Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.57644.1596
Atefeh Varmazyari, A. Taghizadehghalehjoughi, O. Baris, A. Yılmaz, A. Hacimuftuoglu
Objective(s): Cadmium sulfur (CdS) is a type of quantum dot which is a unique light-emitting semiconductor nanocrystal. Quantum dots have wide applications in optoelectronics, solar cells, biology, and medicine fields.Materials and Methods: Morphological properties and structural analysis for CdS were tested by using different methods (TEM, XPS and XRD). Cortical neuron cells were used for toxicity investigations. The cells were treated with different concentrations of CdS (100, 10, 1, 0.1, 0.01 µg/mL) and incubated for 24 h (5 CO2; 37°C). In vitro studies were done by examining cellular viability (MTT assay) and oxidative stress/status (TAC/TOS). Results: According to our results, the increasing concentration of CdS resulted in decreased cell viability. Total antioxidant capacity (TAC) of neurons increased following exposure to the lowest concentrations of CdS. In addition, inverse to our TAC findings, total oxidant status (TOS) was decreased following exposure to lower concentrations of CdS. Conclusion: Recently, because of advances in diagnostic and drug delivery systems ingestion rate of CdS by humans were increased. Hence, this study aimed to investigate the toxic effects of CdS on Cortex Neurons cell cultures. The production of CdS quantum dot particles was done by using the Viridibacillus arenosi K64 (biosynthesis method) which provides environmentally friendly, economical, reliable, and controlled production.
目的:镉硫(CdS)是一种量子点,是一种独特的发光半导体纳米晶体。量子点在光电子、太阳能电池、生物、医学等领域有着广泛的应用。材料与方法:采用透射电镜(TEM)、XPS (XPS)和x射线衍射(XRD)等不同方法对CdS进行了形貌表征和结构分析。Â皮质神经元细胞用于毒性研究。用不同浓度的CdS(100、10、1、0.1、0.01 µg/mL)处理细胞,孵育24 h (5 CO2;37°C)。体外研究通过检测细胞活力(MTT法)和氧化应激/状态(TAC/TOS)进行。结果:cd浓度增加导致细胞活力下降。暴露于最低浓度的cd后,神经元的总抗氧化能力(TAC)增加。此外,与我们的TAC研究结果相反,总氧化状态(TOS)在暴露于较低浓度的cd后降低。结论:近年来,由于诊断和给药系统的进步,人类对CdS的摄取率有所增加。因此,本研究旨在探讨CdS对皮层神经元细胞培养的毒性作用。利用沙红绿芽孢杆菌K64(生物合成法)制备CdS量子点粒子,具有环保、经济、可靠、可控的特点。
{"title":"The evaluation of the cortex neurons viability in CdS nanoparticles induced toxicity","authors":"Atefeh Varmazyari, A. Taghizadehghalehjoughi, O. Baris, A. Yılmaz, A. Hacimuftuoglu","doi":"10.22038/NMJ.2021.57644.1596","DOIUrl":"https://doi.org/10.22038/NMJ.2021.57644.1596","url":null,"abstract":"Objective(s): Cadmium sulfur (CdS) is a type of quantum dot which is a unique light-emitting semiconductor nanocrystal. Quantum dots have wide applications in optoelectronics, solar cells, biology, and medicine fields.Materials and Methods: Morphological properties and structural analysis for CdS were tested by using different methods (TEM, XPS and XRD). Cortical neuron cells were used for toxicity investigations. The cells were treated with different concentrations of CdS (100, 10, 1, 0.1, 0.01 µg/mL) and incubated for 24 h (5 CO2; 37°C). In vitro studies were done by examining cellular viability (MTT assay) and oxidative stress/status (TAC/TOS). Results: According to our results, the increasing concentration of CdS resulted in decreased cell viability. Total antioxidant capacity (TAC) of neurons increased following exposure to the lowest concentrations of CdS. In addition, inverse to our TAC findings, total oxidant status (TOS) was decreased following exposure to lower concentrations of CdS. Conclusion: Recently, because of advances in diagnostic and drug delivery systems ingestion rate of CdS by humans were increased. Hence, this study aimed to investigate the toxic effects of CdS on Cortex Neurons cell cultures. The production of CdS quantum dot particles was done by using the Viridibacillus arenosi K64 (biosynthesis method) which provides environmentally friendly, economical, reliable, and controlled production.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"211-219"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43428174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.57220.1588
Maryam Sadeghian, A. Mesbahi
