Pub Date : 2025-01-08Epub Date: 2024-12-10DOI: 10.1016/j.ymthe.2024.12.008
Henry Daniell, Yuwei Guo, Rahul Singh, Uddhab Karki, Rachel J Kulchar, Geetanjali Wakade, Juha-Matti Pihlava, Hamid Khazaei, Gary H Cohen
Lack of Herpes Simplex Virus (HSV) vaccine, low vaccination rates of Influenza viruses, waning immunity and viral transmission after vaccination underscore the need to reduce viral loads at their transmission sites. Oral virus transmission is several orders of magnitude higher than nasal transmission. Therefore, in this study, we evaluated neutralization of viruses using a natural viral trap protein (FRIL) formulated in clinical-grade chewing gum. FRIL is highly stable in the lablab bean powder (683 days) and in chewing gum (790 days), and fully functional (794 days) when stored at ambient temperature. They passed the bioburden test with no aerobic bacteria, yeasts/molds, with minimal moisture content (1.28-5.9%). Bean gum extracts trapped HSV-1/HSV-2 75-94% in a dose-dependent manner through virus self-aggregation. Mastication simulator released >50% release of FRIL within 15 min of chewing the bean gum. In plaque reduction assays, >95% neutralization of H1N1 and H3N2 required ∼40 mg/mL, HSV-1 160 mg/mL, and HSV-2 74 mg/mL of bean gum for 1,000 copies/mL virus particles. Therefore, a 2000 mg bean gum tablet has more than adequate potency for clinical evaluation and is safe with no detectable levels of glycosides. These observations augur well for evaluating bean gum in human clinical studies to minimize virus infection/transmission.
{"title":"Debulking influenza and herpes simplex virus strains by a wide-spectrum anti-viral protein formulated in clinical grade chewing gum.","authors":"Henry Daniell, Yuwei Guo, Rahul Singh, Uddhab Karki, Rachel J Kulchar, Geetanjali Wakade, Juha-Matti Pihlava, Hamid Khazaei, Gary H Cohen","doi":"10.1016/j.ymthe.2024.12.008","DOIUrl":"10.1016/j.ymthe.2024.12.008","url":null,"abstract":"<p><p>Lack of Herpes Simplex Virus (HSV) vaccine, low vaccination rates of Influenza viruses, waning immunity and viral transmission after vaccination underscore the need to reduce viral loads at their transmission sites. Oral virus transmission is several orders of magnitude higher than nasal transmission. Therefore, in this study, we evaluated neutralization of viruses using a natural viral trap protein (FRIL) formulated in clinical-grade chewing gum. FRIL is highly stable in the lablab bean powder (683 days) and in chewing gum (790 days), and fully functional (794 days) when stored at ambient temperature. They passed the bioburden test with no aerobic bacteria, yeasts/molds, with minimal moisture content (1.28-5.9%). Bean gum extracts trapped HSV-1/HSV-2 75-94% in a dose-dependent manner through virus self-aggregation. Mastication simulator released >50% release of FRIL within 15 min of chewing the bean gum. In plaque reduction assays, >95% neutralization of H1N1 and H3N2 required ∼40 mg/mL, HSV-1 160 mg/mL, and HSV-2 74 mg/mL of bean gum for 1,000 copies/mL virus particles. Therefore, a 2000 mg bean gum tablet has more than adequate potency for clinical evaluation and is safe with no detectable levels of glycosides. These observations augur well for evaluating bean gum in human clinical studies to minimize virus infection/transmission.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"184-200"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-12-14DOI: 10.1016/j.ymthe.2024.11.036
Partha K Chandra, Anup K Kundu, Sidhartha Hazari, Sruti Chandra, Lili Bao, Tara Ooms, Gilbert F Morris, Tong Wu, Tarun K Mandal, Srikanta Dash
{"title":"Retraction Notice to: Inhibition of Hepatitis C Virus Replication by Intracellular Delivery of Multiple siRNAs by Nanosomes.","authors":"Partha K Chandra, Anup K Kundu, Sidhartha Hazari, Sruti Chandra, Lili Bao, Tara Ooms, Gilbert F Morris, Tong Wu, Tarun K Mandal, Srikanta Dash","doi":"10.1016/j.ymthe.2024.11.036","DOIUrl":"10.1016/j.ymthe.2024.11.036","url":null,"abstract":"","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"422"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-11-19DOI: 10.1016/j.ymthe.2024.11.027
Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou
Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone. The antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 Nb. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.
