首页 > 最新文献

Nature Reviews Molecular Cell Biology最新文献

英文 中文
CLASPing and squeezing during cell migration 细胞迁移过程中的 CLASPing 和挤压
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-04 DOI: 10.1038/s41580-024-00779-z
Lisa Heinke
This study finds that microtubules act as a mechanostat during cell migration, becoming mechanically reinforced in response to compression to protect the nucleus and coordinate contractility.
这项研究发现,微管在细胞迁移过程中起着机械抑制作用,在受到挤压时会发生机械强化,从而保护细胞核并协调收缩力。
{"title":"CLASPing and squeezing during cell migration","authors":"Lisa Heinke","doi":"10.1038/s41580-024-00779-z","DOIUrl":"10.1038/s41580-024-00779-z","url":null,"abstract":"This study finds that microtubules act as a mechanostat during cell migration, becoming mechanically reinforced in response to compression to protect the nucleus and coordinate contractility.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"762-762"},"PeriodicalIF":81.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of assembly and remodelling of the extracellular matrix 细胞外基质的组装和重塑机制
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-09-02 DOI: 10.1038/s41580-024-00767-3
Alexandra Naba
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of ‘matritherapies’, that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit. The extracellular matrix (ECM) is a scaffold that supports cell structure and function. This Review discusses the compositional diversity, tissue-specific assembly and remodelling of the ECM in health and disease, and explores its potential for therapeutic targeting.
细胞外基质(ECM)是由蛋白质和聚糖组成的复杂网状结构,是包围和支持细胞的支架。从赋予组织和器官物理和机械特性,到调节增殖、分化和迁移等细胞过程,细胞外基质在元动物生理学的各个方面都发挥着关键作用。因此,了解 ECM 支架的组装机制对于理解 ECM 在健康和疾病中的功能至关重要。本综述讨论了对基质组成分组成多样性的新见解,以及导致组织特异性组装和架构以支持特定功能的机制。然后,综述重点介绍了最近发现的机制,包括翻译后修饰和代谢途径,如氨基酸供应和昼夜节律,这些机制可调节 ECM 在体内平衡和人类疾病中的分泌、组装和重塑。最后,该综述探讨了 "母体疗法 "的潜力,即使 ECM 组成和结构正常化以达到治疗效果的策略。
{"title":"Mechanisms of assembly and remodelling of the extracellular matrix","authors":"Alexandra Naba","doi":"10.1038/s41580-024-00767-3","DOIUrl":"10.1038/s41580-024-00767-3","url":null,"abstract":"The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of ‘matritherapies’, that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit. The extracellular matrix (ECM) is a scaffold that supports cell structure and function. This Review discusses the compositional diversity, tissue-specific assembly and remodelling of the ECM in health and disease, and explores its potential for therapeutic targeting.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 11","pages":"865-885"},"PeriodicalIF":81.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic gene regulation in plants and its potential applications in crop improvement 植物表观遗传基因调控及其在作物改良中的潜在应用。
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-27 DOI: 10.1038/s41580-024-00769-1
Heng Zhang, Jian-Kang Zhu
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR–dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material. This Review outlines progress in understanding the mechanisms of DNA methylation regulation in plants. Studies in various plants have revealed novel and diverse biological functions of DNA methylation that might assist in developing epigenome editing approaches suitable for crop breeding.