Objective(s) In this paper, we evaluated some imaging properties of Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites as contrast agents in spectral CT. For this purpose, we simulated a spectral CT scanner with photon-counting detectors (PCDs) in 6 energy bins by a Monte Carlo simulator.Materials and Methods A cylindrical phantom was designed with a diameter of 8 cm and a height of 10 cm. Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites were designed as a core-shell with a diameter of 80 nm. Simulation results were utilized to reconstruct cross-sectional images through the filtered back-projection (FBP) algorithm in MATLAB software. Signal intensity and contrast to noise ratio (CNR) of tested contrast agents were calculated in spectral CT images. Results The results indicated a comparable image quality for Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites at different energy bins. However, in the energy range of 80 to 120 keV (bin 4 and 5), the difference in signal intensity and CNR between these two nanocomposites increased. The maximum signal intensity and CNR for Fe3O4@Au and Fe3O4@Bi were acquired at the highest concentration. The maximum signal intensity for Fe3O4@Au was 144±10 (HU) in the 4th energy bin and for Fe3O4@Bi 162±19 (HU) in the 5th energy bin. Besides, the maximum CNRs of 74±6 and 67.5±9 for Fe3O4@Au in bin 4, while for Fe3O4@Bi in bin 5 were obtained respectively. Conclusion Based on our results, Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites have provided promising results as contrast agents in spectral CT. Fe3O4@Bi nanocomposites are recommended due to their lower price and availability.
{"title":"Imaging properties of Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites as contrast agents in spectral X-ray computed tomography: A Monte Carlo simulation study","authors":"Maryam Sadeghian, A. Mesbahi","doi":"10.22038/NMJ.2021.57220.1588","DOIUrl":"https://doi.org/10.22038/NMJ.2021.57220.1588","url":null,"abstract":"Objective(s) In this paper, we evaluated some imaging properties of Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites as contrast agents in spectral CT. For this purpose, we simulated a spectral CT scanner with photon-counting detectors (PCDs) in 6 energy bins by a Monte Carlo simulator.Materials and Methods A cylindrical phantom was designed with a diameter of 8 cm and a height of 10 cm. Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites were designed as a core-shell with a diameter of 80 nm. Simulation results were utilized to reconstruct cross-sectional images through the filtered back-projection (FBP) algorithm in MATLAB software. Signal intensity and contrast to noise ratio (CNR) of tested contrast agents were calculated in spectral CT images. Results The results indicated a comparable image quality for Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites at different energy bins. However, in the energy range of 80 to 120 keV (bin 4 and 5), the difference in signal intensity and CNR between these two nanocomposites increased. The maximum signal intensity and CNR for Fe3O4@Au and Fe3O4@Bi were acquired at the highest concentration. The maximum signal intensity for Fe3O4@Au was 144±10 (HU) in the 4th energy bin and for Fe3O4@Bi 162±19 (HU) in the 5th energy bin. Besides, the maximum CNRs of 74±6 and 67.5±9 for Fe3O4@Au in bin 4, while for Fe3O4@Bi in bin 5 were obtained respectively. Conclusion Based on our results, Fe3O4@Au and Fe3O4@Bi hybrid nanocomposites have provided promising results as contrast agents in spectral CT. Fe3O4@Bi nanocomposites are recommended due to their lower price and availability.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"220-228"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42431205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.56215.1572
Fatma Kubra Ata, S. Yalçın
Exosomes, which are one of the extracellular vesicles, are considered necessary tools of intracellular communication that abundant in our body in physiological and pathological conditions with a diameter of 30-150 nm. The nanotubes, dendrimeric, metallic, nanoparticles have been used in the medical area. However, these nano-based systems are lack of standardized manufacturing methods and therefore, it has toxic effects on cells. The delivery methods of growth factors, exosomes, cells, and engineered tissues have notably advanced in the medical area. The fact that they contain bioactive molecules such as protein, lipid, RNA and DNA revealed that these structures may play an important role in the treatment of cancer. Here, we review work on the contribution exosomal mediated cancer treatment in two main topics as exogenous molecule carrier and self-use. We also emphasize the development of exosome-based systems by referring to the advantages and disadvantages of using exosomes and future perspectives in cancer therapy.
