The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.
Diagnosis and treatment of thyroid disease are affected by the wide range of thyroid cancer subtypes and their varying degrees of aggressiveness. To better describe the indolent nature of thyroid neoplasms previously classified as noninvasive follicular variant of papillary thyroid carcinoma (NI-FVPTC), the Endocrine Pathology Society working group has recently coined the term "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP). The purpose of this nomenclature change is to avoid patients the distress of cancer diagnosis and to decrease the overtreatment of thyroid nodules with a RAS-LIKE molecular profile similar to follicular adenoma. Consequently, the reclassification has a significant impact on thyroid nodule clinical care as well as histopathologic and cytopathologic diagnosis. This paper will focus on a unique case of Bilateral NIFTP harboring concomitant HRAS and KRAS mutation; we will also review the background, molecular features, and clinical implications of NIFTP as well as the factors behind the nomenclature update. It also seemed helpful to emphasize the impact of NIFTP on clinical practice to avoid overtreating nodules that could be safely managed with lobectomy alone. Actually, despite the diagnosis is postsurgery, a comprehensive preoperative evaluation may raise a suspicion of NIFTP and suggest a more careful plan for treatment. Here, we present a unique case of bilateral NIFTP after total thyroidectomy; subsequent molecular analysis revealed that the patient's right nodule harbored an isolated p.(Q61K) HRAS mutation, while the left a p.(Q61K) KRAS mutation. To the best of our knowledge, this is the first case report of this nature. The existence of simultaneous mutations highlights the occurrence of intratumoral heterogeneity (ITH) also in the context of FVPTC, which requires comprehensive investigation. The available information shows that NIFTP, identified in accordance with stringent inclusion and exclusion criteria, exhibits a very latent clinical behavior even in the face of conservative lobectomy, lacking of radioactive iodine therapy. However, it cannot be regarded as a benign lesion because there is a small but significant incidence of adverse events, such as lymph nodes and distant metastases. Currently, NIFTP can only be suspected before surgery: several efforts could be explored to identify key molecular, cytological, and ultrasonographic traits that may be helpful in raising the possibility of NIFTP in the preoperative context. Additionally, our discovery of simultaneous mutations within the same lesion strengthens the evidence of ITH even in FVPTC. Although the extent and biological impact of this phenomenon in NIFTP are still debated, a deeper understanding is essential to ensure appropriate clinical management.
Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types. Thus, current review evaluates the anticancer potential of diosmetin and shed light on its mechanism of action such as cell cycle regulation, apoptosis via both intrinsic and extrinsic pathway, autophagy and tumour progression and metastasis. It also provides comprehensive analysis of different cancer targets and their role in breast, colon, hepatic, gliomas, leukemia, lung, prostate and skin cancer. Combination studies of diosmetin to improve drug sensitivity and reduce toxicity towards normal cells has been also discussed. Besides, in vitro studies, present review also discuss the anticancer potential of diosmetin on xenograft mice model. Different natural sources of diosmetin, limitations, pharmacokinetic analysis and toxicity study also summarized in current review. The emphasis on enhancing solubility and permeability for clinical utility has been thoroughly highlighted with particular attention given to the utilization of nano formulations to overcome existing barriers. At last, in-depth analysis of current challenges and a forward-looking perspective deliberated to address the existing gaps and position it as a promising lead compound for clinical applications in cancer treatment. This discussion is boosted by diosmetin's potential anticancer properties on different cancers, makes valuable candidates in the ongoing quest for effective therapeutic interventions against cancer.
To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.
Aurora kinase B (AURKB) is known to play a carcinogenic role in a variety of cancers, but its underlying mechanism in liver cancer is unknown. This study aimed to investigate the role of AURKB in hepatocellular carcinoma (HCC) and its underlying molecular mechanism. Bioinformatics analysis revealed that AURKB was significantly overexpressed in HCC tissues and cell lines, and its high expression was associated with a poorer prognosis in HCC patients. Furthermore, downregulation of AURKB inhibited HCC cell proliferation, migration, and invasion, induced apoptosis, and caused cell cycle arrest. Moreover, AURKB downregulation also inhibited lung metastasis of HCC. AURKB interacted with DExH-Box helicase 9 (DHX9) and targeted its expression in HCC cells. Rescue experiments further demonstrated that AURKB targeting DHX9 promoted HCC progression through the PI3K/AKT/mTOR pathway. Our results suggest that AURKB is significantly highly expressed in HCC and correlates with patient prognosis. Targeting DHX9 with AURKB promotes HCC progression via the PI3K/AKT/mTOR pathway.
Regorafenib is a second-line standard treatment for hepatocellular carcinoma (HCC). However, the efficacy of regorafenib is often limited due to drug resistance, individual differences among patients, and irrational drug use. Radiotherapy (RT) is an important method of localized HCC treatment, and combining RT with other therapies may exert a synergetic antitumor effect. Platelet-derived growth factor receptor-like (PDGFRL) is a tumor suppressor in various solid tumors. However, the function of PDGFRL in HCC is still unknown. In this study, we explored whether regorafenib and RT exert a synergetic effect on the treatment of HCC. The antitumor effect and mechanisms of the combination of regorafenib and RT were verified in a xenograft mouse model in vivo and in HCC cells in vitro. The combination treatment significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. PDGFRL, a potential target of regorafenib, was increased after cumulative treatment in HCC cells, and PDGFRL suppressed HCC cell proliferation and promoted apoptosis by inhibiting STAT3 pathway activation. Furthermore, the cumulative antitumor effect was dependent on the upregulated expression of PDGFRL and inhibition of STAT3 signaling pathway activation in HCC cells. This study increased the understanding of the molecular mechanism underlying the effect of regorafenib plus RT on HCC and provided a theoretical basis for the clinical practice of HCC.