Shaoze Zhang, De-en Jiang, Nan Zhou, Jiaxing Tang, Keyu Zhang, Yin Li, Junxian Hu, Changjun Peng, Honglai Liu, Bin Yang, Yaochun Yao
Herein, we present a density functional theory with dispersion correction (DFT-D) calculations that focus on the intercalation of ionic liquids (ILs) electrolytes into the two-dimensional (2D) Ti3C2Tx MXenes. These ILs include the cation 1-ethyl-3-methylimidazolium (Emim+), accompanied by three distinct anions: bis(trifluoromethylsulfonyl)imide (TFSA−), (fluorosulfonyl)imide (FSA−) and fluorosulfonyl(trifluoromethanesulfonyl)imide (FTFSA−). By altering the surface termination elements, we explore the intricate geometries of IL intercalation in neutral, negative, and positive pore systems. Accurate estimation of charge transfer is achieved through five population analysis models, such as Hirshfeld, Hirshfeld-I, DDEC6 (density derived electrostatic and chemical), Bader, and VDD (voronoi deformation density) charges. In this work, we recommend the DDEC6 and Hirshfeld-I charge models, as they offer moderate values and exhibit reasonable trends. The investigation, aimed at visualizing non-covalent interactions, elucidates the role of cation-MXene and anion-MXene interactions in governing the intercalation phenomenon of ionic liquids within MXenes. The magnitude of this role depends on two factors: the specific arrangement of the cation, and the nature of the anionic species involved in the process.
{"title":"Ionic liquids intercalation in titanium carbide MXenes: A first-principles investigation","authors":"Shaoze Zhang, De-en Jiang, Nan Zhou, Jiaxing Tang, Keyu Zhang, Yin Li, Junxian Hu, Changjun Peng, Honglai Liu, Bin Yang, Yaochun Yao","doi":"10.1002/jcc.27444","DOIUrl":"10.1002/jcc.27444","url":null,"abstract":"<p>Herein, we present a density functional theory with dispersion correction (DFT-D) calculations that focus on the intercalation of ionic liquids (ILs) electrolytes into the two-dimensional (2D) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes. These ILs include the cation 1-ethyl-3-methylimidazolium (Emim<sup>+</sup>), accompanied by three distinct anions: bis(trifluoromethylsulfonyl)imide (TFSA<sup>−</sup>), (fluorosulfonyl)imide (FSA<sup>−</sup>) and fluorosulfonyl(trifluoromethanesulfonyl)imide (FTFSA<sup>−</sup>). By altering the surface termination elements, we explore the intricate geometries of IL intercalation in neutral, negative, and positive pore systems. Accurate estimation of charge transfer is achieved through five population analysis models, such as Hirshfeld, Hirshfeld-I, DDEC6 (density derived electrostatic and chemical), Bader, and VDD (voronoi deformation density) charges. In this work, we recommend the DDEC6 and Hirshfeld-I charge models, as they offer moderate values and exhibit reasonable trends. The investigation, aimed at visualizing non-covalent interactions, elucidates the role of cation-MXene and anion-MXene interactions in governing the intercalation phenomenon of ionic liquids within MXenes. The magnitude of this role depends on two factors: the specific arrangement of the cation, and the nature of the anionic species involved in the process.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 27","pages":"2294-2307"},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurore E. F. Denjean, Jordan Rio, Ilaria Ciofini, Marie-Eve L. Perrin, Pierre-Adrien Payard
Mechanistic investigations at the density functional theory level of organic and organometallic reactions in solution are now broadly accessible and routinely implemented to complement experimental investigations. The selection of an appropriate functional among the plethora of developed ones is the first challenge on the way to reliable energy barrier calculations. To provide guidelines for the choice of an initial and reliable computational level, the performances of commonly used non-empirical (PBE, PBE0, PBE0-DH) and empirical density functionals (BLYP, B3LYP, B2PLYP) were evaluated relative to experimental activation enthalpies. Most reactivity databases to assess density functional performances are primarily based on high level calculations, here a set of experimental activation enthalpies of organic and organometallic reactions performed in solution were selected from the literature. As a general trend, the non-empirical functionals outperform the empirical ones. The most accurate energy barriers are obtained with hybrid PBE0 and double-hybrid PBE0-DH density functionals, both providing similar performance. Regardless of the functional under consideration, the addition of the GD3-BJ empirical dispersion correction does not enhance the accuracy of computed energy barriers.