{"title":"Exosomes as delivery tools in cancer therapy: Future perspectives","authors":"Fatma Kubra Ata, S. Yalçın","doi":"10.22038/NMJ.2021.56215.1572","DOIUrl":"https://doi.org/10.22038/NMJ.2021.56215.1572","url":null,"abstract":"Exosomes, which are one of the extracellular vesicles, are considered necessary tools of intracellular communication that abundant in our body in physiological and pathological conditions with a diameter of 30-150 nm. The nanotubes, dendrimeric, metallic, nanoparticles have been used in the medical area. However, these nano-based systems are lack of standardized manufacturing methods and therefore, it has toxic effects on cells. The delivery methods of growth factors, exosomes, cells, and engineered tissues have notably advanced in the medical area. The fact that they contain bioactive molecules such as protein, lipid, RNA and DNA revealed that these structures may play an important role in the treatment of cancer. Here, we review work on the contribution exosomal mediated cancer treatment in two main topics as exogenous molecule carrier and self-use. We also emphasize the development of exosome-based systems by referring to the advantages and disadvantages of using exosomes and future perspectives in cancer therapy.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"156-165"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48701941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.58060.1601
A. Mansouri, Noor Mohammad Danesh, M. Ramezani
Objective(s): Tacrolimus (TAC) is used in autoimmune diseases, organ transplantation, and nephrotic syndrome treatment. Therapeutic drug monitoring (TDM) of TAC is critical since it has narrow therapeutic index. Thus, the development of an easy and sensitive method is critical for detecting TAC in blood samples.Materials and Methods: In this study, we aimed to design a fast, simple,and specific colorimetric sensor based on aptamer/AuNPs to detect. Initially, the aptamer was adsorbed on the surface of the gold nanoparticles (AuNPs). Results: Then, it was expected that when the aptamer bound to TAC, AuNPs were aggregated by salt, and the color changed from red to blue. However, in our study, color did not change, and NaCl could not aggregate the AuNPs. In this approach, the optical properties of AuNPs and high affinity of aptamer were used for the detection of TAC.Conclusion: However, according to our data, this colorimetric aptasensor was not appropriate for the detection of TAC.
{"title":"Colorimetric method based on salt-induced aggregation of gold nanoparticles and aptamer does not work for detection of tacrolimus","authors":"A. Mansouri, Noor Mohammad Danesh, M. Ramezani","doi":"10.22038/NMJ.2021.58060.1601","DOIUrl":"https://doi.org/10.22038/NMJ.2021.58060.1601","url":null,"abstract":"Objective(s): Tacrolimus (TAC) is used in autoimmune diseases, organ transplantation, and nephrotic syndrome treatment. Therapeutic drug monitoring (TDM) of TAC is critical since it has narrow therapeutic index. Thus, the development of an easy and sensitive method is critical for detecting TAC in blood samples.Materials and Methods: In this study, we aimed to design a fast, simple,and specific colorimetric sensor based on aptamer/AuNPs to detect. Initially, the aptamer was adsorbed on the surface of the gold nanoparticles (AuNPs). Results: Then, it was expected that when the aptamer bound to TAC, AuNPs were aggregated by salt, and the color changed from red to blue. However, in our study, color did not change, and NaCl could not aggregate the AuNPs. In this approach, the optical properties of AuNPs and high affinity of aptamer were used for the detection of TAC.Conclusion: However, according to our data, this colorimetric aptasensor was not appropriate for the detection of TAC.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"229-233"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47909026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.57090.1584
A. Gholami, B. Habibi, A. Matin, N. Samadi
Objective(s): Paclitaxel (PTX) and docetaxel (DTX) belong to the family of taxanes drugs which have been employed for treatment of ovarian, breast, lung, head, neck, gastric, pancreatic, bladder, prostate and cervical cancer. Controlled drug release systems improve the effectiveness of drug therapy by modifying the release profile, biodistribution, stability and solubility, bioavailability of drugs and minimize the side effects of anticancer drugs. So, the purpose of the present study was to synthesize the modified nanocomposite for the controlled releases of these drugs.Materials and Methods: Magnetic magnesium iron oxide nanoparticles were synthesized via the co-precipitation chemical method and then composited