首页 > 最新文献

Molecular Carcinogenesis最新文献

英文 中文
SYT7 as a Potential Prognostic Marker Promotes the Metastasis of Epithelial Ovarian Cancer Cells by Activating the STAT3 Pathway. 作为潜在预后标志物的 SYT7 通过激活 STAT3 通路促进上皮性卵巢癌细胞的转移
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-27 DOI: 10.1002/mc.23821
Yinguang Li, Fengping Shao, Ying Huang, Qian Yin, Jun Liu, Yunhe Zhao, Linjing Yuan

The study aimed to investigate the impact of synaptotagmin 7 (SYT7) on the metastasis of epithelial ovarian cancer (EOC) and its potential mechanisms. This was achieved through the analysis of SYT7 expression levels and clinical relevance in EOC using bioinformatics analysis from TCGA. Additionally, the study examined the influence of SYT7 on the migration and invasion of EOC cells, as well as explored its molecular mechanisms using in vitro EOC cell lines and in vivo mouse xenograft models. Our research revealed that human EOC tissues exhibit significantly elevated levels of SYT7 compared to normal ovarian tissues, and that SYT7 expression is inversely correlated with overall survival. Suppression of SYT7 effectively impeded the migratory and invasive capabilities of CAOV3 cells, whereas overexpression of SYT7 notably accelerated tumor progression in A2780 cells. Mechanistic investigations demonstrated that SYT7 upregulates p-STAT3 and MMP2 in EOC cells. Importantly, treatment with the STAT3 inhibitor niclosamide effectively counteracted the oncogenic effects of SYT7 in EOC. The inhibition of SYT7 was found to significantly reduce in vivo tumor metastasis in a nude mouse xenograft model. Our findings suggest that the upregulation of SYT7 in EOC is associated with a negative prognosis, as it enhances tumor migration and invasion by activating the STAT3 signaling pathway. Thus, SYT7 might be utilized as a EOC prognostic marker and treatment target.

该研究旨在探讨突触表位素7(SYT7)对上皮性卵巢癌(EOC)转移的影响及其潜在机制。为此,研究人员利用 TCGA 的生物信息学分析方法,分析了 SYT7 在 EOC 中的表达水平和临床相关性。此外,研究还考察了SYT7对EOC细胞迁移和侵袭的影响,并利用体外EOC细胞系和体内小鼠异种移植模型探索了其分子机制。我们的研究发现,与正常卵巢组织相比,人类EOC组织的SYT7水平明显升高,而且SYT7的表达与总生存率成反比。抑制SYT7能有效抑制CAOV3细胞的迁移和侵袭能力,而过表达SYT7则会明显加速A2780细胞的肿瘤进展。机理研究表明,SYT7 能上调 EOC 细胞中的 p-STAT3 和 MMP2。重要的是,STAT3抑制剂尼可刹米能有效抵消SYT7在EOC中的致癌作用。在裸鼠异种移植模型中,发现抑制SYT7能显著减少体内肿瘤转移。我们的研究结果表明,SYT7在EOC中的上调与不良预后有关,因为它通过激活STAT3信号通路来增强肿瘤的迁移和侵袭。因此,SYT7可作为EOC预后标志物和治疗靶点。
{"title":"SYT7 as a Potential Prognostic Marker Promotes the Metastasis of Epithelial Ovarian Cancer Cells by Activating the STAT3 Pathway.","authors":"Yinguang Li, Fengping Shao, Ying Huang, Qian Yin, Jun Liu, Yunhe Zhao, Linjing Yuan","doi":"10.1002/mc.23821","DOIUrl":"10.1002/mc.23821","url":null,"abstract":"<p><p>The study aimed to investigate the impact of synaptotagmin 7 (SYT7) on the metastasis of epithelial ovarian cancer (EOC) and its potential mechanisms. This was achieved through the analysis of SYT7 expression levels and clinical relevance in EOC using bioinformatics analysis from TCGA. Additionally, the study examined the influence of SYT7 on the migration and invasion of EOC cells, as well as explored its molecular mechanisms using in vitro EOC cell lines and in vivo mouse xenograft models. Our research revealed that human EOC tissues exhibit significantly elevated levels of SYT7 compared to normal ovarian tissues, and that SYT7 expression is inversely correlated with overall survival. Suppression of SYT7 effectively impeded the migratory and invasive capabilities of CAOV3 cells, whereas overexpression of SYT7 notably accelerated tumor progression in A2780 cells. Mechanistic investigations demonstrated that SYT7 upregulates p-STAT3 and MMP2 in EOC cells. Importantly, treatment with the STAT3 inhibitor niclosamide effectively counteracted the oncogenic effects of SYT7 in EOC. The inhibition of SYT7 was found to significantly reduce in vivo tumor metastasis in a nude mouse xenograft model. Our findings suggest that the upregulation of SYT7 in EOC is associated with a negative prognosis, as it enhances tumor migration and invasion by activating the STAT3 signaling pathway. Thus, SYT7 might be utilized as a EOC prognostic marker and treatment target.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2441-2455"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case report & review: Bilateral NIFTP harboring concomitant HRAS and KRAS mutation: Report of an unusual case and literature review. 病例报告与综述:同时携带 HRAS 和 KRAS 突变的双侧 NIFTP:罕见病例报告与文献综述。
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-04 DOI: 10.1002/mc.23813
Marianna Rita Brogna, Francesca Collina, Maria Grazia Chiofalo, Debora De Bartolo, Angela Montone, Maria Rosaria Schiano, Michele Del Sesto, Nubia Pizza, Gerardo Ferrara

