oil) to simulate the argon-steel-slag system and to quantify the effect of the slag layer on the flow patterns. The flow patterns were evaluated for a single injector located at the center of the ladle bottom with a gas flow rate of 2.85 l/min, with the presence of a slag phase with a thickness of 0.0066 m. The experimental results obtained in this work are in excellent agreement with the trends reported in the literature for these gas-stirred ladles. Additionally, a mathematical model was developed in a 2D gas-stirred ladle considering the three-phase system built in the physical model. The model was based on the Eulerian approach in which the continuity and the Navier Stokes equations are solved for each phase. Therefore, there were three continuity and six Navier-Stokes equations in the system. Additionally, turbulence in the ladle was computed by using the standard k-epsilon turbulent model. The agreement between numerical simulations and experiments was excellent with respect to velocity fields and turbulent structure, which sets the basis for future works on process analysis with the developed mathematical model, since there are only a few three-phase models reported so far in the literature to predict fluid dynamics in gas-stirred steel ladles.
{"title":"Mathematical and physical modeling of three-phase gas-stirred ladles","authors":"J. López, M. Ramírez-Argáez, A. Amaro-Villeda, C. A. Gonzalez","doi":"10.1557/OPL.2016.14","DOIUrl":"https://doi.org/10.1557/OPL.2016.14","url":null,"abstract":"A very realistic 1:17 scale physical model of a 140-ton gas-stirred industrial steel ladle was used to evaluate flow patterns measured by Particle Image Velocimetry (PIV), considering a three-phase system (air-water-oil) to simulate the argon-steel-slag system and to quantify the effect of the slag layer on the flow patterns. The flow patterns were evaluated for a single injector located at the center of the ladle bottom with a gas flow rate of 2.85 l/min, with the presence of a slag phase with a thickness of 0.0066 m. The experimental results obtained in this work are in excellent agreement with the trends reported in the literature for these gas-stirred ladles. Additionally, a mathematical model was developed in a 2D gas-stirred ladle considering the three-phase system built in the physical model. The model was based on the Eulerian approach in which the continuity and the Navier Stokes equations are solved for each phase. Therefore, there were three continuity and six Navier-Stokes equations in the system. Additionally, turbulence in the ladle was computed by using the standard k-epsilon turbulent model. The agreement between numerical simulations and experiments was excellent with respect to velocity fields and turbulent structure, which sets the basis for future works on process analysis with the developed mathematical model, since there are only a few three-phase models reported so far in the literature to predict fluid dynamics in gas-stirred steel ladles.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"83 1","pages":"29-34"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78642745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silica coated, aminosilane functionalization, upconversion emission and cytotoxicity in cancer cell lines of the nanoparticles Y2O3 and Gd2O3 co-doped with Yb3+ and Er3+","authors":"D. Chavez, K. Juárez-Moreno, G. Hirata","doi":"10.1557/OPL.2016.44","DOIUrl":"https://doi.org/10.1557/OPL.2016.44","url":null,"abstract":"","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73656229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}