with graphene oxide and modified by polyvinyl alcohol. The physicochemical characterization of the prepared nanocomposites was investigated by scanning electron microscope (SEM), X-ray powder diffraction (XRD) , Fourier-transform infrared spectroscopy and vibrating-sample magnetometer.Results: Specific characteristics such as adsorption capacity, monodispersity, stability and hydrophilicity of magnetic nanomaterials were studied in the controlled release of anticancer drugs. Drug loading content and drug loading efficiency and release rate of drugs were investigated in vitro at different pH with ultraviolet-visible spectroscopy (UV-Vis). DLE and DLC of PTX and DTX in the modified magnetic nanocomposites were calculated as 85.2 ± 2.7% and 7.74 ± 0.24% , 89.4 ± 1.2% and 8.12 ± 0.11% of, respectively. The cumulative release amount of PTX and DTX from magnetic modified nanocomposites at pHs 5.8, 7.4 over 100 h were 58 % and 40 % and 54 % and 37 %, respectively.Conclusion: The potential of modified nanocomposite in drug delivery systems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of modified nanocomposite generated by different surface coatings. The generally sustained and controlled release profile of DTX (or PTX) facilitates the application of modified nanocomposite for the delivery of anticancer drugs.
{"title":"Controlled release of anticancer drugs via the magnetic magnesium iron nanoparticles modified by graphene oxide and polyvinyl alcohol: Paclitaxel and docetaxel","authors":"A. Gholami, B. Habibi, A. Matin, N. Samadi","doi":"10.22038/NMJ.2021.57090.1584","DOIUrl":"https://doi.org/10.22038/NMJ.2021.57090.1584","url":null,"abstract":"Objective(s): Paclitaxel (PTX) and docetaxel (DTX) belong to the family of taxanes drugs which have been employed for treatment of ovarian, breast, lung, head, neck, gastric, pancreatic, bladder, prostate and cervical cancer. Controlled drug release systems improve the effectiveness of drug therapy by modifying the release profile, biodistribution, stability and solubility, bioavailability of drugs and minimize the side effects of anticancer drugs. So, the purpose of the present study was to synthesize the modified nanocomposite for the controlled releases of these drugs.Materials and Methods: Magnetic magnesium iron oxide nanoparticles were synthesized via the co-precipitation chemical method and then composited with graphene oxide and modified by polyvinyl alcohol. The physicochemical characterization of the prepared nanocomposites was investigated by scanning electron microscope (SEM), X-ray powder diffraction (XRD) , Fourier-transform infrared spectroscopy and vibrating-sample magnetometer.Results: Specific characteristics such as adsorption capacity, monodispersity, stability and hydrophilicity of magnetic nanomaterials were studied in the controlled release of anticancer drugs. Drug loading content and drug loading efficiency and release rate of drugs were investigated in vitro at different pH with ultraviolet-visible spectroscopy (UV-Vis). DLE and DLC of PTX and DTX in the modified magnetic nanocomposites were calculated as 85.2 ± 2.7% and 7.74 ± 0.24% , 89.4 ± 1.2% and 8.12 ± 0.11% of, respectively. The cumulative release amount of PTX and DTX from magnetic modified nanocomposites at pHs 5.8, 7.4 over 100 h were 58 % and 40 % and 54 % and 37 %, respectively.Conclusion: The potential of modified nanocomposite in drug delivery systems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of modified nanocomposite generated by different surface coatings. The generally sustained and controlled release profile of DTX (or PTX) facilitates the application of modified nanocomposite for the delivery of anticancer drugs.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"200-210"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42355406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.56226.1573
M. Kavand, A. Mehravaran, Elham Pahlavani, H. Mirahmadi, J. Akhtari, M. Rahmati-Balaghaleh, S. Etemadi, L. Mohammadi
Objective(s)Toxoplasma gondii, an obligate intracellular protozoan parasite, is widespread across the world. It causes congenital disease and abortion in humans and domestic animals. One of the major concerns in parasitology, thus, is an effective vaccine development to control Toxoplasmosis.Materials and MethodsIn the present research, a nano-liposomal vaccine containing soluble antigens (SA) was designed to evaluate the immunity and protective efficacy against T. gondii infection in BALB/c mice. Soluble antigens (SA) were achieved from tachyzoites, encapsulated in the liposome, and investigated via scanning electron microscope. Three times with 2-week intervals, BALB/c mice were immunized subcutaneously with