Diagnosis and treatment of thyroid disease are affected by the wide range of thyroid cancer subtypes and their varying degrees of aggressiveness. To better describe the indolent nature of thyroid neoplasms previously classified as noninvasive follicular variant of papillary thyroid carcinoma (NI-FVPTC), the Endocrine Pathology Society working group has recently coined the term "noninvasive follicular thyroid neoplasm with papillary-like nuclear features" (NIFTP). The purpose of this nomenclature change is to avoid patients the distress of cancer diagnosis and to decrease the overtreatment of thyroid nodules with a RAS-LIKE molecular profile similar to follicular adenoma. Consequently, the reclassification has a significant impact on thyroid nodule clinical care as well as histopathologic and cytopathologic diagnosis. This paper will focus on a unique case of Bilateral NIFTP harboring concomitant HRAS and KRAS mutation; we will also review the background, molecular features, and clinical implications of NIFTP as well as the factors behind the nomenclature update. It also seemed helpful to emphasize the impact of NIFTP on clinical practice to avoid overtreating nodules that could be safely managed with lobectomy alone. Actually, despite the diagnosis is postsurgery, a comprehensive preoperative evaluation may raise a suspicion of NIFTP and suggest a more careful plan for treatment. Here, we present a unique case of bilateral NIFTP after total thyroidectomy; subsequent molecular analysis revealed that the patient's right nodule harbored an isolated p.(Q61K) HRAS mutation, while the left a p.(Q61K) KRAS mutation. To the best of our knowledge, this is the first case report of this nature. The existence of simultaneous mutations highlights the occurrence of intratumoral heterogeneity (ITH) also in the context of FVPTC, which requires comprehensive investigation. The available information shows that NIFTP, identified in accordance with stringent inclusion and exclusion criteria, exhibits a very latent clinical behavior even in the face of conservative lobectomy, lacking of radioactive iodine therapy. However, it cannot be regarded as a benign lesion because there is a small but significant incidence of adverse events, such as lymph nodes and distant metastases. Currently, NIFTP can only be suspected before surgery: several efforts could be explored to identify key molecular, cytological, and ultrasonographic traits that may be helpful in raising the possibility of NIFTP in the preoperative context. Additionally, our discovery of simultaneous mutations within the same lesion strengthens the evidence of ITH even in FVPTC. Although the extent and biological impact of this phenomenon in NIFTP are still debated, a deeper understanding is essential to ensure appropriate clinical management.

甲状腺癌亚型种类繁多,侵袭性程度各异,这影响了甲状腺疾病的诊断和治疗。为了更好地描述以前被归类为甲状腺乳头状癌非侵袭性滤泡变异型(NI-FVPTC)的甲状腺肿瘤的惰性,内分泌病理学协会工作组最近创造了 "具有乳头状核特征的非侵袭性滤泡甲状腺肿瘤"(NIFTP)一词。这一术语变化的目的是避免患者因被诊断为癌症而苦恼,并减少对具有类似滤泡腺瘤的 RAS-LIKE 分子特征的甲状腺结节的过度治疗。因此,重新分类对甲状腺结节的临床治疗以及组织病理学和细胞病理学诊断都有重大影响。本文将重点讨论一例独特的同时携带 HRAS 和 KRAS 突变的双侧 NIFTP;我们还将回顾 NIFTP 的背景、分子特征和临床意义,以及术语更新背后的因素。此外,强调 NIFTP 对临床实践的影响似乎也很有帮助,可避免过度治疗仅通过肺叶切除术就能安全处理的结节。事实上,尽管诊断是在手术后进行的,但全面的术前评估可能会引起对 NIFTP 的怀疑,并建议采取更谨慎的治疗方案。在此,我们介绍了一例独特的甲状腺全切除术后双侧 NIFTP 病例;随后的分子分析显示,患者右侧结节携带孤立的 p.(Q61K) HRAS 突变,而左侧结节携带 p.(Q61K) KRAS 突变。据我们所知,这是首例此类病例报告。同时存在突变突显了 FVPTC 也存在瘤内异质性 (ITH),需要进行全面调查。现有资料表明,根据严格的纳入和排除标准确定的 NIFTP,即使在保守的肺叶切除术和缺乏放射性碘治疗的情况下,也会表现出非常潜伏的临床表现。然而,由于淋巴结和远处转移等不良事件的发生率虽小但却很高,因此不能将其视为良性病变。目前,NIFTP 只能在手术前进行怀疑:可以通过多种努力来确定关键的分子、细胞学和超声特征,这些特征可能有助于在术前提高 NIFTP 的可能性。此外,我们在同一病灶中同时发现了突变,这也加强了 ITH 甚至在 FVPTC 中存在的证据。尽管对这种现象在 NIFTP 中的程度和生物学影响仍有争议,但深入了解这种现象对确保适当的临床管理至关重要。
{"title":"Case report & review: Bilateral NIFTP harboring concomitant HRAS and KRAS mutation: Report of an unusual case and literature review.","authors":"Marianna Rita Brogna, Francesca Collina, Maria Grazia Chiofalo, Debora De Bartolo, Angela Montone, Maria Rosaria Schiano, Michele Del Sesto, Nubia Pizza, Gerardo Ferrara","doi":"10.1002/mc.23813","DOIUrl":"10.1002/mc.23813","url":null,"abstract":"<p><p>Diagnosis and treatment of thyroid disease are affected by the wide range of thyroid cancer subtypes and their varying degrees of aggressiveness. To better describe the indolent nature of thyroid neoplasms previously classified as noninvasive follicular variant of papillary thyroid carcinoma (NI-FVPTC), the Endocrine Pathology Society working group has recently coined the term \"noninvasive follicular thyroid neoplasm with papillary-like nuclear features\" (NIFTP). The purpose of this nomenclature change is to avoid patients the distress of cancer diagnosis and to decrease the overtreatment of thyroid nodules with a RAS-LIKE molecular profile similar to follicular adenoma. Consequently, the reclassification has a significant impact on thyroid nodule clinical care as well as histopathologic and cytopathologic diagnosis. This paper will focus on a unique case of Bilateral NIFTP harboring concomitant HRAS and KRAS mutation; we will also review the background, molecular features, and clinical implications of NIFTP as well as the factors behind the nomenclature update. It also seemed helpful to emphasize the impact of NIFTP on clinical practice to avoid overtreating nodules that could be safely managed with lobectomy alone. Actually, despite the diagnosis is postsurgery, a comprehensive preoperative evaluation may raise a suspicion of NIFTP and suggest a more careful plan for treatment. Here, we present a unique case of bilateral NIFTP after total thyroidectomy; subsequent molecular analysis revealed that the patient's right nodule harbored an isolated p.(Q61K) HRAS mutation, while the left a p.(Q61K) KRAS mutation. To the best of our knowledge, this is the first case report of this nature. The existence of simultaneous mutations highlights the occurrence of intratumoral heterogeneity (ITH) also in the context of FVPTC, which requires comprehensive investigation. The available information shows that NIFTP, identified in accordance with stringent inclusion and exclusion criteria, exhibits a very latent clinical behavior even in the face of conservative lobectomy, lacking of radioactive iodine therapy. However, it cannot be regarded as a benign lesion because there is a small but significant incidence of adverse events, such as lymph nodes and distant metastases. Currently, NIFTP can only be suspected before surgery: several efforts could be explored to identify key molecular, cytological, and ultrasonographic traits that may be helpful in raising the possibility of NIFTP in the preoperative context. Additionally, our discovery of simultaneous mutations within the same lesion strengthens the evidence of ITH even in FVPTC. Although the extent and biological impact of this phenomenon in NIFTP are still debated, a deeper understanding is essential to ensure appropriate clinical management.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2273-2281"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer. ADAR1 通过 FAK/AKT 通路促进结直肠癌的侵袭和迁移并抑制铁凋亡
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-06 DOI: 10.1002/mc.23818
Dongsheng He, Chao Niu, Rilan Bai, Naifei Chen, Jiuwei Cui