{"title":"Computed versus experimental energy barriers in solution: Influence of the type of the density functional approximation","authors":"Aurore E. F. Denjean, Jordan Rio, Ilaria Ciofini, Marie-Eve L. Perrin, Pierre-Adrien Payard","doi":"10.1002/jcc.27436","DOIUrl":"10.1002/jcc.27436","url":null,"abstract":"<p>Mechanistic investigations at the density functional theory level of organic and organometallic reactions in solution are now broadly accessible and routinely implemented to complement experimental investigations. The selection of an appropriate functional among the plethora of developed ones is the first challenge on the way to reliable energy barrier calculations. To provide guidelines for the choice of an initial and reliable computational level, the performances of commonly used non-empirical (PBE, PBE0, PBE0-DH) and empirical density functionals (BLYP, B3LYP, B2PLYP) were evaluated relative to experimental activation enthalpies. Most reactivity databases to assess density functional performances are primarily based on high level calculations, here a set of experimental activation enthalpies of organic and organometallic reactions performed in solution were selected from the literature. As a general trend, the non-empirical functionals outperform the empirical ones. The most accurate energy barriers are obtained with hybrid PBE0 and double-hybrid PBE0-DH density functionals, both providing similar performance. Regardless of the functional under consideration, the addition of the GD3-BJ empirical dispersion correction does not enhance the accuracy of computed energy barriers.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 27","pages":"2284-2293"},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this proof-of-concept paper, we show how exchange-correlation effects can be simply recovered for interatomic energies within the interacting quantum atoms decomposition when local, gradient generalized, or meta-gradient generalized approximations are used in density functional theory (DFT) calculations. We also demonstrate how inhomogeneity and non-local effects can be introduced even from a pure local scheme, without resorting to any orbital information. Finally, we provide numerical evidence on a database of selected energetic molecules that this decomposition scheme can be efficiently used to build accurate models for the prediction of molecular energies from an initial “cheap” DFT calculation.
{"title":"Exchange-correlation effects in interatomic energies for pure density functionals and their application to the molecular energy prediction","authors":"Vincent Tognetti, Laurent Joubert","doi":"10.1002/jcc.27431","DOIUrl":"10.1002/jcc.27431","url":null,"abstract":"<p>In this proof-of-concept paper, we show how exchange-correlation effects can be simply recovered for interatomic energies within the interacting quantum atoms decomposition when local, gradient generalized, or meta-gradient generalized approximations are used in density functional theory (DFT) calculations. We also demonstrate how inhomogeneity and non-local effects can be introduced even from a pure local scheme, without resorting to any orbital information. Finally, we provide numerical evidence on a database of selected energetic molecules that this decomposition scheme can be efficiently used to build accurate models for the prediction of molecular energies from an initial “cheap” DFT calculation.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 27","pages":"2270-2283"},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the formation of partial sigma (σ) covalent bonds in experimentally synthesizable biradicals formed from hydrogenated and fluorinated C8, C20, and C60 cage structures, by assessing their stability, geometry, and bonding character in singlet and triplet states using restricted B3LYP-D3/6–31+G(d,p) theory, natural bond orbital (NBO) analysis, and complete active space self-consistent field (CASSCF) method. The results show that these partial σCC bonds have Wiberg bond orders of 0.38 to 0.48 and bond lengths ranging from 2.62 Å to 5.93 Å. Cage size influences the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), with electrons favoring more antibonding orbitals in smaller cages where electrons reside more on the exterior of the cage and favoring bonding orbitals in larger ones where electrons are more in the interior. Fluorination enhances electron density on bonding orbitals. The analysis further clarified that the differentiation between antibonding and bonding features of HOMOs and LUMOs extends beyond merely electron transfer from s- to p-atomic orbitals, also noting possible interactions of the same symmetry repel. The study also introduces hyperconjugation from α-position CH bonds as a factor in stabilizing partial σ-bond formation. The results also caution against the use of broken symmetry methodology in unrestricted SCF wavefunctions for biradicals, such as those in this study as it may cause large spin contamination and thus errors in the calculated electronic properties results.
{"title":"Nature of partial sigma bond","authors":"Lam H. Nguyen, Thanh N. Truong","doi":"10.1002/jcc.27445","DOIUrl":"10.1002/jcc.27445","url":null,"abstract":"<p>This study investigates the formation of partial sigma (σ) covalent bonds in experimentally synthesizable biradicals formed from hydrogenated and fluorinated C<sub>8</sub>, C<sub>20</sub>, and C<sub>60</sub> cage structures, by assessing their stability, geometry, and bonding character in singlet and triplet states using restricted B3LYP-D3/6–31+G(d,p) theory, natural bond orbital (NBO) analysis, and complete active space self-consistent field (CASSCF) method. The results show that these partial σ<sub>C<span></span>C</sub> bonds have Wiberg bond orders of 0.38 to 0.48 and bond lengths ranging from 2.62 Å to 5.93 Å. Cage size influences the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), with electrons favoring more antibonding orbitals in smaller cages where electrons reside more on the exterior of the cage and favoring bonding orbitals in larger ones where electrons are more in the interior. Fluorination enhances electron density on bonding orbitals. The analysis further clarified that the differentiation between antibonding and bonding features of HOMOs and LUMOs extends beyond merely electron transfer from <i>s</i>- to <i>p</i>-atomic orbitals, also noting possible interactions of the same symmetry repel. The study also introduces hyperconjugation from α-position C<span></span>H bonds as a factor in stabilizing partial σ-bond formation. The results also caution against the use of broken symmetry methodology in unrestricted SCF wavefunctions for biradicals, such as those in this study as it may cause large spin contamination and thus errors in the calculated electronic properties results.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2251-2264"},"PeriodicalIF":3.4,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enric Petrus, Jordi Buils, Diego Garay-Ruiz, Mireia Segado-Centellas, Carles Bo
Elucidating the speciation (in terms of concentration versus pH) and understanding the formation mechanisms of polyoxometalates remains a significant challenge, both in experimental and computational domains. POMSimulator is a new methodology that tackles this problem from a purely computational perspective. The methodology uses results from quantum mechanics based methods to automatically set up the chemical reaction network, and to build speciation models. As a result, it becomes possible to predict speciation and phase diagrams, as well as to derive new insights into the formation mechanisms of large molecular clusters. In this work we present the main features of the first open-source version of the software. Since the first report [Chem. Sci. 2020, 11, 8448-8456], POMSimulator has undergone several improvements to keep up with the growing challenges that were tackled. After four years of research, we recognize that the source code is sufficiently stable to share a polished and user-friendly version. The Python code, manual, examples, and install instructions can be found at https://github.com/petrusen/pomsimulator.