different formulations. The level of protection against infection was assessed through the percent survival survey of BALB/c mice after challenge with tachyzoites of T. gondii RH strain; also, the type of generated immune response was determined by evaluating the generation of cytokine (IFN-γ, IL-4) and titration of IgG isotypes.ResultsThe immunization with liposome DSPC+ SA and liposome DSPC+ Imiquimod + SA induced a substantial increase in anti-Toxoplasma IgG antibody as compared to the PBS group (p <0.05). The IgG2a and IFN-γ secretion highest levels were seen with liposome DSPC+ Imiquimod + SA more than the control group (p <0.01) and (p <0.0001), respectively. After challenge with tachyzoites, less mortality was detected in the immunized mice by liposome DSPC + Imiquimod + SA that was meaningfully different (p <0.01) in comparison to other groups.ConclusionVaccination with liposome DSPC + Imiquimod + SA showed more survival rate and cellular immune reaction against T. gondii.
{"title":"Evaluation of survival rate using liposome containing soluble antigens (SA) against Toxoplasma gondii infection in BALB/c mice","authors":"M. Kavand, A. Mehravaran, Elham Pahlavani, H. Mirahmadi, J. Akhtari, M. Rahmati-Balaghaleh, S. Etemadi, L. Mohammadi","doi":"10.22038/NMJ.2021.56226.1573","DOIUrl":"https://doi.org/10.22038/NMJ.2021.56226.1573","url":null,"abstract":"Objective(s)Toxoplasma gondii, an obligate intracellular protozoan parasite, is widespread across the world. It causes congenital disease and abortion in humans and domestic animals. One of the major concerns in parasitology, thus, is an effective vaccine development to control Toxoplasmosis.Materials and MethodsIn the present research, a nano-liposomal vaccine containing soluble antigens (SA) was designed to evaluate the immunity and protective efficacy against T. gondii infection in BALB/c mice. Soluble antigens (SA) were achieved from tachyzoites, encapsulated in the liposome, and investigated via scanning electron microscope. Three times with 2-week intervals, BALB/c mice were immunized subcutaneously with different formulations. The level of protection against infection was assessed through the percent survival survey of BALB/c mice after challenge with tachyzoites of T. gondii RH strain; also, the type of generated immune response was determined by evaluating the generation of cytokine (IFN-γ, IL-4) and titration of IgG isotypes.ResultsThe immunization with liposome DSPC+ SA and liposome DSPC+ Imiquimod + SA induced a substantial increase in anti-Toxoplasma IgG antibody as compared to the PBS group (p <0.05). The IgG2a and IFN-γ secretion highest levels were seen with liposome DSPC+ Imiquimod + SA more than the control group (p <0.01) and (p <0.0001), respectively. After challenge with tachyzoites, less mortality was detected in the immunized mice by liposome DSPC + Imiquimod + SA that was meaningfully different (p <0.01) in comparison to other groups.ConclusionVaccination with liposome DSPC + Imiquimod + SA showed more survival rate and cellular immune reaction against T. gondii.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"179-186"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44180391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.22038/NMJ.2021.57687.1598
Mehdi Khalilnejad, T. Mortezazadeh, R. Shayan
Contrast agents (CAs) play a critical role in high-resolution magnetic resonance imaging (MRI) applications to enhance the low intrinsic sensitivity of MRI. Manganese oxide nanoparticles (MnO) have gotten developing consideration as substitute spinâ��lattice (T1) MRI CAs as a result of the Gd-based CAs which are related with renal i¬�brosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide NPs. In this review, previous developments in the usage of MnO nanoparticles as MRI CAs for cancer theranostic applications such as developments in toxicological properties, distribution and tumor microenvironment (TME)-responsive biomaterials were reviewed. A literature search was accomplished to discover distributed research that elaborates the use of MnO in multimodal imaging and therapy. In the current study, the electronic search including PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was performed dependent on Mesh key words. CAs can significantly improve the imaging contrast among the lesions and normal tissues. In this study we generally concentrate on typical advancements of MnO nanoparticles about properties, bimodal or multimodal imaging, and therapy. Numerous researches have demonstrated MnO-based nanostructure produce considerable biocompatibility with the lack of cytotoxicity. Therefore, remarkable features improved photothermal therapy, chemotherapy and Chemodynamic therapy.
