Pub Date : 2024-11-06Epub Date: 2024-09-17DOI: 10.1016/j.ymthe.2024.09.018
Cristina Grange, Elli Papadimitriou, Veronica Dimuccio, Cecilia Pastorino, Jordi Molina, Ryan O'Kelly, Laura J Niedernhofer, Paul D Robbins, Giovanni Camussi, Benedetta Bussolati
{"title":"Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model.","authors":"Cristina Grange, Elli Papadimitriou, Veronica Dimuccio, Cecilia Pastorino, Jordi Molina, Ryan O'Kelly, Laura J Niedernhofer, Paul D Robbins, Giovanni Camussi, Benedetta Bussolati","doi":"10.1016/j.ymthe.2024.09.018","DOIUrl":"10.1016/j.ymthe.2024.09.018","url":null,"abstract":"","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4158-4159"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-09-07DOI: 10.1016/j.ymthe.2024.09.011
Cristiano Fieni, Stefania Livia Ciummo, Carlo Sorrentino, Simona Marchetti, Simone Vespa, Paola Lanuti, Lavinia Vittoria Lotti, Emma Di Carlo
Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. Interleukin-30 (IL-30) is a PC progression driver, and its suppression would be strategic for fighting metastatic disease. Biocompatible lipid nanoparticles (NPs) were loaded with CRISPR-Cas9gRNA to delete the human IL30 (hIL30) gene and functionalized with anti-PSCA-Abs (Cas9hIL30-PSCA NPs). Efficiency of the NPs in targeting IL-30 and the metastatic potential of PC cells was examined in vivo in xenograft models of lung metastasis, and in vitro by using two organ-on-chip (2-OC)-containing 3D spheroids of IL30+ PC-endothelial cell co-cultures in circuit with either lung-mimicking spheroids or bone marrow (BM)-niche-mimicking scaffolds. Cas9hIL30-PSCA NPs demonstrated circulation stability, genome editing efficiency, without off-target effects and organ toxicity. Intravenous injection of three doses/13 days, or five doses/20 days, of NPs in mice bearing circulating PC cells and tumor microemboli substantially hindered lung metastasization. Cas9hIL30-PSCA NPs inhibited PC cell proliferation and expression of IL-30 and metastasis drivers, such as CXCR2, CXCR4, IGF1, L1CAM, METAP2, MMP2, and TNFSF10, whereas CDH1 was upregulated. PC-Lung and PC-BM 2-OCs revealed that Cas9hIL30-PSCA NPs suppressed PC cell release of CXCL2/GROβ, which was associated with intra-metastatic myeloid cell infiltrates, and of DKK1, OPG, and IL-6, which boosted endothelial network formation and cancer cell migration. Development of a patient-tailored nanoplatform for selective CRISPR-mediated IL-30 gene deletion is a clinically valuable tool against PC progression.
{"title":"Prevention of prostate cancer metastasis by a CRISPR-delivering nanoplatform for interleukin-30 genome editing.","authors":"Cristiano Fieni, Stefania Livia Ciummo, Carlo Sorrentino, Simona Marchetti, Simone Vespa, Paola Lanuti, Lavinia Vittoria Lotti, Emma Di Carlo","doi":"10.1016/j.ymthe.2024.09.011","DOIUrl":"10.1016/j.ymthe.2024.09.011","url":null,"abstract":"<p><p>Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. Interleukin-30 (IL-30) is a PC progression driver, and its suppression would be strategic for fighting metastatic disease. Biocompatible lipid nanoparticles (NPs) were loaded with CRISPR-Cas9gRNA to delete the human IL30 (hIL30) gene and functionalized with anti-PSCA-Abs (Cas9hIL30-PSCA NPs). Efficiency of the NPs in targeting IL-30 and the metastatic potential of PC cells was examined in vivo in xenograft models of lung metastasis, and in vitro by using two organ-on-chip (2-OC)-containing 3D spheroids of IL30<sup>+</sup> PC-endothelial cell co-cultures in circuit with either lung-mimicking spheroids or bone marrow (BM)-niche-mimicking scaffolds. Cas9hIL30-PSCA NPs demonstrated circulation stability, genome editing efficiency, without off-target effects and organ toxicity. Intravenous injection of three doses/13 days, or five doses/20 days, of NPs in mice bearing circulating PC cells and tumor microemboli substantially hindered lung metastasization. Cas9hIL30-PSCA