{"title":"Targeting PD-1<sup>+</sup> T cells with small-format immunocytokines enhances IL-12 antitumor activity.","authors":"Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou","doi":"10.1016/j.ymthe.2024.11.027","DOIUrl":"10.1016/j.ymthe.2024.11.027","url":null,"abstract":"<p><p>Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone. The antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 Nb. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"297-316"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-11-28DOI: 10.1016/j.ymthe.2024.11.019
Rami M Major, Zollie Yavarow
{"title":"When promising therapies are out of reach: Ethical responsibilities of stakeholders in gene therapy trials for rare disorders.","authors":"Rami M Major, Zollie Yavarow","doi":"10.1016/j.ymthe.2024.11.019","DOIUrl":"10.1016/j.ymthe.2024.11.019","url":null,"abstract":"","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"30-31"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-12-10DOI: 10.1016/j.ymthe.2024.12.009
Jiyao Chen, JingFang Mu, Kangping Zhou, Yuming Zhang, Jieling Zhang, Ting Shu, Weijuan Shang, Yujie Ren, Xi-Qiu Xu, Leike Zhang, Shuai Yuan, Dingyu Zhang, Kun Cai, Yang Qiu, Xi Zhou
Infections caused by coronaviruses are persistent threats to human health in recent decades, necessitating the development of innovative anti-coronaviral therapies. RNA interference (RNAi) is a conserved cell-intrinsic antiviral mechanism in diverse eukaryotic organisms, including mammals. To counteract, many viruses encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi, implying that targeting VSRs could be a promising strategy to develop antiviral therapies. Here, we designed a series of peptides specifically targeting the SARS-CoV-2-encoded VSR, nucleocapsid (N) protein. Among these peptides, one designated GL directly interacts with N protein and inactivates its VSR activity, which unlocks a potent RNAi response and effectively inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Moreover, GL exhibited RNAi-dependent antiviral effects not only against various SARS-CoV-2 variants, including Delta, Omicron BA.5, XBB, and JN.1, but also against other coronaviruses such as human coronavirus (HCoV)-229E, HCoV-OC43, and mouse hepatitis virus. The in vivo anti-coronaviral activity of GL was also confirmed. Our findings indicate that the VSR-targeting peptide GL has the potential to be further developed as a broad-spectrum anti-coronaviral treatment, highlighting the functional importance and therapeutic potential of antiviral RNAi.
{"title":"Targeting viral suppressor of RNAi confers anti-coronaviral activity.","authors":"Jiyao Chen, JingFang Mu, Kangping Zhou, Yuming Zhang, Jieling Zhang, Ting Shu, Weijuan Shang, Yujie Ren, Xi-Qiu Xu, Leike Zhang, Shuai Yuan, Dingyu Zhang, Kun Cai, Yang Qiu, Xi Zhou","doi":"10.1016/j.ymthe.2024.12.009","DOIUrl":"10.1016/j.ymthe.2024.12.009","url":null,"abstract":"<p><p>Infections caused by coronaviruses are persistent threats to human health in recent decades, necessitating the development of innovative anti-coronaviral therapies. RNA interference (RNAi) is a conserved cell-intrinsic antiviral mechanism in diverse eukaryotic organisms, including mammals. To counteract, many viruses encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi, implying that targeting VSRs could be a promising strategy to develop antiviral therapies. Here, we designed a series of peptides specifically targeting the SARS-CoV-2-encoded VSR, nucleocapsid (N) protein. Among these peptides, one designated GL directly interacts with N protein and inactivates its VSR activity, which unlocks a potent RNAi response and effectively inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Moreover, GL exhibited RNAi-dependent antiviral effects not only against various SARS-CoV-2 variants, including Delta, Omicron BA.5, XBB, and JN.1, but also against other coronaviruses such as human coronavirus (HCoV)-229E, HCoV-OC43, and mouse hepatitis virus. The in vivo anti-coronaviral activity of GL was also confirmed. Our findings indicate that the VSR-targeting peptide GL has the potential to be further developed as a broad-spectrum anti-coronaviral treatment, highlighting the functional importance and therapeutic potential of antiviral RNAi.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"201-214"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-12-11DOI: 10.1016/j.ymthe.2024.12.010
Kang Yi Lee, Yu Mei, Haiyan Liu, Herbert Schwarz
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
