首页 > 最新文献

Nature cancer最新文献

英文 中文
Author Correction: Clinical implementation of artificial-intelligence-assisted detection of breast cancer metastases in sentinel lymph nodes: the CONFIDENT-B single-center, non-randomized clinical trial 作者更正:人工智能辅助检测前哨淋巴结乳腺癌转移的临床实施:CONFIDENT-B 单中心非随机临床试验。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-07-05 DOI: 10.1038/s43018-024-00799-w
C. van Dooijeweert, R. N. Flach, N. D. ter Hoeve, C. P. H. Vreuls, R. Goldschmeding, J. E. Freund, P. Pham, T. Q. Nguyen, E. van der Wall, G. W. J. Frederix, N. Stathonikos, P. J. van Diest
{"title":"Author Correction: Clinical implementation of artificial-intelligence-assisted detection of breast cancer metastases in sentinel lymph nodes: the CONFIDENT-B single-center, non-randomized clinical trial","authors":"C. van Dooijeweert, R. N. Flach, N. D. ter Hoeve, C. P. H. Vreuls, R. Goldschmeding, J. E. Freund, P. Pham, T. Q. Nguyen, E. van der Wall, G. W. J. Frederix, N. Stathonikos, P. J. van Diest","doi":"10.1038/s43018-024-00799-w","DOIUrl":"10.1038/s43018-024-00799-w","url":null,"abstract":"","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00799-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics 通过归纳转录组学从组织病理学图像预测癌症治疗反应的深度学习框架。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-07-03 DOI: 10.1038/s43018-024-00793-2
Danh-Tai Hoang, Gal Dinstag, Eldad D. Shulman, Leandro C. Hermida, Doreen S. Ben-Zvi, Efrat Elis, Katherine Caley, Stephen-John Sammut, Sanju Sinha, Neelam Sinha, Christopher H. Dampier, Chani Stossel, Tejas Patil, Arun Rajan, Wiem Lassoued, Julius Strauss, Shania Bailey, Clint Allen, Jason Redman, Tuvik Beker, Peng Jiang, Talia Golan, Scott Wilkinson, Adam G. Sowalsky, Sharon R. Pine, Carlos Caldas, James L. Gulley, Kenneth Aldape, Ranit Aharonov, Eric A. Stone, Eytan Ruppin
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT–DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT–DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts. Hoang et al. developed a deep-learning framework called ENLIGHT–DeepPT that predicts therapy response based on imputed transcriptomics and shows predictive power across patient cohorts and cancer types.
人工智能的进步为利用苏木精和伊红染色的肿瘤切片进行精准肿瘤学研究铺平了道路。我们介绍了ENLIGHT-DeepPT,这是一种间接的两步法,包括:(1)DeepPT,这是一种深度学习框架,可预测切片中全基因组肿瘤mRNA的表达;(2)ENLIGHT,可根据推断的表达值预测对靶向疗法和免疫疗法的反应。我们的研究表明,DeepPT 成功预测了所有 16 个已测试的癌症基因组图谱队列的转录组学,并在两个独立的数据集上进行了很好的推广。ENLIGHT-DeepPT成功预测了5个独立患者队列中的真正应答者,涉及6种癌症类型的4种不同治疗方法,总体几率比为2.28,预测应答者的应答率与基线应答率相比提高了39.5%。值得注意的是,它的预测准确率无需对治疗数据进行任何训练即可获得,与直接从图像预测反应的准确率不相上下,后者需要对治疗评估队列进行专门训练。
{"title":"A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics","authors":"Danh-Tai Hoang, Gal Dinstag, Eldad D. Shulman, Leandro C. Hermida, Doreen S. Ben-Zvi, Efrat Elis, Katherine Caley, Stephen-John Sammut, Sanju Sinha, Neelam Sinha, Christopher H. Dampier, Chani Stossel, Tejas Patil, Arun Rajan, Wiem Lassoued, Julius Strauss, Shania Bailey, Clint Allen, Jason Redman, Tuvik Beker, Peng Jiang, Talia Golan, Scott Wilkinson, Adam G. Sowalsky, Sharon R. Pine, Carlos Caldas, James L. Gulley, Kenneth Aldape, Ranit Aharonov, Eric A. Stone, Eytan Ruppin","doi":"10.1038/s43018-024-00793-2","DOIUrl":"10.1038/s43018-024-00793-2","url":null,"abstract":"Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT–DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT–DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts. Hoang et al. developed a deep-learning framework called ENLIGHT–DeepPT that predicts therapy response based on imputed transcriptomics and shows predictive power across patient cohorts and cancer types.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities 多发性骨髓瘤的蛋白质基因组图谱揭示了疾病生物学和治疗机会。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-28 DOI: 10.1038/s43018-024-00784-3