NPs inhibited PC cell proliferation and expression of IL-30 and metastasis drivers, such as CXCR2, CXCR4, IGF1, L1CAM, METAP2, MMP2, and TNFSF10, whereas CDH1 was upregulated. PC-Lung and PC-BM 2-OCs revealed that Cas9hIL30-PSCA NPs suppressed PC cell release of CXCL2/GROβ, which was associated with intra-metastatic myeloid cell infiltrates, and of DKK1, OPG, and IL-6, which boosted endothelial network formation and cancer cell migration. Development of a patient-tailored nanoplatform for selective CRISPR-mediated IL-30 gene deletion is a clinically valuable tool against PC progression.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3932-3954"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-09-07DOI: 10.1016/j.ymthe.2024.09.009
Jenell Volkov, Daniel Nunez, Tahseen Mozaffar, Jason Stadanlick, Mallorie Werner, Zachary Vorndran, Alexandra Ellis, Jazmean Williams, Justin Cicarelli, Quynh Lam, Thomas Furmanak, Chris Schmitt, Fatemeh Hadi-Nezhad, Daniel Thompson, Claire Miller, Courtney Little, David Chang, Samik Basu
Under compassionate use, chimeric antigen receptor (CAR) T cells have elicited durable remissions in patients with refractory idiopathic inflammatory myopathies (IIMs). Here, we report on the safety, efficacy, and correlative data of the first subject with the immune-mediated necrotizing myopathy (IMNM) subtype of IIM who received a fully human, 4-1BBz anti-CD19-CAR T cell therapy (CABA-201) in the RESET-Myositis phase I/II trial (NCT06154252). CABA-201 was well-tolerated following infusion. Notably, no evidence of cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome was observed. Creatine kinase levels decreased, and muscular strength improved post-infusion. Peripheral B cells were depleted rapidly following infusion, and the subject achieved peripheral B cell aplasia by day 15 post-infusion. Peripheral B cells returned at 2 months post-infusion and were almost entirely transitional. Autoantibodies to SRP-9, SRP-72, SRP-54, and Ro-52, decreased relative to baseline, whereas antibodies associated with pathogens and vaccinations remained stable. The infusion product consisted of predominantly CD4+ effector memory T cells and exhibited in vitro cytolytic activity. Post-infusion, CABA-201 expansion peaked at day 15 and was preceded by a serum IFN-γ peak on day 8 with peaks in serum IL-12p40 and IP-10 on day 15. These data detail the safety, efficacy, and pharmacodynamics of CABA-201 in the first IMNM subject.
在同情使用的情况下,嵌合抗原受体(CAR)T 细胞已使难治性特发性炎症性肌病(IIM)患者的病情得到持久缓解1。在此,我们报告了在 RESET-Myositis™ I/II 期试验(NCT06154252)中接受全人 4-1BBz 抗 CD19-CAR T 细胞疗法(CABA-201)的首例特发性免疫性坏死性肌病(IMNM)亚型患者的安全性、有效性和相关数据。CABA-201 在输注后耐受性良好。值得注意的是,没有观察到细胞因子释放综合征(CRS)或免疫效应细胞相关神经毒性综合征(ICANS)的迹象。肌酸激酶(CK)水平下降,肌肉力量在输注后有所改善。输注后外周 B 细胞迅速耗竭,受试者在输注后第 15 天出现外周 B 细胞增生。外周 B 细胞在输注后 2 个月恢复,几乎完全是过渡性的。与基线相比,SRP-9、SRP-72、SRP-54 和 Ro-52 的自身抗体有所下降,而与病原体和疫苗接种相关的抗体则保持稳定。输注产物主要由 CD4+ 效应记忆 T 细胞组成,具有体外细胞溶解活性。输注后,CABA-201的扩增在第15天达到峰值,在此之前,血清IFN-γ在第8天达到峰值,血清IL-12p40和IP-10在第15天达到峰值。这些数据详细说明了 CABA-201 在首例 IMNM 受试者中的安全性、有效性和药效学。
{"title":"Case study of CD19 CAR T therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis phase I/II trial.","authors":"Jenell Volkov, Daniel Nunez, Tahseen Mozaffar, Jason Stadanlick, Mallorie Werner, Zachary Vorndran, Alexandra Ellis, Jazmean Williams, Justin Cicarelli, Quynh Lam, Thomas Furmanak, Chris Schmitt, Fatemeh Hadi-Nezhad, Daniel Thompson, Claire Miller, Courtney Little, David Chang, Samik Basu","doi":"10.1016/j.ymthe.2024.09.009","DOIUrl":"10.1016/j.ymthe.2024.09.009","url":null,"abstract":"<p><p>Under compassionate use, chimeric antigen receptor (CAR) T cells have elicited durable remissions in patients with refractory idiopathic inflammatory myopathies (IIMs). Here, we report on the safety, efficacy, and correlative data of the first subject with the immune-mediated necrotizing myopathy (IMNM) subtype of IIM who received a fully human, 4-1BBz anti-CD19-CAR