Pub Date : 2025-11-01Epub Date: 2025-08-25DOI: 10.1002/mc.70027
Li Zhong, Xin Guo, Yuxin Yang, Dan Jian, Yang Peng, Xianfeng Lu
Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy, severely compromising treatment efficacy and the patients' quality of life, yet effective prevention or treatment strategies remain elusive. Folic acid (FA), a water-soluble vitamin, plays critical roles in DNA synthesis/repair, cell cycle regulation, epigenetic regulation via methylation, oxidative stress response, and embryonic development. However, its radioprotective role has not been systematically elucidated. This study aimed to investigate its effects and molecular mechanisms during RILI. The RILI murine model showed that folic acid supplementation significantly alleviated radiation-induced lung tissue damage, body weight loss, and inflammatory cell infiltration. Meanwhile, folic acid mitigated radiation-induced DNA damage and cellular senescence in lung tissues and lung epithelial cell lines. RNA sequencing identified a 29-gene SASP signature (including CCL5, CXCL2, CXCL10), which was significantly suppressed by folic acid in irradiated lungs. Moreover, folic acid inhibited SASP production by suppressing the phosphorylation of P38 MAPK/NF-κB signaling pathway. By integrating in vivo and in vitro models, we revealed that folic acid exerts its radioprotective effects by reducing cellular senescence and the production of SASP. Taken together, these findings indicated that folic acid is potentially a novel therapeutic strategy for RILI.
{"title":"Folic Acid Protects Against Radiation-Induced Lung Injury by Suppressing Senescence of Lung Epithelial Cells.","authors":"Li Zhong, Xin Guo, Yuxin Yang, Dan Jian, Yang Peng, Xianfeng Lu","doi":"10.1002/mc.70027","DOIUrl":"10.1002/mc.70027","url":null,"abstract":"<p><p>Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy, severely compromising treatment efficacy and the patients' quality of life, yet effective prevention or treatment strategies remain elusive. Folic acid (FA), a water-soluble vitamin, plays critical roles in DNA synthesis/repair, cell cycle regulation, epigenetic regulation via methylation, oxidative stress response, and embryonic development. However, its radioprotective role has not been systematically elucidated. This study aimed to investigate its effects and molecular mechanisms during RILI. The RILI murine model showed that folic acid supplementation significantly alleviated radiation-induced lung tissue damage, body weight loss, and inflammatory cell infiltration. Meanwhile, folic acid mitigated radiation-induced DNA damage and cellular senescence in lung tissues and lung epithelial cell lines. RNA sequencing identified a 29-gene SASP signature (including CCL5, CXCL2, CXCL10), which was significantly suppressed by folic acid in irradiated lungs. Moreover, folic acid inhibited SASP production by suppressing the phosphorylation of P38 MAPK/NF-κB signaling pathway. By integrating in vivo and in vitro models, we revealed that folic acid exerts its radioprotective effects by reducing cellular senescence and the production of SASP. Taken together, these findings indicated that folic acid is potentially a novel therapeutic strategy for RILI.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1913-1925"},"PeriodicalIF":3.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144962132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-01Epub Date: 2025-08-19DOI: 10.1002/mc.70034
Eric T Alexander, Katherine S Barone, Susan K Gilmour
GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine in the tissue microenvironment activates GCN2 and alters stromal cell metabolism to support tumor cell survival and drive myeloid immunosuppressive function. To study the effect of elevated polyamine metabolism on fibroblast activation, we used the K6/ODC transgenic model of carcinogen-initiated, polyamine-promoted skin carcinogenesis. GCN2 loss significantly delayed tumor development and decreased tumor number and tumor burden in K6/ODC; GCN2-/- mice compared that in K6/ODC mice. Underlying dermal fibroblasts from nontumor bearing K6/ODC mice express elevated levels of genes associated with GCN2 activation and fibroblast activation. Expression of these genes was not elevated in K6/ODC; GCN2-/- dermis. In addition, K6/ODC mice have significantly more myeloid derived suppressor cells (MDSC) compared to normal littermates, and MDSCs were decreased in K6/ODC mice deficient in GCN2. Dermal fibroblasts cultured from K6/ODC transgenic mouse skin secrete increased levels of protumorigenic factors including senescence associated secretory phenotype (SASP) factors that stimulate invasiveness of stem-like epidermal tumorspheres as well as the polarization of M2-like macrophages. Using K6/ODC; p16-3MR mice in which senescent fibroblasts can be eliminated with ganciclovir treatment, carcinogen-initiated tumor development was greatly inhibited when senescent fibroblasts were eliminated in K6/ODC; p16-3MR mice. Our studies suggest a new paradigm in which cellular stress responses resulting from increased polyamine biosynthesis accelerate fibroblast activation and a senescence phenotype to create a protumorigenic microenvironment.