Evelyn Ramberger, Valeriia Sapozhnikova, Yuen Lam Dora Ng, Anna Dolnik, Matthias Ziehm, Oliver Popp, Eric Sträng, Miriam Kull, Florian Grünschläger, Josefine Krüger, Manuela Benary, Sina Müller, Xiang Gao, Arunima Murgai, Mohamed Haji, Annika Schmidt, Raphael Lutz, Axel Nogai, Jan Braune, Dominik Laue, Christian Langer, Cyrus Khandanpour, Florian Bassermann, Hartmut Döhner, Monika Engelhardt, Christian Straka, Michael Hundemer, Dieter Beule, Simon Haas, Ulrich Keller, Hermann Einsele, Lars Bullinger, Stefan Knop, Philipp Mertins, Jan Krönke
Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM. Krönke and colleagues present a multiomic resource of plasma cell malignancies, including multiple myeloma, that comprises phosphoproteomics, RNA and DNA sequencing and provides insights into cancer type biology and candidate therapeutic targets.
多发性骨髓瘤(MM)是一种骨髓浆细胞恶性肿瘤。尽管治疗手段不断进步,但多发性骨髓瘤仍无法治愈,因此亟需更好的风险分层和新疗法。MM 的蛋白质组以前从未被系统评估过,除了基因和转录组研究外,蛋白质组还有可能揭示疾病的生物学特性并改善预后。在这里,我们提供了一项全面的多组学分析,包括基于深度串联质量标签的全局(磷)定量蛋白质组学、RNA测序和纳米孔DNA测序,分析对象是138例原发性浆细胞恶性肿瘤患者,包括未经治疗的MM、浆细胞白血病和恶性肿瘤前意义未定的单克隆性腺病以及健康对照组。我们发现,与健康浆细胞相比,恶性浆细胞的(磷酸化)蛋白质组高度失调,并由染色体改变和转录后调控共同决定。研究发现了一种预后蛋白特征,它与MM的侵袭性疾病相关,与已确定的风险因素无关。与功能遗传学和单细胞 RNA 测序相结合,发现了浆细胞恶性肿瘤中一般的和基因亚型特异性的失调蛋白和通路,其中包括潜在的(免疫)疗法靶点。我们的研究证明了蛋白质基因组学在癌症中的潜力,并为研究 MM 的蛋白质调控和新的治疗方法提供了易于获取的资源。
{"title":"The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities","authors":"Evelyn Ramberger, Valeriia Sapozhnikova, Yuen Lam Dora Ng, Anna Dolnik, Matthias Ziehm, Oliver Popp, Eric Sträng, Miriam Kull, Florian Grünschläger, Josefine Krüger, Manuela Benary, Sina Müller, Xiang Gao, Arunima Murgai, Mohamed Haji, Annika Schmidt, Raphael Lutz, Axel Nogai, Jan Braune, Dominik Laue, Christian Langer, Cyrus Khandanpour, Florian Bassermann, Hartmut Döhner, Monika Engelhardt, Christian Straka, Michael Hundemer, Dieter Beule, Simon Haas, Ulrich Keller, Hermann Einsele, Lars Bullinger, Stefan Knop, Philipp Mertins, Jan Krönke","doi":"10.1038/s43018-024-00784-3","DOIUrl":"10.1038/s43018-024-00784-3","url":null,"abstract":"Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM. Krönke and colleagues present a multiomic resource of plasma cell malignancies, including multiple myeloma, that comprises phosphoproteomics, RNA and DNA sequencing and provides insights into cancer type biology and candidate therapeutic targets.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00784-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical implementation of artificial-intelligence-assisted detection of breast cancer metastases in sentinel lymph nodes: the CONFIDENT-B single-center, non-randomized clinical trial 人工智能辅助检测前哨淋巴结乳腺癌转移的临床实施:CONFIDENT-B 单中心非随机临床试验。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-27 DOI: 10.1038/s43018-024-00788-z
C. van Dooijeweert, R. N. Flach, N. D. ter Hoeve, C. P. H. Vreuls, R. Goldschmeding, J. E. Freund, P. Pham, T. Q. Nguyen, E. van der Wall, G. W. J. Frederix, N. Stathonikos, P. J. van Diest