T cell therapy (CABA-201) in the RESET-Myositis phase I/II trial (NCT06154252). CABA-201 was well-tolerated following infusion. Notably, no evidence of cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome was observed. Creatine kinase levels decreased, and muscular strength improved post-infusion. Peripheral B cells were depleted rapidly following infusion, and the subject achieved peripheral B cell aplasia by day 15 post-infusion. Peripheral B cells returned at 2 months post-infusion and were almost entirely transitional. Autoantibodies to SRP-9, SRP-72, SRP-54, and Ro-52, decreased relative to baseline, whereas antibodies associated with pathogens and vaccinations remained stable. The infusion product consisted of predominantly CD4<sup>+</sup> effector memory T cells and exhibited in vitro cytolytic activity. Post-infusion, CABA-201 expansion peaked at day 15 and was preceded by a serum IFN-γ peak on day 8 with peaks in serum IL-12p40 and IP-10 on day 15. These data detail the safety, efficacy, and pharmacodynamics of CABA-201 in the first IMNM subject.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3821-3828"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-09-28DOI: 10.1016/j.ymthe.2024.09.030
Marianna Giaccio, Antonio Monaco, Laura Galiano, Andrea Parente, Luigi Borzacchiello, Riccardo Rubino, Frank-Gerrit Klärner, Dennis Killa, Claudia Perna, Pasquale Piccolo, Marcello Marotta, Xuefang Pan, Marie Khijniak, Ibrar Siddique, Thomas Schrader, Alexey V Pshezhetsky, Nicolina Cristina Sorrentino, Gal Bitan, Alessandro Fraldi
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
{"title":"Anti-amyloid treatment is broadly effective in neuronopathic mucopolysaccharidoses and synergizes with gene therapy in MPS-IIIA.","authors":"Marianna Giaccio, Antonio Monaco, Laura Galiano, Andrea Parente, Luigi Borzacchiello, Riccardo Rubino, Frank-Gerrit Klärner, Dennis Killa, Claudia Perna, Pasquale Piccolo, Marcello Marotta, Xuefang Pan, Marie Khijniak, Ibrar Siddique, Thomas Schrader, Alexey V Pshezhetsky, Nicolina Cristina Sorrentino, Gal Bitan, Alessandro Fraldi","doi":"10.1016/j.ymthe.2024.09.030","DOIUrl":"10.1016/j.ymthe.2024.09.030","url":null,"abstract":"<p><p>Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4108-4121"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-08-22DOI: 10.1016/j.ymthe.2024.08.014
Nina Volf, Roman Vuerich, Andrea Colliva, Maria Concetta Volpe, Margherita Marengon, Lorena Zentilin, Mauro Giacca, Nadja Anneliese Ruth Ring, Simone Vodret, Luca Braga, Serena Zacchigna
A major obstacle in inducing therapeutic angiogenesis in the heart is inefficient gene transfer to endothelial cells (ECs). Here, we identify compounds able to enhance the permissiveness of cardiac ECs to adeno-associated virus (AAV) vectors, which stand as ideal tools for in vivo gene delivery. We screened a library of >1,500 US Food and Drug Administration (FDA)-approved drugs, in combination with AAV vectors, in cardiac ECs. Among the top drugs increasing AAV-mediated transduction, we found vatalanib, an inhibitor of multiple tyrosine kinase receptors. The increased AAV transduction efficiency by vatalanib was paralleled by induction of the endothelial-to-mesenchymal transition, as documented by decreased endothelial and increased mesenchymal marker expression. Induction of the endothelial-to-mesenchymal transition by other strategies similarly increased EC permissiveness to AAV vectors. In vivo injection of AAV vectors in the heart after myocardial infarction resulted in the selective transduction of cells undergoing the endothelial-to-mesenchymal transition, which is known to happen transiently after cardiac ischemia. Collectively, these results point to the endothelial-to-mesenchymal transition as a mechanism for improving AAV transduction in cardiac ECs, with implications for both basic research and the induction of therapeutic angiogenesis in the heart.