{"title":"Elevated Polyamine Metabolism Activates Fibroblasts via GCN2 Activation and Generates Senescent Fibroblasts to Promote Tumor Formation and Progression.","authors":"Eric T Alexander, Katherine S Barone, Susan K Gilmour","doi":"10.1002/mc.70034","DOIUrl":"10.1002/mc.70034","url":null,"abstract":"<p><p>GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine in the tissue microenvironment activates GCN2 and alters stromal cell metabolism to support tumor cell survival and drive myeloid immunosuppressive function. To study the effect of elevated polyamine metabolism on fibroblast activation, we used the K6/ODC transgenic model of carcinogen-initiated, polyamine-promoted skin carcinogenesis. GCN2 loss significantly delayed tumor development and decreased tumor number and tumor burden in K6/ODC; GCN2<sup>-/-</sup> mice compared that in K6/ODC mice. Underlying dermal fibroblasts from nontumor bearing K6/ODC mice express elevated levels of genes associated with GCN2 activation and fibroblast activation. Expression of these genes was not elevated in K6/ODC; GCN2<sup>-/-</sup> dermis. In addition, K6/ODC mice have significantly more myeloid derived suppressor cells (MDSC) compared to normal littermates, and MDSCs were decreased in K6/ODC mice deficient in GCN2. Dermal fibroblasts cultured from K6/ODC transgenic mouse skin secrete increased levels of protumorigenic factors including senescence associated secretory phenotype (SASP) factors that stimulate invasiveness of stem-like epidermal tumorspheres as well as the polarization of M2-like macrophages. Using K6/ODC; p16-3MR mice in which senescent fibroblasts can be eliminated with ganciclovir treatment, carcinogen-initiated tumor development was greatly inhibited when senescent fibroblasts were eliminated in K6/ODC; p16-3MR mice. Our studies suggest a new paradigm in which cellular stress responses resulting from increased polyamine biosynthesis accelerate fibroblast activation and a senescence phenotype to create a protumorigenic microenvironment.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1872-1884"},"PeriodicalIF":3.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144883238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-07-24DOI: 10.1002/mc.70019
Jinrong Xie, Jianchun Gu, Wenjie Lv, Limin Cheng, Shuxian Chen, Ran Wu, Yan Liang, Meiling Zhu, Siyu Chen, Mawei Jiang, Jun Su
Breast cancer is the most common malignancy that threaten women's health seriously. Many studies have shown that long noncoding RNAs can play significant role in the tumorigenesis of breast cancer. By analyzing the TCGA breast cancer genome data and transcriptome data, we found that copy number amplification drives the activation of long noncoding RNA MNX1-AS in breast cancer and indicates poor prognosis. Functionally, MNX1-AS1 could regulate pathogenesis of breast cancer in vitro and in vivo. Mechanistically, MNX1-AS1 could bind IGF2BP1, which increased the interaction of IGF2BP1 with MET mRNA to promote its stability, thus promoting tumorigenesis of breast cancer. Moreover, combination of MNX1-AS1 inhibition and MET small molecule inhibitor (PHA-665752, PHA) exhibited better antitumor efficacy in xenograft model, suggesting the therapeutic potential. Overall, our findings indicated that MNX1-AS1/MET regulatory axis may serve as a potential therapeutic target in breast cancer.