Pathologists’ assessment of sentinel lymph nodes (SNs) for breast cancer (BC) metastases is a treatment-guiding yet labor-intensive and costly task because of the performance of immunohistochemistry (IHC) in morphologically negative cases. This non-randomized, single-center clinical trial (International Standard Randomized Controlled Trial Number:14323711) assessed the efficacy of an artificial intelligence (AI)-assisted workflow for detecting BC metastases in SNs while maintaining diagnostic safety standards. From September 2022 to May 2023, 190 SN specimens were consecutively enrolled and allocated biweekly to the intervention arm (n = 100) or control arm (n = 90). In both arms, digital whole-slide images of hematoxylin–eosin sections of SN specimens were assessed by an expert pathologist, who was assisted by the ‘Metastasis Detection’ app (Visiopharm) in the intervention arm. Our primary endpoint showed a significantly reduced adjusted relative risk of IHC use (0.680, 95% confidence interval: 0.347–0.878) for AI-assisted pathologists, with subsequent cost savings of ~3,000 €. Secondary endpoints showed significant time reductions and up to 30% improved sensitivity for AI-assisted pathologists. This trial demonstrates the safety and potential for cost and time savings of AI assistance. Van Dooijeweert et al. conducted a prospective study on the clinical implementation of artificial-intelligence-assisted detection of sentinel lymph node metastasis in persons with breast cancer and report on its effects, including on time and cost.
病理学家对乳腺癌(BC)转移的前哨淋巴结(SN)进行评估是一项指导治疗的工作,但由于免疫组化(IHC)在形态学阴性病例中的表现,这项工作耗费大量人力和财力。这项非随机、单中心临床试验(国际标准随机对照试验编号:14323711)评估了人工智能(AI)辅助工作流程在保持诊断安全标准的前提下检测SN中乳腺癌转移灶的疗效。从2022年9月到2023年5月,190份SN标本连续入组,每两周分配到干预组(n = 100)或对照组(n = 90)。在干预组和对照组中,SN标本苏木精-伊红切片的数字全切片图像均由病理专家进行评估,病理专家在 "转移检测 "应用程序(Visiopharm)的协助下进行评估。我们的主要终点显示,在人工智能辅助下,病理学家使用 IHC 的调整后相对风险明显降低(0.680,95% 置信区间:0.347-0.878),从而节省了约 3000 欧元的成本。次要终点显示,人工智能辅助病理学家显著缩短了时间,提高了多达 30% 的灵敏度。这项试验证明了人工智能辅助的安全性以及节约成本和时间的潜力。
{"title":"Clinical implementation of artificial-intelligence-assisted detection of breast cancer metastases in sentinel lymph nodes: the CONFIDENT-B single-center, non-randomized clinical trial","authors":"C. van Dooijeweert, R. N. Flach, N. D. ter Hoeve, C. P. H. Vreuls, R. Goldschmeding, J. E. Freund, P. Pham, T. Q. Nguyen, E. van der Wall, G. W. J. Frederix, N. Stathonikos, P. J. van Diest","doi":"10.1038/s43018-024-00788-z","DOIUrl":"10.1038/s43018-024-00788-z","url":null,"abstract":"Pathologists’ assessment of sentinel lymph nodes (SNs) for breast cancer (BC) metastases is a treatment-guiding yet labor-intensive and costly task because of the performance of immunohistochemistry (IHC) in morphologically negative cases. This non-randomized, single-center clinical trial (International Standard Randomized Controlled Trial Number:14323711) assessed the efficacy of an artificial intelligence (AI)-assisted workflow for detecting BC metastases in SNs while maintaining diagnostic safety standards. From September 2022 to May 2023, 190 SN specimens were consecutively enrolled and allocated biweekly to the intervention arm (n = 100) or control arm (n = 90). In both arms, digital whole-slide images of hematoxylin–eosin sections of SN specimens were assessed by an expert pathologist, who was assisted by the ‘Metastasis Detection’ app (Visiopharm) in the intervention arm. Our primary endpoint showed a significantly reduced adjusted relative risk of IHC use (0.680, 95% confidence interval: 