The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.

人们对作用于RNA1的腺苷脱氨酶(ADAR1)在结直肠癌(CRC)中的作用知之甚少。本研究探讨了ADAR1及其同工型的作用和潜在分子机制,探索了ADAR1表达与免疫微环境和抗癌药物敏感性之间的相关性,并研究了利用ADAR1表达和临床参数判断CRC患者预后的潜在协同作用。CRC样本显示ADAR1明显上调,ADAR1高表达与预后不良相关。沉默ADAR1可抑制CRC细胞的增殖、侵袭和迁移,并通过抑制FAK/AKT活化诱导铁变态反应。ADAR1-p110和ADAR1-p150都被证明能调节FAK/AKT通路,其中ADAR1-p110的作用尤为重要。在评估 CRC 患者的预后时,将 ADAR1 表达与临床参数相结合会产生很大的协同效应。沉默 ADAR1 能显著抑制 CRC 的体内肿瘤发生。此外,ADAR1的表达与肿瘤突变负荷(TMB)和微卫星状态呈正相关(p
{"title":"ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer.","authors":"Dongsheng He, Chao Niu, Rilan Bai, Naifei Chen, Jiuwei Cui","doi":"10.1002/mc.23818","DOIUrl":"10.1002/mc.23818","url":null,"abstract":"<p><p>The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2401-2413"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRT1 promotes doxorubicin-induced breast cancer drug resistance and tumor angiogenesis via regulating GSH-mediated redox homeostasis. SIRT1 通过调节 GSH 介导的氧化还原平衡,促进多柔比星诱导的乳腺癌耐药性和肿瘤血管生成。
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1002/mc.23809
Shashikanta Sahoo, Sunita Kumari, Sriravali Pulipaka, Yogesh Chandra, Srigiridhar Kotamraju

Sirtuin 1 (SIRT1), a member of histone deacetylase III family, plays a pivotal role in mediating chemoresistance in several cancers, including breast cancer. However, the molecular mechanism by which the deregulated SIRT1 promotes doxorubicin (Dox) resistance is still elusive. Here, we showed that the cell proliferation rates and invasive properties of MDA-MB-231 breast cancer cells were increased from low- to high-Dox-resistant cells. In agreement, severe combined immunodeficiency disease (SCID) mice bearing labeled MDA-MB-231high Dox-Res cells showed significantly higher tumor growth, angiogenesis, and metastatic ability than parental MDA-MB-231 cells. Interestingly, the levels of SIRT1 and glutathione (GSH) were positively correlated with the degree of Dox-resistance. Dox-induced SIRT1 promoted NRF2 nuclear translocation with an accompanying increase in the antioxidant response element promotor activity and GSH levels. In contrast, inhibition of SIRT1 by EX527 greatly reversed these events. More so, Dox-resistance-induced pro-proliferative, proangiogenic, and invasive effects were obviated with depletion of either SIRT1 or GSH. Together, Dox-induced SIRT1 promotes dysregulation of redox homeostasis leading to breast cancer chemoresistance, tumor aggressiveness, angiogenesis, and metastasis.