{"title":"Long Noncoding RNA MNX1-AS1 Promotes Tumorigenesis of Breast Cancer by Binding IGF2BP1 to Activate c-MET.","authors":"Jinrong Xie, Jianchun Gu, Wenjie Lv, Limin Cheng, Shuxian Chen, Ran Wu, Yan Liang, Meiling Zhu, Siyu Chen, Mawei Jiang, Jun Su","doi":"10.1002/mc.70019","DOIUrl":"10.1002/mc.70019","url":null,"abstract":"<p><p>Breast cancer is the most common malignancy that threaten women's health seriously. Many studies have shown that long noncoding RNAs can play significant role in the tumorigenesis of breast cancer. By analyzing the TCGA breast cancer genome data and transcriptome data, we found that copy number amplification drives the activation of long noncoding RNA MNX1-AS in breast cancer and indicates poor prognosis. Functionally, MNX1-AS1 could regulate pathogenesis of breast cancer in vitro and in vivo. Mechanistically, MNX1-AS1 could bind IGF2BP1, which increased the interaction of IGF2BP1 with MET mRNA to promote its stability, thus promoting tumorigenesis of breast cancer. Moreover, combination of MNX1-AS1 inhibition and MET small molecule inhibitor (PHA-665752, PHA) exhibited better antitumor efficacy in xenograft model, suggesting the therapeutic potential. Overall, our findings indicated that MNX1-AS1/MET regulatory axis may serve as a potential therapeutic target in breast cancer.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1697-1707"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-07-24DOI: 10.1002/mc.70015
Pengbo Li, Yeting Lu, Zhen Zheng, Jiaming Lv, Jing Hu
This study aimed to study the mechanism by which m6A methyltransferase, KIAA1429, affect pancreatic adenocarcinoma (PAAD) cell malignant behaviors in relation to N6-methyladenosine (m6A) modification. RT-qPCR, Western blot, immunohistochemistry (IHC), and m6A RNA immunoprecipitation (Me-RIP) assays were performed on PAAD tumor and adjacent non-tumor tissues (n = 39) to detect KIAA1429, AKT2 mRNA and protein levels, as well as overall tissue RNA m6A methylation levels. Tumor cells were transfected with siRNA targeting KIAA1429 (si-KIAA1429) or plasmids overexpressing AKT2 (oe-AKT2). Cell activities were assessed, followed by assessment of autophagic flux using the mRFP-GFP-LC3 reporter. In PAAD tissues and cell lines, KIAA1429 was substantially expressed. In PAAD patients, this expression was linked to a considerably lower overall and disease-specific survival rate. KIAA1429 knockdown inhibited PAAD cell malignant behaviors and promoted autophagy. Mechanistically, KIAA1429 mediated AKT2 m6A modification to enhance AKT2 mRNA stability and upregulate AKT2 expression, partially reversing the mediating effects of KIAA1429 knockdown on PAAD cell malignant behaviors and autophagy. KIAA1429 knockdown also inhibited PAAD tumor growth in vivo. KIAA1429 promotes PAAD cell malignant behaviors while inhibiting autophagy activity by mediating AKT2 m6A modification and enhancing AKT2 expression.