{"title":"Application of Manganese Oxide (MnO) nanoparticles in multimodal molecular imaging and cancer therapy: A review","authors":"Mehdi Khalilnejad, T. Mortezazadeh, R. Shayan","doi":"10.22038/NMJ.2021.57687.1598","DOIUrl":"https://doi.org/10.22038/NMJ.2021.57687.1598","url":null,"abstract":"Contrast agents (CAs) play a critical role in high-resolution magnetic resonance imaging (MRI) applications to enhance the low intrinsic sensitivity of MRI. Manganese oxide nanoparticles (MnO) have gotten developing consideration as substitute spinâ��lattice (T1) MRI CAs as a result of the Gd-based CAs which are related with renal i¬�brosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide NPs. In this review, previous developments in the usage of MnO nanoparticles as MRI CAs for cancer theranostic applications such as developments in toxicological properties, distribution and tumor microenvironment (TME)-responsive biomaterials were reviewed. A literature search was accomplished to discover distributed research that elaborates the use of MnO in multimodal imaging and therapy. In the current study, the electronic search including PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was performed dependent on Mesh key words. CAs can significantly improve the imaging contrast among the lesions and normal tissues. In this study we generally concentrate on typical advancements of MnO nanoparticles about properties, bimodal or multimodal imaging, and therapy. Numerous researches have demonstrated MnO-based nanostructure produce considerable biocompatibility with the lack of cytotoxicity. Therefore, remarkable features improved photothermal therapy, chemotherapy and Chemodynamic therapy.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"166-178"},"PeriodicalIF":1.5,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43093580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22038/NMJ.2021.08.007
M. Kesmati, Norollah Tamoradi, A. Rezaie, A. Shahriyari, M. Torabi
Objective(s): This study has investigated the effects of acute and chronic administration of MgO nanoparticles (NP), on the memory, serum magnesium ions level, total antioxidant capacity and histopathological changes of the rat hippocampus in the Alzheimer-like model induced by streptozotocin (STZ). Materials and Methods: Adult male Wistar rats divided into: control, sham (STZ+ saline) and MgO NP 1 and 5 mg/kg groups. To induce Alzheimer’s disease, all rats except control group, received STZ (3 mg/kg/ 5 µl of saline) into the lateral ventricles during anesthesia. One week after surgery, passive avoidance learning was started by shuttle box device and saline or MgO NP acutely and chronically was administered after training. Memory tests were done at 90 minutes and 24 hours after training and one week after chronic administration. Immediately after the memory test, serum magnesium levels and total antioxidant capacity were measured, also the brain hippocampus tissue was removed for histopathological evaluation. STZ significantly impairs memory up to a week after the training. Results: Acute and chronic administration of MgO NP significantly improved short and long-term memory in the Alzheimer’s rats. Serum magnesium level decreased in the Alzheimer’s rats and MgO NP increased it in a dose-dependent manner. MgO NP 1 mg/kg significantly increased serum total antioxidant capacity. MgO NP improved STZ-induced cell lesions in different parts of the hippocampus. Conclusions: It seems that MgO NP have the potential to improve brain lesions that have led to loss of memory and can be considered as an important component candidate for Alzheimer’s disease.