Sirtuin 1(SIRT1)是组蛋白去乙酰化酶 III 家族的成员,在多种癌症(包括乳腺癌)的化疗耐药性中起着关键作用。然而,SIRT1 的失调促进多柔比星(Dox)耐药性的分子机制仍未确定。在这里,我们发现从低Dox耐药细胞到高Dox耐药细胞,MDA-MB-231乳腺癌细胞的增殖率和侵袭性都有所增加。与此相一致的是,携带标记了高Dox-Res细胞的MDA-MB-231重症联合免疫缺陷病(SCID)小鼠的肿瘤生长、血管生成和转移能力明显高于亲代MDA-MB-231细胞。有趣的是,SIRT1 和谷胱甘肽(GSH)的水平与 Dox 抗性程度呈正相关。Dox诱导的SIRT1促进了NRF2的核转位,并伴随着抗氧化反应元件启动子活性和GSH水平的增加。与此相反,EX527 对 SIRT1 的抑制大大逆转了这些事件。此外,通过消耗 SIRT1 或 GSH,还可消除 Dox 抗性诱导的促增殖、促血管生成和侵袭效应。总之,Dox 诱导的 SIRT1 促进了氧化还原平衡失调,从而导致乳腺癌化疗耐药性、肿瘤侵袭性、血管生成和转移。
{"title":"SIRT1 promotes doxorubicin-induced breast cancer drug resistance and tumor angiogenesis via regulating GSH-mediated redox homeostasis.","authors":"Shashikanta Sahoo, Sunita Kumari, Sriravali Pulipaka, Yogesh Chandra, Srigiridhar Kotamraju","doi":"10.1002/mc.23809","DOIUrl":"10.1002/mc.23809","url":null,"abstract":"<p><p>Sirtuin 1 (SIRT1), a member of histone deacetylase III family, plays a pivotal role in mediating chemoresistance in several cancers, including breast cancer. However, the molecular mechanism by which the deregulated SIRT1 promotes doxorubicin (Dox) resistance is still elusive. Here, we showed that the cell proliferation rates and invasive properties of MDA-MB-231 breast cancer cells were increased from low- to high-Dox-resistant cells. In agreement, severe combined immunodeficiency disease (SCID) mice bearing labeled MDA-MB-231<sup>high Dox-Res</sup> cells showed significantly higher tumor growth, angiogenesis, and metastatic ability than parental MDA-MB-231 cells. Interestingly, the levels of SIRT1 and glutathione (GSH) were positively correlated with the degree of Dox-resistance. Dox-induced SIRT1 promoted NRF2 nuclear translocation with an accompanying increase in the antioxidant response element promotor activity and GSH levels. In contrast, inhibition of SIRT1 by EX527 greatly reversed these events. More so, Dox-resistance-induced pro-proliferative, proangiogenic, and invasive effects were obviated with depletion of either SIRT1 or GSH. Together, Dox-induced SIRT1 promotes dysregulation of redox homeostasis leading to breast cancer chemoresistance, tumor aggressiveness, angiogenesis, and metastasis.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2291-2304"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients. 振荡性缺氧诱导的基因表达可预测人类乳腺癌患者的低存活率。
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-16 DOI: 10.1002/mc.23810
Yasir Suhail, Yamin Liu, Wenqiang Du, Junaid Afzal, Xihua Qiu, Amina Atiq, Paola Vera-Licona, Eran Agmon, Kshitiz

Hypoxia is one of the key factors in the tumor microenvironment regulating nearly all steps in the metastatic cascade in many cancers, including in breast cancer. The hypoxic regions can however be dynamic with the availability of oxygen fluctuating or oscillating. The canonical response to hypoxia is relayed by transcription factor Hypoxia-Inducible Factor 1 (HIF-1), which is stabilized in hypoxia and acts as the master regulator of a large number of downstream genes. However, HIF-1 transcriptional activity can also fluctuate either due to unstable hypoxia, or by lactate mediated noncanonical degradation of HIF-1. Our understanding of how oscillatory hypoxia or HIF-1 activity specifically influences cancer malignancy is very limited. Here, using MDA-MB-231 cells as a model of triple negative breast cancer characterized by severe hypoxia, we measured the gene expression changes induced specifically by oscillatory hypoxia. We found that oscillatory hypoxia can specifically regulate gene expression differently, and at times opposite to stable hypoxia. Using the Cancer Genome Atlas RNAseq data of human cancer samples, we show that the oscillatory specific gene expression signature in MDA-MB-231 is enriched in most human cancers, and prognosticates low survival in breast cancer patients. In particular, we found that oscillatory hypoxia, unlike stable hypoxia, induces unfolded protein folding response in cells resulting in gene expression predicting reduced survival.