{"title":"The Role and Mechanism of KIAA1429-Mediated m6A Modification in Pancreatic Adenocarcinoma.","authors":"Pengbo Li, Yeting Lu, Zhen Zheng, Jiaming Lv, Jing Hu","doi":"10.1002/mc.70015","DOIUrl":"10.1002/mc.70015","url":null,"abstract":"<p><p>This study aimed to study the mechanism by which m6A methyltransferase, KIAA1429, affect pancreatic adenocarcinoma (PAAD) cell malignant behaviors in relation to N6-methyladenosine (m6A) modification. RT-qPCR, Western blot, immunohistochemistry (IHC), and m6A RNA immunoprecipitation (Me-RIP) assays were performed on PAAD tumor and adjacent non-tumor tissues (n = 39) to detect KIAA1429, AKT2 mRNA and protein levels, as well as overall tissue RNA m6A methylation levels. Tumor cells were transfected with siRNA targeting KIAA1429 (si-KIAA1429) or plasmids overexpressing AKT2 (oe-AKT2). Cell activities were assessed, followed by assessment of autophagic flux using the mRFP-GFP-LC3 reporter. In PAAD tissues and cell lines, KIAA1429 was substantially expressed. In PAAD patients, this expression was linked to a considerably lower overall and disease-specific survival rate. KIAA1429 knockdown inhibited PAAD cell malignant behaviors and promoted autophagy. Mechanistically, KIAA1429 mediated AKT2 m6A modification to enhance AKT2 mRNA stability and upregulate AKT2 expression, partially reversing the mediating effects of KIAA1429 knockdown on PAAD cell malignant behaviors and autophagy. KIAA1429 knockdown also inhibited PAAD tumor growth in vivo. KIAA1429 promotes PAAD cell malignant behaviors while inhibiting autophagy activity by mediating AKT2 m6A modification and enhancing AKT2 expression.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1667-1682"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against GBM. TMZ resistance is an important factor contributing to the poor prognosis of GBM, but the underlying molecular mechanisms are unclear. Previous studies have suggested that KIF4A may be an indicator of poor prognosis in glioma patients, but the association of KIF4A with TMZ resistance has never been investigated. The detection of ferroptosis levels in GBM cells was accomplished through the utilization of ROS, MDA, JC-1, and Western blot analysis. The assessment of TMZ resistance was performed through the implementation of CCK8, cell cloning, and cell cycle analysis. The identification of downstream targets of KIF4A was facilitated by protein profiling and immunofluorescence. KIF4A inhibits ferroptosis in GBM cells through the CHMP4B/GPX4 axis and promotes TMZ resistance. Knockdown of KIF4A or CHMP4B sensitized GBM cells to chemotherapy. In addition, KIF4A induced epithelial-mesenchymal transition in GBM cells, which synergistically promoted TMZ resistance.The present study elucidates a novel mechanism of TMZ resistance in glioblastoma through the CHMP4B/GPX4 axis. Based on these findings, targeting KIF4A may offer a potential new strategy against GBM.
{"title":"KIF4A Inhibits Ferroptosis in Glioblastoma via the CHMP4B/GPX4 Axis and Promotes Temozolomide Resistance.","authors":"Xinan Shen, Honglei Cheng, Jiarong Zheng, Yihan Xia, Yongdong Li, Quanquan Guo, Zhicheng Zhang, Nanheng Yin, Yongshun Liu, Jun Dong, Yuntian Shen","doi":"10.1002/mc.70006","DOIUrl":"10.1002/mc.70006","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against GBM. TMZ resistance is an important factor contributing to the poor prognosis of GBM, but the underlying molecular mechanisms are unclear. Previous studies have suggested that KIF4A may be an indicator of poor prognosis in glioma patients, but the association of KIF4A with TMZ resistance has never been investigated. The detection of ferroptosis levels in GBM cells was accomplished through the utilization of ROS, MDA, JC-1, and Western blot analysis. The assessment of TMZ resistance was performed through the implementation of CCK8, cell cloning, and cell cycle analysis. The identification of downstream targets of KIF4A was facilitated by protein profiling and immunofluorescence. KIF4A inhibits ferroptosis in GBM cells through the CHMP4B/GPX4 axis and promotes TMZ resistance. Knockdown of KIF4A or CHMP4B sensitized GBM cells to chemotherapy. In addition, KIF4A induced epithelial-mesenchymal transition in GBM cells, which synergistically promoted TMZ resistance.The present study elucidates a novel mechanism of TMZ resistance in glioblastoma through the CHMP4B/GPX4 axis. Based on these findings, targeting KIF4A may offer a potential new strategy against GBM.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1650-1666"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-08-12DOI: 10.1002/mc.70020
Hong Gao, Qingguo Liu, Yuting Li, Xudong Sun, Jianquan Liu, Qihang Hu, Tao Jiang, Jun Song
Circular RNAs (circRNAs) are covalently closed RNA molecules that play critical roles in tumorigenesis and cancer progression, including colorectal cancer (CRC). However, the clinical significance, biological functions, and molecular mechanisms of many novel circRNAs in CRC remain poorly understood. In this study, we identified a novel circRNA, hsa_circ_0003759 (designated circLPP), which was significantly upregulated in CRC tissues. High circLPP expression correlated with malignant progression and poor prognosis in CRC patients. Functional experiments demonstrated that circLPP promoted CRC proliferation and migration both in vitro and in vivo. Mechanistically, circLPP upregulated Wnt3a expression and activated the Wnt/β-catenin signaling pathway by sponging miR-665. Our findings revealed that circLPP driven CRC progression by modulating the Wnt/β-catenin pathway, highlighting its potential as a therapeutic target for CRC.