{"title":"CD137-expressing regulatory T cells in cancer and autoimmune diseases.","authors":"Kang Yi Lee, Yu Mei, Haiyan Liu, Herbert Schwarz","doi":"10.1016/j.ymthe.2024.12.010","DOIUrl":"10.1016/j.ymthe.2024.12.010","url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137<sup>+</sup> Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"51-70"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-12-11DOI: 10.1016/j.ymthe.2024.12.006
Barbara Klein, Agnieszka Ciesielska, Patricia Morán Losada, Anna Sato, Sajita Shah-Morales, Jeremy B Ford, Bryan Higashikubo, Dale Tager, Alexander Urry, Juliane Bombosch, Wei-Cheng Chang, Yaisa Andrews-Zwilling, Bijan Nejadnik, Zuha Warraich, Jeanne T Paz
Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model. One month after focal cortical ischemic stroke, hMSC-SB623 cells or the vehicle solution were injected into the peri-stroke cortex. Starting one week after treatment, cortical excitability was assessed ex vivo. hMSC-SB623 cell transplants reduced stroke-induced cortical hyperexcitability, restoring cortical excitability to control levels. The histology of brain tissue revealed an increase of factors relevant to neuroregeneration, and synaptic and cellular plasticity. Whole-blood RNA sequencing and serum protein analyses showed that intra-cortical hMSC-SB623 cell transplantation reversed effects of stroke on peripheral blood factors known to be involved in stroke pathophysiology. Our findings demonstrate that intra-cortical transplants of hMSC-SB623 cells correct stroke-induced circuit disruptions even at the chronic stage, suggesting broad usefulness as a therapeutic for neurological conditions with network hyperexcitability. Additionally, the transplanted cells exert far-reaching immunomodulatory effects whose therapeutic impact remains to be explored.
{"title":"Modified human mesenchymal stromal/stem cells restore cortical excitability after focal ischemic stroke in rats.","authors":"Barbara Klein, Agnieszka Ciesielska, Patricia Morán Losada, Anna Sato, Sajita Shah-Morales, Jeremy B Ford, Bryan Higashikubo, Dale Tager, Alexander Urry, Juliane Bombosch, Wei-Cheng Chang, Yaisa Andrews-Zwilling, Bijan Nejadnik, Zuha Warraich, Jeanne T Paz","doi":"10.1016/j.ymthe.2024.12.006","DOIUrl":"10.1016/j.ymthe.2024.12.006","url":null,"abstract":"<p><p>Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model. One month after focal cortical ischemic stroke, hMSC-SB623 cells or the vehicle solution were injected into the peri-stroke cortex. Starting one week after treatment, cortical excitability was assessed ex vivo. hMSC-SB623 cell transplants reduced stroke-induced cortical hyperexcitability, restoring cortical excitability to control levels. The histology of brain tissue revealed an increase of factors relevant to neuroregeneration, and synaptic and cellular plasticity. Whole-blood RNA sequencing and serum protein analyses showed that intra-cortical hMSC-SB623 cell transplantation reversed effects of stroke on peripheral blood factors known to be involved in stroke pathophysiology. Our findings demonstrate that intra-cortical transplants of hMSC-SB623 cells correct stroke-induced circuit disruptions even at the chronic stage, suggesting broad usefulness as a therapeutic for neurological conditions with network hyperexcitability. Additionally, the transplanted cells exert far-reaching immunomodulatory effects whose therapeutic impact remains to be explored.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"375-400"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolism-related fatty liver disease (MAFLD) is associated with abnormal fat accumulation in the liver. The exact mechanism underlying the occurrence and development of MAFLD remains to be elucidated. Here, we discovered that the expression of sucrose non-fermenting-related kinase (SNRK) is elevated in the liver of the MAFLD population. Mice deficient in SNRK exhibited damage to fatty acid oxidation and persistent accumulation of lipids in the liver. Pharmacological inhibition of the mTOR pathway in SNRK-deficient mice restored autophagy and improved lipid accumulation. In terms of mechanism, we observed that SNRK binds to the raptor component of mTOR complex 1, promoting fatty acid oxidation in the liver by activating autophagy. Overexpression of SNRK in high-fat diet-induced obese mice restored autophagy and ameliorated lipid accumulation. Notably, we also demonstrated that overexpression of SNRK significantly enhanced fatty acid oxidation in the mouse liver. We further confirmed that SNRK is essential for the liver to regulate autophagy and fatty acid oxidation. These findings underscore the importance of the potential of SNRK in the treatment of MAFLD.