{"title":"Endothelial-to-mesenchymal transition enhances permissiveness to AAV vectors in cardiac endothelial cells.","authors":"Nina Volf, Roman Vuerich, Andrea Colliva, Maria Concetta Volpe, Margherita Marengon, Lorena Zentilin, Mauro Giacca, Nadja Anneliese Ruth Ring, Simone Vodret, Luca Braga, Serena Zacchigna","doi":"10.1016/j.ymthe.2024.08.014","DOIUrl":"10.1016/j.ymthe.2024.08.014","url":null,"abstract":"<p><p>A major obstacle in inducing therapeutic angiogenesis in the heart is inefficient gene transfer to endothelial cells (ECs). Here, we identify compounds able to enhance the permissiveness of cardiac ECs to adeno-associated virus (AAV) vectors, which stand as ideal tools for in vivo gene delivery. We screened a library of >1,500 US Food and Drug Administration (FDA)-approved drugs, in combination with AAV vectors, in cardiac ECs. Among the top drugs increasing AAV-mediated transduction, we found vatalanib, an inhibitor of multiple tyrosine kinase receptors. The increased AAV transduction efficiency by vatalanib was paralleled by induction of the endothelial-to-mesenchymal transition, as documented by decreased endothelial and increased mesenchymal marker expression. Induction of the endothelial-to-mesenchymal transition by other strategies similarly increased EC permissiveness to AAV vectors. In vivo injection of AAV vectors in the heart after myocardial infarction resulted in the selective transduction of cells undergoing the endothelial-to-mesenchymal transition, which is known to happen transiently after cardiac ischemia. Collectively, these results point to the endothelial-to-mesenchymal transition as a mechanism for improving AAV transduction in cardiac ECs, with implications for both basic research and the induction of therapeutic angiogenesis in the heart.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3808-3814"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.
Wnt/β-catenin信号传导是再生医学的一个诱人靶点。Wnt信号是干细胞活性的强大驱动力,因此也是组织再生的强大驱动力,它能促进成纤维细胞的增殖和活化,导致纤维化,而长时间的Wnt信号则可能致癌。因此,要利用其治疗潜力,Wnt 信号的激活必须是短暂的、可逆的和针对特定组织的。在肺部,Wnt 信号对肺泡干细胞活性和肺泡再生至关重要,而肺泡再生在肺纤维化时会受到损害。激活肺上皮细胞中的Wnt/β-catenin信号可能具有抗纤维化的作用。在这里,我们利用气管内注射AAV6选择性地将CasRx送入肺上皮细胞,通过同时降解编码Axin1和Axin2(Wnt/β-catenin信号转导的负调控因子)的mRNA,CasRx可逆地激活Wnt信号转导。有趣的是,CasRx 在肺上皮细胞中介导的 Wnt 激活不仅能促进肺泡 II 型细胞(AT2)增殖和肺泡再生,还能抑制博莱霉素诱导的肺纤维化。我们的研究为治疗肺纤维化提供了一种有吸引力的策略,对再生医学具有普遍意义。
{"title":"CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury.","authors":"Shengxi Shen, Ping Wang, Pei Wu, Pengyu Huang, Tian Chi, Wenqing Xu, Ying Xi","doi":"10.1016/j.ymthe.2024.09.008","DOIUrl":"10.1016/j.ymthe.2024.09.008","url":null,"abstract":"<p><p>Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3974-3989"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.ymthe.2024.11.010
Xuejia Zhai, Ling Mao, Qingmei Kang, Jie Liu, Yu Zhou, Jun Wang, Xianyan Yang, Di Wang, Junhan Wang, Yao Li, Jiangjie Duan, Tao Zhang, Shuang Lin, Tingting Zhao, Jianjun Li, Min Wu, Shicang Yu
The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers (PCs), BMs have a "colder" and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pondus hydrogenii (pH) of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer (NSCLC) BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.