{"title":"Evaluating behavioral, biochemical and histopathological effects of the MgO nanoparticles administration on memory in the Alzheimer-like model of male rat","authors":"M. Kesmati, Norollah Tamoradi, A. Rezaie, A. Shahriyari, M. Torabi","doi":"10.22038/NMJ.2021.08.007","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.007","url":null,"abstract":"Objective(s): This study has investigated the effects of acute and chronic administration of MgO nanoparticles (NP), on the memory, serum magnesium ions level, total antioxidant capacity and histopathological changes of the rat hippocampus in the Alzheimer-like model induced by streptozotocin (STZ). Materials and Methods: Adult male Wistar rats divided into: control, sham (STZ+ saline) and MgO NP 1 and 5 mg/kg groups. To induce Alzheimer’s disease, all rats except control group, received STZ (3 mg/kg/ 5 µl of saline) into the lateral ventricles during anesthesia. One week after surgery, passive avoidance learning was started by shuttle box device and saline or MgO NP acutely and chronically was administered after training. Memory tests were done at 90 minutes and 24 hours after training and one week after chronic administration. Immediately after the memory test, serum magnesium levels and total antioxidant capacity were measured, also the brain hippocampus tissue was removed for histopathological evaluation. STZ significantly impairs memory up to a week after the training. Results: Acute and chronic administration of MgO NP significantly improved short and long-term memory in the Alzheimer’s rats. Serum magnesium level decreased in the Alzheimer’s rats and MgO NP increased it in a dose-dependent manner. MgO NP 1 mg/kg significantly increased serum total antioxidant capacity. MgO NP improved STZ-induced cell lesions in different parts of the hippocampus. Conclusions: It seems that MgO NP have the potential to improve brain lesions that have led to loss of memory and can be considered as an important component candidate for Alzheimer’s disease.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"140-146"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44086846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22038/NMJ.2021.08.005
Omid Javanmardghooghan, Fatemeh Azmoudeh, Mohammadamin Sadeghdoust, Farnaz Aligolighasemabadi, M. Khakzad
Objective(s): It has been shown that Nanogold particles have anti-inflammatory effects in different Rheumatologic, neurologic and gastrointestinal disease. They inhibit the synthesis of pro-inflammatory cytokines and also infiltration of inflammatory cells. Sublingual immunotherapy is a well-known effective, safe and clinically effective method way of immune response regulation which results in long-lasting symptoms reduction. This research was designed to find the immunological effects of sublingual immunotherapy using Nanogold in mice model of asthma. Materials and Methods: Twenty BALB/c mice were divided into four groups including one group of non-sensitized mice and three groups of asthmatic mice which were treated sublingually with PBS, Nanogold and Beclomethasone. IL-4 and IFN-γ levels were measured in serum and spleen cells supernatant using ELISA. BAL fluid inflammatory cells differential counting and lungs histological analysis were also done.Results: The results revealed that there was significant increase in level of IFN-γ and decrease in level of IL-4 in serum and spleen cells supernatant of Nanogold treated group (p <0.05). These findings indicates the shift of Th2/Th1 balance towards Th1 cells which is protective against asthma. In addition, histological and BAL fluid analysis demonstrated the reduction of cells and eosinophilic infiltration. Conclusion: Based on our results, sublingual immunotherapy by Nanogold has significant anti-inflammatory roll in asthmatic mice. Thus, Nanogold is a potentially valuable agent for controlling the underlying inflammation in asthma. However, further investigations is recommended to find more details about its effects.