缺氧是肿瘤微环境中的关键因素之一,几乎调节着许多癌症(包括乳腺癌)转移级联的所有步骤。然而,缺氧区域可能是动态的,氧气的供应会波动或摆动。对缺氧的典型反应由转录因子缺氧诱导因子 1(HIF-1)传递,该因子在缺氧环境中稳定,是大量下游基因的主调节因子。然而,HIF-1 的转录活性也会因不稳定的缺氧或乳酸介导的 HIF-1 非规范降解而波动。我们对振荡性缺氧或 HIF-1 活性如何具体影响癌症恶性程度的了解非常有限。在这里,我们使用 MDA-MB-231 细胞作为以严重缺氧为特征的三阴性乳腺癌模型,测量了振荡性缺氧特别诱导的基因表达变化。我们发现,振荡性缺氧能以不同的方式特异性调控基因表达,有时甚至与稳定型缺氧相反。利用癌症基因组图谱(Cancer Genome Atlas)中人类癌症样本的 RNAseq 数据,我们发现 MDA-MB-231 中的振荡特异性基因表达特征在大多数人类癌症中都有富集,并预示着乳腺癌患者的低生存率。我们特别发现,与稳定低氧不同,振荡低氧会诱导细胞中的未折叠蛋白折叠反应,导致预测生存率降低的基因表达。
{"title":"Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients.","authors":"Yasir Suhail, Yamin Liu, Wenqiang Du, Junaid Afzal, Xihua Qiu, Amina Atiq, Paola Vera-Licona, Eran Agmon, Kshitiz","doi":"10.1002/mc.23810","DOIUrl":"10.1002/mc.23810","url":null,"abstract":"<p><p>Hypoxia is one of the key factors in the tumor microenvironment regulating nearly all steps in the metastatic cascade in many cancers, including in breast cancer. The hypoxic regions can however be dynamic with the availability of oxygen fluctuating or oscillating. The canonical response to hypoxia is relayed by transcription factor Hypoxia-Inducible Factor 1 (HIF-1), which is stabilized in hypoxia and acts as the master regulator of a large number of downstream genes. However, HIF-1 transcriptional activity can also fluctuate either due to unstable hypoxia, or by lactate mediated noncanonical degradation of HIF-1. Our understanding of how oscillatory hypoxia or HIF-1 activity specifically influences cancer malignancy is very limited. Here, using MDA-MB-231 cells as a model of triple negative breast cancer characterized by severe hypoxia, we measured the gene expression changes induced specifically by oscillatory hypoxia. We found that oscillatory hypoxia can specifically regulate gene expression differently, and at times opposite to stable hypoxia. Using the Cancer Genome Atlas RNAseq data of human cancer samples, we show that the oscillatory specific gene expression signature in MDA-MB-231 is enriched in most human cancers, and prognosticates low survival in breast cancer patients. In particular, we found that oscillatory hypoxia, unlike stable hypoxia, induces unfolded protein folding response in cells resulting in gene expression predicting reduced survival.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2305-2315"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? 抑制 XPR1 依赖性磷酸盐外流会诱发线粒体功能障碍:肝细胞癌的潜在分子靶向疗法?
IF 4.3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1002/mc.23812
Zi-Qiang Liao, Yang-Feng Lv, Mei-Diao Kang, Yu-Long Ji, Yue Liu, Le-Ran Wang, Jia-Liang Tang, Zhi-Qiang Deng, Yun Yi, Qun Tang

Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.

各向异性和多向性逆转录病毒受体 1(XPR1)是哺乳动物中唯一已知的与π外流相关的转运体,其对肿瘤进展的影响正逐渐被揭示。然而,XPR1 在肝细胞癌(HCC)中的作用尚不清楚。研究人员在 HCC 患者中进行了磷酸盐转运体 XPR1 的生物信息学筛选。利用实时定量 PCR、Western 印迹分析和免疫组化检测分析了 XPR1 在临床标本中的表达。通过 shRNA 转染敲除磷酸盐输出因子 XPR1,研究了 Huh7 和 HLF 细胞系的细胞表型和磷酸盐相关的细胞毒性。通过体内试验研究了沉默 XPR1 后 HCC 细胞异种移植到免疫缺陷小鼠体内的致瘤性。与癌旁组织相比,XPR1在HCC组织中的表达明显上调。XPR1 的高表达与患者的生存率明显相关。沉默 XPR1 会导致 HCC 细胞的增殖、迁移、侵袭和集落形成减少。从机理上讲,敲除 XPR1 会导致细胞内磷酸盐水平升高;线粒体功能障碍,表现为线粒体膜电位和三磷酸腺苷水平降低;活性氧水平升高;线粒体形态异常;以及线粒体融合、裂变和内膜关键基因下调。这最终导致线粒体依赖性凋亡。这些发现揭示了 XPR1 在 HCC 进展中的预后价值,更重要的是,这些发现表明 XPR1 可能是一个潜在的治疗靶点。
{"title":"Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma?","authors":"Zi-Qiang Liao, Yang-Feng Lv, Mei-Diao Kang, Yu-Long Ji, Yue Liu, Le-Ran Wang, Jia-Liang Tang, Zhi-Qiang Deng, Yun Yi, Qun Tang","doi":"10.1002/mc.23812","DOIUrl":"10.1002/mc.23812","url":null,"abstract":"<p><p>Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2332-2345"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. 在EML4-ALK L1196M和EML4-ALK G1202R突变非小细胞肺癌细胞中,SIRT1沉默通过AMPK/mTOR/S6K信号通路调节自噬,从而促进EMT和克唑替尼耐药。
IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI: 10.1002/mc.23799
Qian Yang, Keyan Sun, Tianyu Gao, Ying Gao, Yuying Yang, Zengqiang Li, Daiying Zuo

Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.