{"title":"Proton pump inhibitor attenutes acidic microenvironment to improve the therapeutic effects of MSLN-CAR-T cells on the brain metastasis of solid tumors.","authors":"Xuejia Zhai, Ling Mao, Qingmei Kang, Jie Liu, Yu Zhou, Jun Wang, Xianyan Yang, Di Wang, Junhan Wang, Yao Li, Jiangjie Duan, Tao Zhang, Shuang Lin, Tingting Zhao, Jianjun Li, Min Wu, Shicang Yu","doi":"10.1016/j.ymthe.2024.11.010","DOIUrl":"https://doi.org/10.1016/j.ymthe.2024.11.010","url":null,"abstract":"<p><p>The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers (PCs), BMs have a \"colder\" and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pondus hydrogenii (pH) of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer (NSCLC) BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-10-04DOI: 10.1016/j.ymthe.2024.09.032
Hannah O Bazick, Hanqian Mao, Jesse K Niehaus, Justin M Wolter, Mark J Zylka
We previously developed an adeno-associated virus (AAV) Cas9 gene therapy for Angelman syndrome that integrated into the genome and prematurely terminated Ube3a-ATS. Here, we assessed the performance of 3 additional AAV vectors containing S. aureus Cas9 in vitro and in vivo, and 25 vectors containing N. meningitidis Cas9 in vitro, all targeting single sites within Ube3a-ATS. We found that none of these single-target gRNA vectors were as effective as multi-target gRNA vectors at reducing Ube3a-ATS expression in neurons. We also developed an anchored multiplex PCR sequencing method and analysis pipeline to quantify the relative frequency of all possible editing events at target sites, including AAV integration and unresolved double-strand breaks. We found that integration of AAV was the most frequent editing event (67%-89% of all edits) at three different single target sites, surpassing insertions and deletions (indels). None of the most frequently observed indels were capable of blocking transcription when incorporated into a Ube3a-ATS minigene reporter, whereas two vector derived elements-the poly(A) and reverse promoter-reduced downstream transcription by up to 50%. Our findings suggest that the probability that a gene trapping AAV integration event occurs is influenced by which vector-derived element(s) are integrated and by the number of target sites.
{"title":"AAV vector-derived elements integrate into Cas9-generated double-strand breaks and disrupt gene transcription.","authors":"Hannah O Bazick, Hanqian Mao, Jesse K Niehaus, Justin M Wolter, Mark J Zylka","doi":"10.1016/j.ymthe.2024.09.032","DOIUrl":"10.1016/j.ymthe.2024.09.032","url":null,"abstract":"<p><p>We previously developed an adeno-associated virus (AAV) Cas9 gene therapy for Angelman syndrome that integrated into the genome and prematurely terminated Ube3a-ATS. Here, we assessed the performance of 3 additional AAV vectors containing S. aureus Cas9 in vitro and in vivo, and 25 vectors containing N. meningitidis Cas9 in vitro, all targeting single sites within Ube3a-ATS. We found that none of these single-target gRNA vectors were as effective as multi-target gRNA vectors at reducing Ube3a-ATS expression in neurons. We also developed an anchored multiplex PCR sequencing method and analysis pipeline to quantify the relative frequency of all possible editing events at target sites, including AAV integration and unresolved double-strand breaks. We found that integration of AAV was the most frequent editing event (67%-89% of all edits) at three different single target sites, surpassing insertions and deletions (indels). None of the most frequently observed indels were capable of blocking transcription when incorporated into a Ube3a-ATS minigene reporter, whereas two vector derived elements-the poly(A) and reverse promoter-reduced downstream transcription by up to 50%. Our findings suggest that the probability that a gene trapping AAV integration event occurs is influenced by which vector-derived element(s) are integrated and by the number of target sites.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4122-4137"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of StambpSox1-cKO mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.
{"title":"AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome.","authors":"Meixin Hu, Jun Li, Jingxin Deng, Chunxue Liu, Yingying Liu, Huiping Li, Weijun Feng, Xiu Xu","doi":"10.1016/j.ymthe.2024.08.017","DOIUrl":"10.1016/j.ymthe.2024.08.017","url":null,"abstract":"<p><p>The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp <sup>Sox1-cKO</sup>) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of Stambp<sup>Sox1-cKO</sup> mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"4095-4107"},"PeriodicalIF":12.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}