{"title":"CircLPP Activates the Wnt/β-Catenin Signaling Pathway via the miR-665/Wnt3a Axis and Promotes Proliferation and Metastasis in Colorectal Cancer.","authors":"Hong Gao, Qingguo Liu, Yuting Li, Xudong Sun, Jianquan Liu, Qihang Hu, Tao Jiang, Jun Song","doi":"10.1002/mc.70020","DOIUrl":"10.1002/mc.70020","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are covalently closed RNA molecules that play critical roles in tumorigenesis and cancer progression, including colorectal cancer (CRC). However, the clinical significance, biological functions, and molecular mechanisms of many novel circRNAs in CRC remain poorly understood. In this study, we identified a novel circRNA, hsa_circ_0003759 (designated circLPP), which was significantly upregulated in CRC tissues. High circLPP expression correlated with malignant progression and poor prognosis in CRC patients. Functional experiments demonstrated that circLPP promoted CRC proliferation and migration both in vitro and in vivo. Mechanistically, circLPP upregulated Wnt3a expression and activated the Wnt/β-catenin signaling pathway by sponging miR-665. Our findings revealed that circLPP driven CRC progression by modulating the Wnt/β-catenin pathway, highlighting its potential as a therapeutic target for CRC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1763-1777"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144822109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-07-22DOI: 10.1002/mc.70018
Wen Wang, Shaungru Tian, Yuxin Ou, Jinsong Yang
Epithelial-mesenchymal transition (EMT) has been shown to facilitate lung adenocarcinoma (LUAD) progress, and KLF13 inhibits tumor progression in various cancers. We intended to explore the mechanisms of KLF13 on EMT in LUAD. The biological functions (including cell viability, invasion, migration, and EMT) were checked using CCK-8, Transwell, and wound healing. The KLF13 and EMT markers levels were detected by immunohistochemistry. Interaction between KLF13 and TROAP promoter was probed by ChIP and dual luciferase reporter gene assay. The association between FBXW5 and KLF13 was verified by CoIP. RT-qPCR or Western blot was employed to check the expressions of FBXW5, KLF13, TROAP, and EMT markers. A xenograft tumor model was constructed to determine the growth of LUAD cells. KLF13 was lowly expressed in LUAD tissues and cells. KLF13 inhibited the invasion, migration, and EMT of LUAD cells. KLF13 suppressed TROAP transcription, and overexpression of TROAP reversed the inhibitory effect of KLF13 on the biological functions of LUAD cells. FBXW5 promoted KLF13 ubiquitinated degradation, and the knockdown of FBXW5 promoted KLF13 to inhibit LUAD cell progression. FBXW5 promoted KLF13 ubiquitinated degradation, which downregulated KLF13 to increase TROAP transcription, thereby facilitating EMT in LUAD.