大多数EML4-ALK重排非小细胞肺癌(NSCLC)患者在接受治疗后不可避免地会产生获得性耐药性。耐药的主要机制是 ALK 激酶域的获得性二次突变。L1196M和G1202R是典型的突变位点。我们迫切需要了解耐药的潜在分子机制,以研究突变耐药NSCLC细胞的治疗靶点。沉默信息调节因子sirtuin1(SIRT1)能调节细胞的正常能量代谢,但其在癌症中的作用尚不清楚。在我们的报告中发现,与EML4-ALK NSCLC细胞相比,EML4-ALK G1202R和EML4-ALK L1196M突变耐药细胞中的SIRT1被下调。SIRT1的高表达与肺癌患者更长的生存时间有关。激活 SIRT1 能诱导自噬,抑制突变细胞的侵袭和迁移。进一步的实验表明,SIRT1 的激活通过上调 AMPK 的表达来抑制 mTOR 和 S6K 的磷酸化水平,从而激活自噬。SIRT1 能显著增强突变细胞对克唑替尼的敏感性,提高其促进突变细胞凋亡的能力,并抑制细胞增殖。总之,SIRT1是EML4-ALK L1196M和G1202R突变细胞耐药性的关键调控因子。SIRT1可能是EML4-ALK耐药NSCLC的一个新的治疗靶点。
{"title":"SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells.","authors":"Qian Yang, Keyan Sun, Tianyu Gao, Ying Gao, Yuying Yang, Zengqiang Li, Daiying Zuo","doi":"10.1002/mc.23799","DOIUrl":"10.1002/mc.23799","url":null,"abstract":"<p><p>Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2133-2144"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The anthraquinone derivative KA-4s reduces energy metabolism and enhances the sensitivity of ovarian cancer cells to cisplatin. 蒽醌衍生物 KA-4s 可降低能量代谢,增强卵巢癌细胞对顺铂的敏感性。
IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-02 DOI: 10.1002/mc.23795
Yingdan Zhao, Xinxiao Li, Shumei Xu, Yingying Yang, Qiangjian Chen, Junying Li, Wei Tian, Qiuping Zhang, Huaxin Hou, Danrong Li

Ovarian cancer is the leading cause of death from female gynecological cancers. Cisplatin (DDP) is a first-line drug for ovarian cancer treatment. Due to DDP resistance, there is an urgent need for novel therapeutic drugs with improved antitumor activity. AMPK-mediated metabolic regulatory pathways are related to tumor drug resistance. Our study aimed to determine the relationship between reversing DDP resistance with the anthraquinone derivative KA-4s and regulating AMPK energy metabolism in ovarian cancer. The results showed that KA-4s inhibited the proliferation of ovarian cancer cells. The combination of KA-4s with DDP effectively promoted drug-resistant ovarian cancer cell apoptosis and inhibited cell migration and invasion. Moreover, KA-4s decreased the intracellular ATP level and increased the calcium ion level, leading to AMPK phosphorylation. Further studies suggested that the AMPK signaling pathway may be involved in the mechanism through which KA-4s reduce drug resistance. KA-4s inhibited mitochondrial respiration and glycolysis; downregulated the glucose metabolism-related proteins GLUT1 and GLUT4; the lipid metabolism-related proteins SREBP1 and SCD1; and the drug resistance-related proteins P-gp, MRP1, and LRP. The inhibitory effect of KA-4s on GLUT1 was confirmed by the application of the GLUT1 inhibitor BAY-876. KA-4s combined with DDP significantly increased the expression of p-AMPK and reduced the expression of P-gp. In a xenograft model of ovarian cancer, treatment with KA-4s combined with DDP reduced energy metabolism and drug resistance, inducing tumor apoptosis. Consequently, KA-4s might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of treatment for ovarian cancer.

卵巢癌是导致女性妇科癌症死亡的主要原因。顺铂(DDP)是治疗卵巢癌的一线药物。由于存在 DDP 耐药性,因此迫切需要抗肿瘤活性更强的新型治疗药物。AMPK 介导的代谢调节途径与肿瘤耐药性有关。我们的研究旨在确定蒽醌衍生物KA-4s逆转卵巢癌DDP耐药性与调节AMPK能量代谢之间的关系。结果显示,KA-4s能抑制卵巢癌细胞的增殖。KA-4s与DDP联用可有效促进耐药卵巢癌细胞凋亡,抑制细胞迁移和侵袭。此外,KA-4s 还能降低细胞内 ATP 水平,提高钙离子水平,从而导致 AMPK 磷酸化。进一步的研究表明,AMPK 信号通路可能参与了 KA-4s 降低耐药性的机制。KA-4s 可抑制线粒体呼吸和糖酵解;下调葡萄糖代谢相关蛋白 GLUT1 和 GLUT4;脂质代谢相关蛋白 SREBP1 和 SCD1;以及耐药性相关蛋白 P-gp、MRP1 和 LRP。应用 GLUT1 抑制剂 BAY-876 证实了 KA-4s 对 GLUT1 的抑制作用。KA-4s 与 DDP 联用可显著增加 p-AMPK 的表达,降低 P-gp 的表达。在卵巢癌异种移植模型中,KA-4s 与 DDP 联合治疗可降低能量代谢和耐药性,诱导肿瘤凋亡。因此,KA-4s 可被评估为一种提高卵巢癌化疗疗效的新药。
{"title":"The anthraquinone derivative KA-4s reduces energy metabolism and enhances the sensitivity of ovarian cancer cells to cisplatin.","authors":"Yingdan Zhao, Xinxiao Li, Shumei Xu, Yingying Yang, Qiangjian Chen, Junying Li, Wei Tian, Qiuping Zhang, Huaxin Hou, Danrong Li","doi":"10.1002/mc.23795","DOIUrl":"10.1002/mc.23795","url":null,"abstract":"<p><p>Ovarian cancer is the leading cause of death from female gynecological cancers. Cisplatin (DDP) is a first-line drug for ovarian cancer treatment. Due to DDP resistance, there is an urgent need for novel therapeutic drugs with improved antitumor activity. AMPK-mediated metabolic regulatory pathways are related to tumor drug resistance. Our study aimed to determine the relationship between reversing DDP resistance with the anthraquinone derivative KA-4s and regulating AMPK energy metabolism in ovarian cancer. The results showed that KA-4s inhibited the proliferation of ovarian cancer cells. The combination of KA-4s with DDP effectively promoted drug-resistant ovarian cancer cell apoptosis and inhibited cell migration and invasion. Moreover, KA-4s decreased the intracellular ATP level and increased the calcium ion level, leading to AMPK phosphorylation. Further studies suggested that the AMPK signaling pathway may be involved in the mechanism through which KA-4s reduce drug resistance. KA-4s inhibited mitochondrial respiration and glycolysis; downregulated the glucose metabolism-related proteins GLUT1 and GLUT4; the lipid metabolism-related proteins SREBP1 and SCD1; and the drug resistance-related proteins P-gp, MRP1, and LRP. The inhibitory effect of KA-4s on GLUT1 was confirmed by the application of the GLUT1 inhibitor BAY-876. KA-4s combined with DDP significantly increased the expression of p-AMPK and reduced the expression of P-gp. In a xenograft model of ovarian cancer, treatment with KA-4s combined with DDP reduced energy metabolism and drug resistance, inducing tumor apoptosis. Consequently, KA-4s might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of treatment for ovarian cancer.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2090-2102"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p110CUX1 promotes acute myeloid leukemia progression via regulating pyridoxal phosphatase expression and activating PI3K/AKT/mTOR signaling pathway. p110CUX1 通过调节吡哆醛磷酸酶的表达和激活 PI3K/AKT/mTOR 信号通路,促进急性髓性白血病的进展。
IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-12 DOI: 10.1002/mc.23793
Hongyan Zhang, Liang Zhong, Meng Wang, Peng Wan, Xuan Chu, Shuyu Chen, Ziwei Zhou, Xin Shao, Beizhong Liu