0.347–0.878) for AI-assisted pathologists, with subsequent cost savings of ~3,000 €. Secondary endpoints showed significant time reductions and up to 30% improved sensitivity for AI-assisted pathologists. This trial demonstrates the safety and potential for cost and time savings of AI assistance. Van Dooijeweert et al. conducted a prospective study on the clinical implementation of artificial-intelligence-assisted detection of sentinel lymph node metastasis in persons with breast cancer and report on its effects, including on time and cost.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00788-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting HIF-1 to treat AML 靶向 HIF-1 治疗急性髓细胞白血病。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-27 DOI: 10.1038/s43018-024-00779-0
Darragh Flood, Cormac T. Taylor
Acute myeloid leukemia (AML) is an aggressive hematological cancer with limited treatment options. A study now provides compelling data and develops a therapeutic approach of targeting AML with a prolyl hydroxylase inhibitor, a strategy based on the sensitivity of myeloid cells to modulation of the transcription factor HIF.
急性髓性白血病(AML)是一种侵袭性血液肿瘤,治疗方案有限。现在的一项研究提供了令人信服的数据,并开发出一种用脯氨酰羟化酶抑制剂靶向治疗急性髓性白血病的方法。
{"title":"Targeting HIF-1 to treat AML","authors":"Darragh Flood, Cormac T. Taylor","doi":"10.1038/s43018-024-00779-0","DOIUrl":"10.1038/s43018-024-00779-0","url":null,"abstract":"Acute myeloid leukemia (AML) is an aggressive hematological cancer with limited treatment options. A study now provides compelling data and develops a therapeutic approach of targeting AML with a prolyl hydroxylase inhibitor, a strategy based on the sensitivity of myeloid cells to modulation of the transcription factor HIF.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological targeting of the cancer epigenome 针对癌症表观基因组的药理学研究。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-27 DOI: 10.1038/s43018-024-00777-2
Nathaniel W. Mabe, Jennifer A. Perry, Clare F. Malone, Kimberly Stegmaier
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer. Stegmaier and colleagues provide a review on the latest development in targeting the cancer epigenome, give an overview of distinct drug classes, and discuss therapeutic possibilities and challenges.
人们日益认识到表观遗传失调是癌症的标志,包括疾病的诱发、维持和抗药性。因此,癌症表观遗传疗法的开发和评估取得了进展,显示了巨大的前景,但也面临着挑战。美国已批准了三类表观遗传抑制剂,还有更多的表观遗传抑制剂正在进行临床研究。在这篇综述中,我们将讨论每一类表观遗传药物的最新进展及其对治疗的影响,并重点介绍有关表观遗传学在癌症中作用的新见解。
{"title":"Pharmacological targeting of the cancer epigenome","authors":"Nathaniel W. Mabe, Jennifer A. Perry, Clare F. Malone, Kimberly Stegmaier","doi":"10.1038/s43018-024-00777-2","DOIUrl":"10.1038/s43018-024-00777-2","url":null,"abstract":"Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer. Stegmaier and colleagues provide a review on the latest development in targeting the cancer epigenome, give an overview of distinct drug classes, and discuss therapeutic possibilities and challenges.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Milestones in tumor vascularization and its therapeutic targeting 肿瘤血管化及其靶向治疗的里程碑。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-25 DOI: 10.1038/s43018-024-00780-7
Michele De Palma, Douglas Hanahan
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future. De Palma and Hanahan outline advances in understanding tumor angiogenesis and discuss the therapeutic opportunities of targeting tumor vascularization.