{"title":"FBXW5 Promotes Epithelial-Mesenchymal Transition in Lung Adenocarcinoma Through the KLF13/TROAP Signaling Pathway.","authors":"Wen Wang, Shaungru Tian, Yuxin Ou, Jinsong Yang","doi":"10.1002/mc.70018","DOIUrl":"10.1002/mc.70018","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) has been shown to facilitate lung adenocarcinoma (LUAD) progress, and KLF13 inhibits tumor progression in various cancers. We intended to explore the mechanisms of KLF13 on EMT in LUAD. The biological functions (including cell viability, invasion, migration, and EMT) were checked using CCK-8, Transwell, and wound healing. The KLF13 and EMT markers levels were detected by immunohistochemistry. Interaction between KLF13 and TROAP promoter was probed by ChIP and dual luciferase reporter gene assay. The association between FBXW5 and KLF13 was verified by CoIP. RT-qPCR or Western blot was employed to check the expressions of FBXW5, KLF13, TROAP, and EMT markers. A xenograft tumor model was constructed to determine the growth of LUAD cells. KLF13 was lowly expressed in LUAD tissues and cells. KLF13 inhibited the invasion, migration, and EMT of LUAD cells. KLF13 suppressed TROAP transcription, and overexpression of TROAP reversed the inhibitory effect of KLF13 on the biological functions of LUAD cells. FBXW5 promoted KLF13 ubiquitinated degradation, and the knockdown of FBXW5 promoted KLF13 to inhibit LUAD cell progression. FBXW5 promoted KLF13 ubiquitinated degradation, which downregulated KLF13 to increase TROAP transcription, thereby facilitating EMT in LUAD.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1638-1649"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144691038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-07-13DOI: 10.1002/mc.70013
Apeng Yang, Mengying Ke, Lin Feng, Ye Yang, Junmin Chen, Zhiyong Zeng
Glycosylation abnormalities are critical in the progression of various cancers. However, their role in the onset and prognosis of multiple myeloma (MM) remains underexplored. This study aims to identify glycosyltransferase (GT)-related biomarkers and investigate their underlying mechanisms in MM. GT-related genes were extracted from the MMRF-CoMMpass and GSE57317 data sets. Potential biomarkers were identified using Cox regression and Lasso analyses. A glycosyltransferase-related prognostic model (GTPM) was developed by evaluating 113 machine learning algorithm combinations. The expression of B4GALT3, a key gene identified through this model, was analyzed in MM bone marrow samples using immunohistochemistry, quantitative PCR, and Western blot. Functional roles of B4GALT3 in MM cell behavior were assessed through knockdown experiments, and its mechanism of action was investigated. The GTPM stratified MM patients into high- and low-risk groups, with significantly better survival in the low-risk group (HR = 55.94, 95% CI = 40.48-77.31, p < 0.001). The model achieved AUC values of 0.98 and 0.99 for 1- and 3-year overall survival, outperforming existing gene signatures (including EMC92, UAMS70, and UAMS17). B4GALT3 expression was significantly elevated in advanced MM stages (p < 0.001) and correlated with poorer survival. Knockdown of B4GALT3 reduced MM cell proliferation, invasion, and increased apoptosis. Mechanistic analyses revealed that B4GALT3 modulates MM cell behavior via the Wnt/β-catenin/GRP78 pathway, primarily by regulating endoplasmic reticulum (ER) stress. This study developed a novel GTPM for predicting survival in MM and identified B4GALT3 as a key gene influencing disease progression. Experimental evidence highlights B4GALT3's role in modulating ER stress and Wnt/β-catenin pathways, positioning it as a potential prognostic biomarker and therapeutic target in MM.