As an evolutionarily conserved transcription factor, Cut-like homeobox 1 (CUX1) plays crucial roles in embryonic and nervous system development, cell differentiation, and DNA damage repair. One of its major isoforms, p110CUX1, exhibits stable DNA binding capabilities and contributes to the regulation of cell cycle progression, proliferation, migration, and invasion. While p110CUX1 has been implicated in the progression of various malignant tumors, its involvement in acute myeloid leukemia (AML) remains uncertain. This study aims to elucidate the role of p110CUX1 in AML. Our findings reveal heightened expression levels of both p110CUX1 and pyridoxal phosphatase (PDXP) in AML cell lines. Overexpression of p110CUX1 promotes AML cell proliferation while inhibiting apoptosis and differentiation, whereas knockdown of PDXP yields contrasting effects. Mechanistically, p110CUX1 appears to facilitate AML development by upregulating PDXP expression and activating the PI3K/AKT/mTOR signaling pathway. Animal experimental corroborate the pro-AML effect of p110CUX1. These results provide experimental evidence supporting the involvement of the p110CUX1-PDXP-PI3K/AKT/mTOR axis in AML progression. Hence, targeting p110CUX1 may hold promise as a therapeutic strategy for AML.

作为一种进化保守的转录因子,类切割同源染色体 1(CUT-like homeobox 1,CUX1)在胚胎和神经系统发育、细胞分化以及 DNA 损伤修复中发挥着至关重要的作用。其主要异构体之一 p110CUX1 具有稳定的 DNA 结合能力,有助于调节细胞周期的进展、增殖、迁移和侵袭。虽然 p110CUX1 与各种恶性肿瘤的进展有牵连,但它在急性髓性白血病(AML)中的参与情况仍不确定。本研究旨在阐明 p110CUX1 在急性髓性白血病中的作用。我们的研究结果表明,p110CUX1 和吡哆醛磷酸酶(PDXP)在急性髓性白血病细胞系中的表达水平都有所提高。过表达 p110CUX1 会促进 AML 细胞增殖,同时抑制细胞凋亡和分化,而敲除 PDXP 则会产生相反的效果。从机理上讲,p110CUX1 似乎通过上调 PDXP 的表达和激活 PI3K/AKT/mTOR 信号通路来促进急性髓细胞性白血病的发展。动物实验证实了 p110CUX1 对急性髓细胞性白血病的促进作用。这些结果为p110CUX1-PDXP-PI3K/AKT/mTOR轴参与AML进展提供了实验证据。因此,以 p110CUX1 为靶点可能有望成为治疗急性髓细胞性白血病的一种策略。
{"title":"p110CUX1 promotes acute myeloid leukemia progression via regulating pyridoxal phosphatase expression and activating PI3K/AKT/mTOR signaling pathway.","authors":"Hongyan Zhang, Liang Zhong, Meng Wang, Peng Wan, Xuan Chu, Shuyu Chen, Ziwei Zhou, Xin Shao, Beizhong Liu","doi":"10.1002/mc.23793","DOIUrl":"10.1002/mc.23793","url":null,"abstract":"<p><p>As an evolutionarily conserved transcription factor, Cut-like homeobox 1 (CUX1) plays crucial roles in embryonic and nervous system development, cell differentiation, and DNA damage repair. One of its major isoforms, p110CUX1, exhibits stable DNA binding capabilities and contributes to the regulation of cell cycle progression, proliferation, migration, and invasion. While p110CUX1 has been implicated in the progression of various malignant tumors, its involvement in acute myeloid leukemia (AML) remains uncertain. This study aims to elucidate the role of p110CUX1 in AML. Our findings reveal heightened expression levels of both p110CUX1 and pyridoxal phosphatase (PDXP) in AML cell lines. Overexpression of p110CUX1 promotes AML cell proliferation while inhibiting apoptosis and differentiation, whereas knockdown of PDXP yields contrasting effects. Mechanistically, p110CUX1 appears to facilitate AML development by upregulating PDXP expression and activating the PI3K/AKT/mTOR signaling pathway. Animal experimental corroborate the pro-AML effect of p110CUX1. These results provide experimental evidence supporting the involvement of the p110CUX1-PDXP-PI3K/AKT/mTOR axis in AML progression. Hence, targeting p110CUX1 may hold promise as a therapeutic strategy for AML.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2063-2077"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic rescue of temperature-sensitive p53 mutants by hypothermia and arsenic trioxide. 低体温和三氧化二砷对温度敏感的 p53 突变体的协同拯救。
IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-08 DOI: 10.1002/mc.23804
Junhao Lu, Lihong Chen, Zainab Fatima, Jeffrey Huang, Jiandong Chen