DNA 甲基化又称 5-甲基胞嘧啶,是一种表观遗传修饰,在植物生长、发育和适应过程中具有重要功能。细胞 DNA 甲基化水平受 DNA 甲基转移酶和去甲基化酶的联合作用严格调控。参与 DNA 甲基化靶向和解释的蛋白质复合物已经确定,揭示了甲基-DNA 结合蛋白和分子伴侣的有趣作用。结构研究和体外重组酶系统为 RNA 引导的 DNA 甲基化(植物中催化从头甲基化的主要途径)提供了机制上的见解。更好地了解调控机制将有助于对 DNA 甲基化状态进行特定位点操作。目前正在为此开发基于 CRISPR-dCas9 的表观基因组编辑工具。鉴于 DNA 甲基化模式可通过减数分裂稳定传递,而且表型变异可产生较大的表型变异,表观基因组编辑可在相同的遗传物质上产生额外的表型变异,因而在作物育种方面大有可为。
{"title":"Epigenetic gene regulation in plants and its potential applications in crop improvement","authors":"Heng Zhang, Jian-Kang Zhu","doi":"10.1038/s41580-024-00769-1","DOIUrl":"10.1038/s41580-024-00769-1","url":null,"abstract":"DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR–dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material. This Review outlines progress in understanding the mechanisms of DNA methylation regulation in plants. Studies in various plants have revealed novel and diverse biological functions of DNA methylation that might assist in developing epigenome editing approaches suitable for crop breeding.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"51-67"},"PeriodicalIF":81.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics 利用单细胞和空间转录组学分析细胞特征和组织结构
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-21 DOI: 10.1038/s41580-024-00768-2
Gunsagar S. Gulati, Jeremy Philip D’Silva, Yunhe Liu, Linghua Wang, Aaron M. Newman
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic. Single-cell and spatial transcriptomics are transforming our understanding of cell plasticity and tissue diversity. This Review discusses technical and computational advancements and challenges in characterizing cell states and tissues during embryogenesis, tumorigenesis and immune responses, and the application of these tools to the clinic.
单细胞转录组学拓宽了我们对细胞多样性以及健康和患病组织中基因表达动态的了解。最近,空间转录组学已成为一种工具,可用于确定多细胞邻域中单细胞的背景,以及识别空间重复出现的表型或生态型。这些技术产生了大量数据集,包括数百至数百万个细胞的靶向转录组和全转录组图谱。这些数据提供了对发育层次、细胞可塑性和不同组织微环境的新见解,并推动了单细胞分析计算方法的创新。在本综述中,我们将讨论在识别和描述细胞状态和多细胞邻域方面的最新进展、持续挑战和前景。我们将讨论样本处理、数据整合、微妙细胞状态识别、轨迹建模、解卷积和空间分析等方面的最新进展。此外,我们还讨论了深度学习(包括基础模型)在单细胞和空间转录组学数据分析中越来越多的应用。最后,我们讨论了这些工具在干细胞生物学、免疫学和肿瘤生物学领域的最新应用,以及单细胞和空间转录组学在生物研究中的未来及其在临床中的应用。
{"title":"Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics","authors":"Gunsagar S. Gulati, Jeremy Philip D’Silva, Yunhe Liu, Linghua Wang, Aaron M. Newman","doi":"10.1038/s41580-024-00768-2","DOIUrl":"10.1038/s41580-024-00768-2","url":null,"abstract":"Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic. Single-cell and spatial transcriptomics are transforming our understanding of cell plasticity and tissue diversity. This Review discusses technical and computational advancements and challenges in characterizing cell states and tissues during embryogenesis, tumorigenesis and immune responses, and the application of these tools to the clinic.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"11-31"},"PeriodicalIF":81.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Far from the cytoplasmic crowd 远离细胞质人群
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-19 DOI: 10.1038/s41580-024-00774-4
Eytan Zlotorynski
Stresses induce de-crowding and fluidization of the cytoplasm, which promotes the formation of biomolecular condensates.
压力会导致细胞质去拥挤化和流动化,从而促进生物分子凝聚物的形成。
{"title":"Far from the cytoplasmic crowd","authors":"Eytan Zlotorynski","doi":"10.1038/s41580-024-00774-4","DOIUrl":"10.1038/s41580-024-00774-4","url":null,"abstract":"Stresses induce de-crowding and fluidization of the cytoplasm, which promotes the formation of biomolecular condensates.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"761-761"},"PeriodicalIF":81.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases 神经退行性疾病中自噬-溶酶体功能障碍的机制
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-06 DOI: 10.1038/s41580-024-00757-5
Ralph A. Nixon, David C. Rubinsztein
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy–lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic–lysosomal function in neuronal health and disease. The autophagy–lysosome pathway eliminates damaged organelles and aggregation-prone proteins, which is particularly important in neurons, where clearance of such substrates is restricted. Autophagy or lysosome deficiencies, often exacerbated by ageing, impact neuronal function and cause neurodegenerative diseases such as Alzheimer disease or Parkinson disease.