糖基化异常在各种癌症的进展中是至关重要的。然而,它们在多发性骨髓瘤(MM)发病和预后中的作用仍未得到充分探讨。本研究旨在鉴定糖基转移酶(GT)相关的生物标志物,并探讨其在MM中的潜在机制。从MMRF-CoMMpass和GSE57317数据集中提取GT相关基因。使用Cox回归和Lasso分析确定潜在的生物标志物。通过评估113种机器学习算法组合,建立了糖基转移酶相关预后模型(GTPM)。采用免疫组织化学、定量PCR、Western blot等方法分析MM骨髓样本中B4GALT3基因的表达。通过敲低实验评估B4GALT3在MM细胞行为中的功能作用,并探讨其作用机制。GTPM将MM患者分为高危组和低危组,低危组患者生存率显著提高(HR = 55.94, 95% CI = 40.48-77.31, p
{"title":"B4GALT3 as a Key Glycosyltransferase Gene in Multiple Myeloma Progression: Insights From Bioinformatics, Machine Learning, and Experimental Validation.","authors":"Apeng Yang, Mengying Ke, Lin Feng, Ye Yang, Junmin Chen, Zhiyong Zeng","doi":"10.1002/mc.70013","DOIUrl":"10.1002/mc.70013","url":null,"abstract":"<p><p>Glycosylation abnormalities are critical in the progression of various cancers. However, their role in the onset and prognosis of multiple myeloma (MM) remains underexplored. This study aims to identify glycosyltransferase (GT)-related biomarkers and investigate their underlying mechanisms in MM. GT-related genes were extracted from the MMRF-CoMMpass and GSE57317 data sets. Potential biomarkers were identified using Cox regression and Lasso analyses. A glycosyltransferase-related prognostic model (GTPM) was developed by evaluating 113 machine learning algorithm combinations. The expression of B4GALT3, a key gene identified through this model, was analyzed in MM bone marrow samples using immunohistochemistry, quantitative PCR, and Western blot. Functional roles of B4GALT3 in MM cell behavior were assessed through knockdown experiments, and its mechanism of action was investigated. The GTPM stratified MM patients into high- and low-risk groups, with significantly better survival in the low-risk group (HR = 55.94, 95% CI = 40.48-77.31, p < 0.001). The model achieved AUC values of 0.98 and 0.99 for 1- and 3-year overall survival, outperforming existing gene signatures (including EMC92, UAMS70, and UAMS17). B4GALT3 expression was significantly elevated in advanced MM stages (p < 0.001) and correlated with poorer survival. Knockdown of B4GALT3 reduced MM cell proliferation, invasion, and increased apoptosis. Mechanistic analyses revealed that B4GALT3 modulates MM cell behavior via the Wnt/β-catenin/GRP78 pathway, primarily by regulating endoplasmic reticulum (ER) stress. This study developed a novel GTPM for predicting survival in MM and identified B4GALT3 as a key gene influencing disease progression. Experimental evidence highlights B4GALT3's role in modulating ER stress and Wnt/β-catenin pathways, positioning it as a potential prognostic biomarker and therapeutic target in MM.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1595-1608"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin lymphoma characterized by high rates of relapse and limited responsiveness to standard chemotherapy. Selinxor, a selective inhibitor of XPO1, exhibited antitumor activity in various cancers. However, clinical trial results revealed that selinexor monotherapy exhibited unsatisfactory efficacy in DLBCL. Our study indicated that XPO1 expression was increased in DLBCL and was correlated with poor outcomes of DLBCL patients. Comprehensive proteomic and transcriptomics analysis showed that selinexor has significant impacts on various biological processes in DLBCL. Furthermore, we explored combination strategies involving selinexor to enhance DLBCL treatment. We examined the combined effects of selinexor with decitabine (DAC) and lenalidomide (LEN), and found that selinexor exhibited a synergistic effect with DAC against DLBCL. Further analysis revealed that DAC exerted a synergistic antitumor effect with selinexor by reversing the DNMT1 expression and DNA methylation alterations induced by selinexor. Overall, these findings provided valuable insights into the global impact of selinexor on DLBCL. The combination therapy of selinexor and DAC emerges as a highly promising strategy for effectively treating DLBCL, holding great potential for clinical application.