The p53 tumor suppressor is inactivated by mutations in about 50% of tumors. Rescuing the transcriptional function of mutant p53 has potential therapeutic benefits. Approximately 15% of p53 mutants are temperature sensitive (TS) and regain maximal activity at 32°C. Proof of concept study showed that induction of 32°C hypothermia in mice restored TS mutant p53 activity and inhibited tumor growth. However, 32°C is the lower limit of therapeutic hypothermia procedures for humans. Higher temperatures are preferable but result in suboptimal TS p53 activation. Recently, arsenic trioxide (ATO) was shown to rescue the conformation of p53 structural mutants by stabilizing the DNA binding domain. We examined the responses of 17 frequently observed p53 TS mutants to functional rescue by temperature shift and ATO. The results showed that ATO only rescued mild p53 TS mutants with high basal activity at 37°C. Mild TS mutants showed a common feature of regaining significant activity at the semi-permissive temperature of 35°C and could be further stimulated by ATO at 35°C. TS p53 rescue by ATO was antagonized by the cellular redox mechanism and was rapidly reversible. Inhibition of glutathione (GSH) biosynthesis enhanced ATO rescue efficiency and sustained p53 activity after ATO washout. The results suggest that mild TS p53 mutants are uniquely responsive to functional rescue by ATO due to small thermostability deficits and inherent potential to regain active conformation. Combining mild hypothermia and ATO may provide an effective and safe procedure for targeting tumors with p53 TS mutations.

在约 50% 的肿瘤中,p53 肿瘤抑制因子因突变而失活。恢复突变 p53 的转录功能具有潜在的治疗效果。大约 15%的 p53 突变体对温度敏感(TS),并在 32°C 时恢复最大活性。概念验证研究表明,对小鼠进行 32°C 低温诱导可恢复 TS 突变体 p53 的活性并抑制肿瘤生长。然而,32°C 是人类治疗性低温程序的下限。温度越高越好,但会导致 TS p53 激活效果不理想。最近,三氧化二砷(ATO)被证明能通过稳定 DNA 结合域来挽救 p53 结构突变体的构象。我们研究了 17 个经常观察到的 p53 TS 突变体对温度变化和 ATO 的功能拯救反应。结果表明,ATO只能拯救在37°C时具有高基础活性的轻度p53 TS突变体。轻度 TS 突变体的共同特点是在 35°C 的半耐受温度下恢复显著的活性,并能在 35°C 的温度下受到 ATO 的进一步刺激。细胞氧化还原机制拮抗了 ATO 对 TS p53 的拯救作用,而且这种作用是快速可逆的。抑制谷胱甘肽(GSH)的生物合成可提高 ATO 的解救效率,并在 ATO 清除后维持 p53 的活性。研究结果表明,轻度 TS p53 突变体对 ATO 的功能性拯救具有独特的响应性,这是因为它们具有较小的热稳定性缺陷和恢复活性构象的内在潜力。结合轻度低温和 ATO 可为针对 p53 TS 突变的肿瘤提供一种有效而安全的方法。
{"title":"Synergistic rescue of temperature-sensitive p53 mutants by hypothermia and arsenic trioxide.","authors":"Junhao Lu, Lihong Chen, Zainab Fatima, Jeffrey Huang, Jiandong Chen","doi":"10.1002/mc.23804","DOIUrl":"10.1002/mc.23804","url":null,"abstract":"<p><p>The p53 tumor suppressor is inactivated by mutations in about 50% of tumors. Rescuing the transcriptional function of mutant p53 has potential therapeutic benefits. Approximately 15% of p53 mutants are temperature sensitive (TS) and regain maximal activity at 32°C. Proof of concept study showed that induction of 32°C hypothermia in mice restored TS mutant p53 activity and inhibited tumor growth. However, 32°C is the lower limit of therapeutic hypothermia procedures for humans. Higher temperatures are preferable but result in suboptimal TS p53 activation. Recently, arsenic trioxide (ATO) was shown to rescue the conformation of p53 structural mutants by stabilizing the DNA binding domain. We examined the responses of 17 frequently observed p53 TS mutants to functional rescue by temperature shift and ATO. The results showed that ATO only rescued mild p53 TS mutants with high basal activity at 37°C. Mild TS mutants showed a common feature of regaining significant activity at the semi-permissive temperature of 35°C and could be further stimulated by ATO at 35°C. TS p53 rescue by ATO was antagonized by the cellular redox mechanism and was rapidly reversible. Inhibition of glutathione (GSH) biosynthesis enhanced ATO rescue efficiency and sustained p53 activity after ATO washout. The results suggest that mild TS p53 mutants are uniquely responsive to functional rescue by ATO due to small thermostability deficits and inherent potential to regain active conformation. Combining mild hypothermia and ATO may provide an effective and safe procedure for targeting tumors with p53 TS mutations.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2205-2217"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Carcinogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1