自噬是一种基于溶酶体的降解过程,用于回收过时的细胞成分,消除受损的细胞器和易聚集的蛋白质。神经元的有丝分裂后特性和极度极化的形态使其特别容易受到自噬-溶酶体缺陷造成的破坏,尤其是在大脑衰老的过程中。因此,调控自噬和溶酶体功能的基因突变会导致多种神经退行性疾病。在此,我们回顾了自噬和溶酶体在阿尔茨海默病、帕金森病和额颞叶痴呆症等神经退行性疾病中的作用。我们还将细胞老化对溶酶体和自噬的强烈影响视为相关神经退行性疾病晚期出现的临界点。这些疾病中有许多都存在自噬的主要缺陷,例如影响自噬体的形成,以及溶酶体功能,尤其是 pH 值调节和钙平衡。我们旨在提供一个综合框架,以了解自噬-溶酶体功能在神经元健康和疾病中的核心重要性。
{"title":"Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases","authors":"Ralph A. Nixon, David C. Rubinsztein","doi":"10.1038/s41580-024-00757-5","DOIUrl":"10.1038/s41580-024-00757-5","url":null,"abstract":"Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy–lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic–lysosomal function in neuronal health and disease. The autophagy–lysosome pathway eliminates damaged organelles and aggregation-prone proteins, which is particularly important in neurons, where clearance of such substrates is restricted. Autophagy or lysosome deficiencies, often exacerbated by ageing, impact neuronal function and cause neurodegenerative diseases such as Alzheimer disease or Parkinson disease.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 11","pages":"926-946"},"PeriodicalIF":81.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural biology and molecular pharmacology of voltage-gated ion channels 电压门控离子通道的结构生物学和分子药理学。
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-05 DOI: 10.1038/s41580-024-00763-7
Jian Huang, Xiaojing Pan, Nieng Yan
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery. Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.
电压门控离子通道(VGIC),包括 Na+、Ca2+ 和 K+离子通道,可根据膜电位的变化选择性地将离子透过细胞膜,从而参与神经传递、肌肉收缩和激素分泌等涉及电信号的生理过程。VGIC 的功能异常或失调与多种神经、精神、心血管和肌肉疾病有关,大约 10% 的 FDA 批准药物直接针对 VGIC。了解 VGIC 的结构-功能关系对我们理解其工作机制和在疾病中的作用至关重要。在本综述中,我们将讨论单颗粒冷冻电镜技术的进步如何为我们提供了前所未有的 VGIC 结构洞察力,尤其是它们与临床药物和研究药物之间的相互作用。我们全面概述了 VGIC 结构生物学的最新进展,重点关注原型药物和毒素如何调节 VGIC 的活性。我们将探讨这些结构如何阐明药物作用的分子基础、揭示新的药理位点并为未来的药物发现提供重要线索。
{"title":"Structural biology and molecular pharmacology of voltage-gated ion channels","authors":"Jian Huang, Xiaojing Pan, Nieng Yan","doi":"10.1038/s41580-024-00763-7","DOIUrl":"10.1038/s41580-024-00763-7","url":null,"abstract":"Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery. Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 11","pages":"904-925"},"PeriodicalIF":81.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYB-related proteins make chloroplasts 与 MYB 相关的蛋白质使叶绿体
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-02 DOI: 10.1038/s41580-024-00771-7
Kim Baumann
MYB-related transcription factors are found to function in chloroplast biogenesis alongside GLK in the distantly related species Marchantia polymorpha and Arabidopsis thaliana.