{"title":"Combined Inhibition of XPO1 and DNA Methylation Exerts Synergistic Effects in DLBCL.","authors":"Qi Li, Xiaofeng Xue, Si Chen, Xinyun Zhang, Yuchen Zhang, Ruijing Hu, Xinyuan Zhang, Linlin Qin, Menglu Chen, Wenzhuo Zhuang, Bingzong Li","doi":"10.1002/mc.70014","DOIUrl":"10.1002/mc.70014","url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin lymphoma characterized by high rates of relapse and limited responsiveness to standard chemotherapy. Selinxor, a selective inhibitor of XPO1, exhibited antitumor activity in various cancers. However, clinical trial results revealed that selinexor monotherapy exhibited unsatisfactory efficacy in DLBCL. Our study indicated that XPO1 expression was increased in DLBCL and was correlated with poor outcomes of DLBCL patients. Comprehensive proteomic and transcriptomics analysis showed that selinexor has significant impacts on various biological processes in DLBCL. Furthermore, we explored combination strategies involving selinexor to enhance DLBCL treatment. We examined the combined effects of selinexor with decitabine (DAC) and lenalidomide (LEN), and found that selinexor exhibited a synergistic effect with DAC against DLBCL. Further analysis revealed that DAC exerted a synergistic antitumor effect with selinexor by reversing the DNMT1 expression and DNA methylation alterations induced by selinexor. Overall, these findings provided valuable insights into the global impact of selinexor on DLBCL. The combination therapy of selinexor and DAC emerges as a highly promising strategy for effectively treating DLBCL, holding great potential for clinical application.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1609-1619"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite notable advancements in therapeutic modalities, many patients with colorectal cancer (CRC) exhibit inadequate response to regorafenib, largely due to the propensity for drug resistance. Deeper insights into the mechanism of CRC sensitivity to regorafenib therapy are urgently required. The antiapoptotic protein B-cell lymphoma 2 (BCL-2) is closely associated with a variety of malignancies. Therefore, this study investigated the role of BCL-2 in promoting regorafenib resistance in colorectal cancer. Venetoclax, a BCL-2 antagonist, potentiates the antitumor activity of regorafenib. The combination of regorafenib and Venetoclax inhibited the proliferation and promoted apoptosis of CRC cells and human umbilical vein endothelial cells in vitro by inhibiting tumor angiogenesis, promoting normalization of tumor blood vessels, and promoting immune cell infiltration and the release of immune cytotoxic factors. Although Venetoclax is primarily used clinically to treat hematological tumors, it has not yet been used to treat CRC. These findings provide new insights for the clinical treatment of CRC.
{"title":"Venetoclax Synergizes With Regorafenib for Colorectal Cancer by Targeting BCL-2.","authors":"Lijun Zhu, Weicheng Wang, Yuwen Dong, Xiao Han, Wei Zhang, Zhonghua Zhang, Wenjie Guo, Yanhong Gu","doi":"10.1002/mc.70017","DOIUrl":"10.1002/mc.70017","url":null,"abstract":"<p><p>Despite notable advancements in therapeutic modalities, many patients with colorectal cancer (CRC) exhibit inadequate response to regorafenib, largely due to the propensity for drug resistance. Deeper insights into the mechanism of CRC sensitivity to regorafenib therapy are urgently required. The antiapoptotic protein B-cell lymphoma 2 (BCL-2) is closely associated with a variety of malignancies. Therefore, this study investigated the role of BCL-2 in promoting regorafenib resistance in colorectal cancer. Venetoclax, a BCL-2 antagonist, potentiates the antitumor activity of regorafenib. The combination of regorafenib and Venetoclax inhibited the proliferation and promoted apoptosis of CRC cells and human umbilical vein endothelial cells in vitro by inhibiting tumor angiogenesis, promoting normalization of tumor blood vessels, and promoting immune cell infiltration and the release of immune cytotoxic factors. Although Venetoclax is primarily used clinically to treat hematological tumors, it has not yet been used to treat CRC. These findings provide new insights for the clinical treatment of CRC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1683-1696"},"PeriodicalIF":3.2,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}