{"title":"SNRK modulates mTOR-autophagy pathway for liver lipid homeostasis in MAFLD.","authors":"Shan Lin, Xiusheng Qiu, Xiaoying Fu, Shuting Zhang, Changyong Tang, Jian Kuang, Haixia Guan, Shuiqing Lai","doi":"10.1016/j.ymthe.2024.11.016","DOIUrl":"10.1016/j.ymthe.2024.11.016","url":null,"abstract":"<p><p>Metabolism-related fatty liver disease (MAFLD) is associated with abnormal fat accumulation in the liver. The exact mechanism underlying the occurrence and development of MAFLD remains to be elucidated. Here, we discovered that the expression of sucrose non-fermenting-related kinase (SNRK) is elevated in the liver of the MAFLD population. Mice deficient in SNRK exhibited damage to fatty acid oxidation and persistent accumulation of lipids in the liver. Pharmacological inhibition of the mTOR pathway in SNRK-deficient mice restored autophagy and improved lipid accumulation. In terms of mechanism, we observed that SNRK binds to the raptor component of mTOR complex 1, promoting fatty acid oxidation in the liver by activating autophagy. Overexpression of SNRK in high-fat diet-induced obese mice restored autophagy and ameliorated lipid accumulation. Notably, we also demonstrated that overexpression of SNRK significantly enhanced fatty acid oxidation in the mouse liver. We further confirmed that SNRK is essential for the liver to regulate autophagy and fatty acid oxidation. These findings underscore the importance of the potential of SNRK in the treatment of MAFLD.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"279-296"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08Epub Date: 2024-11-26DOI: 10.1016/j.ymthe.2024.11.032
Shuming Yin, Liangcai Gao, Xiaoyue Sun, Mei Zhang, Hongyi Gao, Xiaoqing Chen, Dan Zhang, Xinyu Ming, Lei Yang, Yaqiang Hu, Xi Chen, Meizhen Liu, Xia Zhan, Yuting Guan, Liren Wang, Lianshu Han, Ping Zhu, Dali Li
Phenylketonuria (PKU) is a liver metabolic disorder mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the PahR408W PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1%-34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8-treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L-1 and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the PahR408W PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.
{"title":"Amelioration of metabolic and behavioral defects through base editing in the Pah<sup>R408W</sup> phenylketonuria mouse model.","authors":"Shuming Yin, Liangcai Gao, Xiaoyue Sun, Mei Zhang, Hongyi Gao, Xiaoqing Chen, Dan Zhang, Xinyu Ming, Lei Yang, Yaqiang Hu, Xi Chen, Meizhen Liu, Xia Zhan, Yuting Guan, Liren Wang, Lianshu Han, Ping Zhu, Dali Li","doi":"10.1016/j.ymthe.2024.11.032","DOIUrl":"10.1016/j.ymthe.2024.11.032","url":null,"abstract":"<p><p>Phenylketonuria (PKU) is a liver metabolic disorder mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the Pah<sup>R408W</sup> PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1%-34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8-treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L<sup>-1</sup> and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the Pah<sup>R408W</sup> PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"119-132"},"PeriodicalIF":12.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}