在远缘物种马钱子和拟南芥中,发现与 MYB 相关的转录因子与 GLK 一起在叶绿体生物发生过程中发挥作用。
{"title":"MYB-related proteins make chloroplasts","authors":"Kim Baumann","doi":"10.1038/s41580-024-00771-7","DOIUrl":"10.1038/s41580-024-00771-7","url":null,"abstract":"MYB-related transcription factors are found to function in chloroplast biogenesis alongside GLK in the distantly related species Marchantia polymorpha and Arabidopsis thaliana.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 9","pages":"674-674"},"PeriodicalIF":81.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What does it take to build a nucleus? 构建原子核需要什么?
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-24 DOI: 10.1038/s41580-024-00766-4
Abigail Buchwalter
Abigail Buchwalter recounts what happened to the nuclei of cells lacking all lamin genes.
阿比盖尔-布赫瓦尔特(Abigail Buchwalter)讲述了缺乏所有片状基因的细胞核的情况。
{"title":"What does it take to build a nucleus?","authors":"Abigail Buchwalter","doi":"10.1038/s41580-024-00766-4","DOIUrl":"10.1038/s41580-024-00766-4","url":null,"abstract":"Abigail Buchwalter recounts what happened to the nuclei of cells lacking all lamin genes.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"764-764"},"PeriodicalIF":81.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of and challenges in targeting NAD+ metabolism 针对 NAD+ 代谢的调节和挑战。
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-18 DOI: 10.1038/s41580-024-00752-w
Marie E. Migaud, Mathias Ziegler, Joseph A. Baur
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction–oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans. Nicotinamide adenine dinucleotide (NAD+) has essential roles in metabolism and can be readily supplemented, potentially to benefit human health. This Review discusses recent insights into the roles of the microbiome and cellular compartments in regulating NAD+ metabolism, and the promise and pitfalls of NAD+ supplementation.
氧化型(NAD+)和还原型(NADH)烟酰胺腺嘌呤二核苷酸是一种还原氧化(氧化还原)辅助因子,也是在新陈代谢中发挥重要作用的信号酶的底物。人们认识到,NAD+ 的水平会随着压力而下降,但可以通过补充剂随时得到补充,因此,人们对提高或恢复人体 NAD+ 水平以预防或延缓疾病和退化过程的潜在益处产生了极大的兴趣。然而,人们对 NAD+ 及相关分子的生物学特性仍然知之甚少。在本综述中,我们将讨论目前有关 NAD+ 代谢的知识,包括可能影响 NAD+ 补充成功与否或导致风险的限制因素、假设因素和未被重视的因素。我们强调了该领域目前存在的一些争议,并讨论了微生物组在调节烟酰胺核糖核苷(NR)和烟酰胺单核苷酸(NMN)等 NAD+ 前体的可用性方面所起的作用、多个细胞区存在不同的 NAD+ 和 NADH 池以及非经典的 NAD+ 和 NADH 降解途径。我们的结论是,需要投入大量资金来了解 NAD+ 的基本生物学特性、其检测方法以及其在特定细胞和细胞区室中的代谢物,以支持目前为安全提高人体 NAD+ 水平所做的转化工作。
{"title":"Regulation of and challenges in targeting NAD+ metabolism","authors":"Marie E. Migaud, Mathias Ziegler, Joseph A. Baur","doi":"10.1038/s41580-024-00752-w","DOIUrl":"10.1038/s41580-024-00752-w","url":null,"abstract":"Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction–oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans. Nicotinamide adenine dinucleotide (NAD+) has essential roles in metabolism and can be readily supplemented, potentially to benefit human health. This Review discusses recent insights into the roles of the microbiome and cellular compartments in regulating NAD+ metabolism, and the promise and pitfalls of NAD+ supplementation.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 10","pages":"822-840"},"PeriodicalIF":81.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1