早在 50 多年前,人们就提出了血管生成有助于肿瘤生长,因此是一个很有前景的治疗目标这一观点,并通过实验证明了这一观点,从而启动了对实体瘤血管生成机制和表现形式的研究。随着生物知识和治疗见解的不断涌现,新概念层出不穷,其中许多都是早期几十年未曾预见的。本文从一个视角阐述了肿瘤血管化及其治疗靶点,但并不描绘历史年表。相反,我们强调了八个里程碑式的概念,整合了最初的发现和最新进展,并提出了未来的开放性问题。
{"title":"Milestones in tumor vascularization and its therapeutic targeting","authors":"Michele De Palma, Douglas Hanahan","doi":"10.1038/s43018-024-00780-7","DOIUrl":"10.1038/s43018-024-00780-7","url":null,"abstract":"Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future. De Palma and Hanahan outline advances in understanding tumor angiogenesis and discuss the therapeutic opportunities of targeting tumor vascularization.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional analysis reveals predictive markers for CAR-T efficacy 多维分析揭示了 CAR-T 疗效的预测指标。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-20 DOI: 10.1038/s43018-024-00785-2
Kevin P. Letscher, Sai T. Reddy
At present, six CAR-T therapies are FDA approved to treat hematological cancers, but not all patients respond. A new study has developed a multidimensional functional profiling method to screen CAR-T cells from patients with large B cell lymphomas in clinical trials and identified a T cell subset associated with successful clinical response.
目前,美国食品和药物管理局批准了六种 CAR-T 疗法来治疗血液癌症,但并非所有患者都有反应。一项新研究开发了一种多维功能谱分析方法,用于筛选临床试验中大B细胞淋巴瘤患者的CAR-T细胞,并确定了一种与成功临床应答相关的T细胞亚群。
{"title":"Multidimensional analysis reveals predictive markers for CAR-T efficacy","authors":"Kevin P. Letscher, Sai T. Reddy","doi":"10.1038/s43018-024-00785-2","DOIUrl":"10.1038/s43018-024-00785-2","url":null,"abstract":"At present, six CAR-T therapies are FDA approved to treat hematological cancers, but not all patients respond. A new study has developed a multidimensional functional profiling method to screen CAR-T cells from patients with large B cell lymphomas in clinical trials and identified a T cell subset associated with successful clinical response.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers 作者更正:IAG933 对 YAP-TEAD 界面的直接和选择性药理学破坏可抑制 Hippo 依赖性和 RAS-MAPK 改变的癌症。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-17 DOI: 10.1038/s43018-024-00797-y
Emilie A. Chapeau, Laurent Sansregret, Giorgio G. Galli, Patrick Chène, Markus Wartmann, Thanos P. Mourikis, Patricia Jaaks, Sabrina Baltschukat, Ines A. M. Barbosa, Daniel Bauer, Saskia M. Brachmann, Clara Delaunay, Claire Estadieu, Jason E. Faris, Pascal Furet, Stefanie Harlfinger, Andreas Hueber, Eloísa Jiménez Núñez, David P. Kodack, Emeline Mandon, Typhaine Martin, Yannick Mesrouze, Vincent Romanet, Clemens Scheufler, Holger Sellner, Christelle Stamm, Dario Sterker, Luca Tordella, Francesco Hofmann, Nicolas Soldermann, Tobias Schmelzle
{"title":"Author Correction: Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers","authors":"Emilie A. Chapeau, Laurent Sansregret, Giorgio G. Galli, Patrick Chène, Markus Wartmann, Thanos P. Mourikis, Patricia Jaaks, Sabrina Baltschukat, Ines A. M. Barbosa, Daniel Bauer, Saskia M. Brachmann, Clara Delaunay, Claire Estadieu, Jason E. Faris, Pascal Furet, Stefanie Harlfinger, Andreas Hueber, Eloísa Jiménez Núñez, David P. Kodack, Emeline Mandon, Typhaine Martin, Yannick Mesrouze, Vincent Romanet, Clemens Scheufler, Holger Sellner, Christelle Stamm, Dario Sterker, Luca Tordella, Francesco Hofmann, Nicolas Soldermann, Tobias Schmelzle","doi":"10.1038/s43018-024-00797-y","DOIUrl":"10.1038/s43018-024-00797-y","url":null,"abstract":"","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance 癌细胞中的核苷酸代谢助长了 UDP 驱动的巨噬细胞交叉对话,促进了免疫抑制和免疫疗法的抗药性。