{"title":"Sublingual immunotherapy by Nanogold in mice model of asthma","authors":"Omid Javanmardghooghan, Fatemeh Azmoudeh, Mohammadamin Sadeghdoust, Farnaz Aligolighasemabadi, M. Khakzad","doi":"10.22038/NMJ.2021.08.005","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.005","url":null,"abstract":"Objective(s): It has been shown that Nanogold particles have anti-inflammatory effects in different Rheumatologic, neurologic and gastrointestinal disease. They inhibit the synthesis of pro-inflammatory cytokines and also infiltration of inflammatory cells. Sublingual immunotherapy is a well-known effective, safe and clinically effective method way of immune response regulation which results in long-lasting symptoms reduction. This research was designed to find the immunological effects of sublingual immunotherapy using Nanogold in mice model of asthma. Materials and Methods: Twenty BALB/c mice were divided into four groups including one group of non-sensitized mice and three groups of asthmatic mice which were treated sublingually with PBS, Nanogold and Beclomethasone. IL-4 and IFN-γ levels were measured in serum and spleen cells supernatant using ELISA. BAL fluid inflammatory cells differential counting and lungs histological analysis were also done.Results: The results revealed that there was significant increase in level of IFN-γ and decrease in level of IL-4 in serum and spleen cells supernatant of Nanogold treated group (p <0.05). These findings indicates the shift of Th2/Th1 balance towards Th1 cells which is protective against asthma. In addition, histological and BAL fluid analysis demonstrated the reduction of cells and eosinophilic infiltration. Conclusion: Based on our results, sublingual immunotherapy by Nanogold has significant anti-inflammatory roll in asthmatic mice. Thus, Nanogold is a potentially valuable agent for controlling the underlying inflammation in asthma. However, further investigations is recommended to find more details about its effects.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"124-131"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47469070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.22038/NMJ.2021.08.006
S. Assadpour, M. Shiran, J. Akhtari
Objective(s): Sumatriptan is a routine medication in the treatment of migraine and cluster headache that is generally given by oral or parental routes. However, a substantial proportion of patients suffer severe side effects. Nasal administration is significantly effective in case of oral administration of drug gives an undesirable side effect. So, the purpose of the present study was to develop intranasal delivery systems of Sumatriptan succinate using nanoliposomes as container of a water-soluble drug and chitosan as a mucoadhesive polymer.Materials and Methods: Liposomal formulations containing Sumatriptan as well as chitosan-coated liposomal formulations with different phospholipids and different concentrations were prepared. The formulations were evaluated for their physicochemical properties, stability and Cytotoxicity on BEAS-2B cells.Results: The prepared liposomal formulations coated with chitosan containing Sumatriptan had a size range of 165±9.4to 258±6.4 nm, and the surface charge of the obtained formulations was measured between 32±6 and 40±5 mV. Also, the encapsulation efficiency of the formulations was also observed between 14.2±2.7% and 19±3.4%. Based on the obtained results of physicochemical studies, liposomes F2 was also tested for stability and toxicity and showed that the F2 liposomes retained its physicochemical properties for up to 3 months. Finally, the toxicity test of the mentioned formulation showed relatively low toxicity on BEAS-2B cells.Conclusion: In the presents study, stable liposomal formulations coated with chitosan containing Sumatriptan were prepared and studied. Based on the obtained, these formulations can be used in preclinical and animal studies for the nasal administration of Sumatriptan.
{"title":"Chitosan coating of anionic liposomes containing sumatriptan succinate: a candidate for nasal administration","authors":"S. Assadpour, M. Shiran, J. Akhtari","doi":"10.22038/NMJ.2021.08.006","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.006","url":null,"abstract":"Objective(s): Sumatriptan is a routine medication in the treatment of migraine and cluster headache that is generally given by oral or parental routes. However, a substantial proportion of patients suffer severe side effects. Nasal administration is significantly effective in case of oral administration of drug gives an undesirable side effect. So, the purpose of the present study was to develop intranasal delivery systems of Sumatriptan succinate using nanoliposomes as container of a water-soluble drug and chitosan as a mucoadhesive polymer.Materials and Methods: Liposomal formulations containing Sumatriptan as well as chitosan-coated liposomal formulations with different phospholipids and different concentrations were prepared. The formulations were evaluated for their physicochemical properties, stability and Cytotoxicity on BEAS-2B cells.Results: The prepared liposomal formulations coated with chitosan containing Sumatriptan had a size range of 165±9.4to 258±6.4 nm, and the surface charge of the obtained formulations was measured between 32±6 and 40±5 mV. Also, the encapsulation efficiency of the formulations was also observed between 14.2±2.7% and 19±3.4%. Based on the obtained results of physicochemical studies, liposomes F2 was also tested for stability and toxicity and showed that the F2 liposomes retained its physicochemical properties for up to 3 months. Finally, the toxicity test of the mentioned formulation showed relatively low toxicity on BEAS-2B cells.Conclusion: In the presents study, stable liposomal formulations coated with chitosan containing Sumatriptan were prepared and studied. Based on the obtained, these formulations can be used in preclinical and animal studies for the nasal administration of Sumatriptan.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"8 1","pages":"132-139"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48845305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}