{"title":"POMSimulator: An open-source tool for predicting the aqueous speciation and self–assembly mechanisms of polyoxometalates","authors":"Enric Petrus, Jordi Buils, Diego Garay-Ruiz, Mireia Segado-Centellas, Carles Bo","doi":"10.1002/jcc.27389","DOIUrl":"10.1002/jcc.27389","url":null,"abstract":"<p>Elucidating the speciation (in terms of concentration versus pH) and understanding the formation mechanisms of polyoxometalates remains a significant challenge, both in experimental and computational domains. POMSimulator is a new methodology that tackles this problem from a purely computational perspective. The methodology uses results from quantum mechanics based methods to automatically set up the chemical reaction network, and to build speciation models. As a result, it becomes possible to predict speciation and phase diagrams, as well as to derive new insights into the formation mechanisms of large molecular clusters. In this work we present the main features of the first open-source version of the software. Since the first report [Chem. Sci. 2020, 11, 8448-8456], POMSimulator has undergone several improvements to keep up with the growing challenges that were tackled. After four years of research, we recognize that the source code is sufficiently stable to share a polished and user-friendly version. The Python code, manual, examples, and install instructions can be found at https://github.com/petrusen/pomsimulator.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2242-2250"},"PeriodicalIF":3.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxazine dyes act as reporters of their near environment by the response of their fluorescence spectra. At the same time, their fluorescence spectra exhibit a pronounced vibrational progression. In this work, we computationally investigate the impact of near-environment models consisting of aggregated water as well as betaine molecules on the vibrational profile of fluorescence spectra of different oxazine derivatives. For aggregated betaine and a water molecule located above the plane of the dyes, we observe a distinct modification of the vibrational profile, which is more pronounced than the effect of a continuum description of a solvent environment. Our analysis shows that this effect cannot be explained by a pure change in the electronic structure, but that also vibrational degrees of freedom of the environment can be decisive for the vibrational profile and should, hence, not generally be neglected.
{"title":"The role of microenvironments on computed vibrationally-resolved emission spectra: The case of oxazines","authors":"Nghia Nguyen Thi Minh, Carolin König","doi":"10.1002/jcc.27385","DOIUrl":"10.1002/jcc.27385","url":null,"abstract":"<p>Oxazine dyes act as reporters of their near environment by the response of their fluorescence spectra. At the same time, their fluorescence spectra exhibit a pronounced vibrational progression. In this work, we computationally investigate the impact of near-environment models consisting of aggregated water as well as betaine molecules on the vibrational profile of fluorescence spectra of different oxazine derivatives. For aggregated betaine and a water molecule located above the plane of the dyes, we observe a distinct modification of the vibrational profile, which is more pronounced than the effect of a continuum description of a solvent environment. Our analysis shows that this effect cannot be explained by a pure change in the electronic structure, but that also vibrational degrees of freedom of the environment can be decisive for the vibrational profile and should, hence, not generally be neglected.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2232-2241"},"PeriodicalIF":3.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27385","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO2 conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO2, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO2, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO2 features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO2-based materials and functional interfaces.
{"title":"Effective prediction of SnO2 conduction band edge potential: The key role of surface oxygen vacancies","authors":"Gennaro Vincenzo Sannino, Adriana Pecoraro, Paola Delli Veneri, Michele Pavone, Ana Belén Muñoz-García","doi":"10.1002/jcc.27434","DOIUrl":"10.1002/jcc.27434","url":null,"abstract":"<p>Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO<sub>2</sub> conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO<sub>2</sub>, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO<sub>2</sub>, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO<sub>2</sub> features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO<sub>2</sub>-based materials and functional interfaces.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2198-2203"},"PeriodicalIF":3.4,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fragment molecular orbital (FMO) scheme is one of the popular fragmentation-based methods and has the potential advantage of making the circuit shallow for quantum chemical calculations on quantum computers. In this study, we used a GPU-accelerated quantum simulator (cuQuantum) to perform the electron correlation part of the FMO calculation as unitary coupled-cluster singles and doubles (UCCSD) with the variational quantum eigensolver (VQE) for hydrogen-bonded (FH)