IF 23.5 1区 医学 Q1 ONCOLOGY Pub Date : 2024-06-06 DOI: 10.1038/s43018-024-00771-8
Tommaso Scolaro, Marta Manco, Mathieu Pecqueux, Ricardo Amorim, Rosa Trotta, Heleen H. Van Acker, Matthias Van Haele, Niranjan Shirgaonkar, Stefan Naulaerts, Jan Daniluk, Fran Prenen, Chiara Varamo, Donatella Ponti, Ginevra Doglioni, Ana Margarida Ferreira Campos, Juan Fernandez Garcia, Silvia Radenkovic, Pegah Rouhi, Aleksandar Beatovic, Liwei Wang, Yu Wang, Amalia Tzoumpa, Asier Antoranz, Ara Sargsian, Mario Di Matteo, Emanuele Berardi, Jermaine Goveia, Bart Ghesquière, Tania Roskams, Stefaan Soenen, Thomas Voets, Bella Manshian, Sarah-Maria Fendt, Peter Carmeliet, Abhishek D. Garg, Ramanuj DasGupta, Baki Topal, Massimiliano Mazzone
Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy. Scolaro et al. identify the enzyme cytidine deaminase (CDA) as upregulated in immunotherapy-resistant tumors and find it contributes to the UDP pool, which in turn modulates tumor-associated macrophages to instruct an immune-evasive TME.
许多癌症患者对免疫疗法产生抗药性。在这里,我们发现编码嘧啶挽救途径酶胞苷脱氨酶(CDA)的基因是几种免疫疗法耐药肿瘤中最高调的代谢基因之一。我们发现,癌细胞中的 CDA 对二磷酸尿苷(UDP)池有贡献。细胞外 UDP 通过其受体 P2Y6 劫持具有免疫抑制作用的肿瘤相关巨噬细胞(TAMs)。在抗药性胰腺导管腺癌(PDAC)和黑色素瘤模型中,对癌细胞中的 CDA(或 TAMs 中的 P2Y6)进行药物或基因抑制会破坏 TAM 介导的免疫抑制,促进细胞毒性 T 细胞进入,并使其易受抗程序性细胞死亡蛋白 1(anti-PD-1)治疗的影响。相反,在 CDA 贫乏的 PDAC 或抗 PD-1 反应性结直肠肿瘤中 CDA 过表达或全身 UDP 给药会(重新)建立抗药性。在 PDAC 患者中,癌细胞中 CDA 水平高与 TAMs 增加、细胞毒性 T 细胞减少以及可能的抗 PD-1 抗性相关。在泛癌症单细胞图谱中,CDA水平高的癌细胞与T细胞细胞毒性功能障碍和P2RY6水平高的TAMs相匹配。总之,我们建议将 CDA 和 P2Y6 作为癌症免疫疗法的潜在靶点。
{"title":"Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance","authors":"Tommaso Scolaro, Marta Manco, Mathieu Pecqueux, Ricardo Amorim, Rosa Trotta, Heleen H. Van Acker, Matthias Van Haele, Niranjan Shirgaonkar, Stefan Naulaerts, Jan Daniluk, Fran Prenen, Chiara Varamo, Donatella Ponti, Ginevra Doglioni, Ana Margarida Ferreira Campos, Juan Fernandez Garcia, Silvia Radenkovic, Pegah Rouhi, Aleksandar Beatovic, Liwei Wang, Yu Wang, Amalia Tzoumpa, Asier Antoranz, Ara Sargsian, Mario Di Matteo, Emanuele Berardi, Jermaine Goveia, Bart Ghesquière, Tania Roskams, Stefaan Soenen, Thomas Voets, Bella Manshian, Sarah-Maria Fendt, Peter Carmeliet, Abhishek D. Garg, Ramanuj DasGupta, Baki Topal, Massimiliano Mazzone","doi":"10.1038/s43018-024-00771-8","DOIUrl":"10.1038/s43018-024-00771-8","url":null,"abstract":"Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy. Scolaro et al. identify the enzyme cytidine deaminase (CDA) as upregulated in immunotherapy-resistant tumors and find it contributes to the UDP pool, which in turn modulates tumor-associated macrophages to instruct an immune-evasive TME.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":null,"pages":null},"PeriodicalIF":23.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00771-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1