首页 > 最新文献

Nature Reviews Molecular Cell Biology最新文献

英文 中文
Grand roles for microproteins 微蛋白的巨大作用
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-14 DOI: 10.1038/s41580-024-00806-z
Valerie A. Tornini
Valerie Tornini discusses two studies that identified functional roles for small proteins encoded by short open reading frames, and highlights the potential for this research field in fundamental and clinical research.
Valerie Tornini 讨论了两项发现短开放阅读框编码的小蛋白功能作用的研究,并强调了这一研究领域在基础和临床研究中的潜力。
{"title":"Grand roles for microproteins","authors":"Valerie A. Tornini","doi":"10.1038/s41580-024-00806-z","DOIUrl":"https://doi.org/10.1038/s41580-024-00806-z","url":null,"abstract":"Valerie Tornini discusses two studies that identified functional roles for small proteins encoded by short open reading frames, and highlights the potential for this research field in fundamental and clinical research.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"44 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The intraflagellar transport cycle 叶栅内运输循环
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41580-024-00797-x
Samuel E. Lacey, Gaia Pigino

Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.

原生纤毛和运动纤毛是真核生物的细胞器,在细胞信号和运动中发挥着至关重要的作用。纤毛内运输(IFT)通过主动和选择性地将可溶性蛋白和膜蛋白运入和运出纤毛,促进了高度特化的纤毛蛋白质组的形成。IFT由IFT-A和IFT-B蛋白复合物完成,它们共同将货物与微管马达驱动蛋白和动力蛋白连接起来。在这篇综述中,我们将讨论最新的结构和机理研究成果,这些成果涉及 IFT 复合物如何首先被招募到纤毛基部,它们如何聚合成一个前向 IFT 列车,以及这一复合物如何从细胞质中输入货物。我们将介绍如何将驱动蛋白驱动的前向列车带至纤毛顶端,并在那里将其重塑为动力蛋白驱动的逆向列车,以输出货物。我们还将介绍如何调节 IFT-A 和 IFT-B 复合物、马达蛋白和货物适配器之间的相互作用,以实现睫状体的双向运输。
{"title":"The intraflagellar transport cycle","authors":"Samuel E. Lacey, Gaia Pigino","doi":"10.1038/s41580-024-00797-x","DOIUrl":"https://doi.org/10.1038/s41580-024-00797-x","url":null,"abstract":"<p>Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"161 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies 作者更正:所有我们看不见的地方RNA 修饰研究中假阴性的来源与缓解
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-12 DOI: 10.1038/s41580-024-00810-3
Shalini Oberdoerffer, Wendy V. Gilbert

Correction to: Nature Reviews Molecular Cell Biology https://doi.org/10.1038/s41580-024-00784-2, published online 21 October 2024.

更正为Nature Reviews Molecular Cell Biology https://doi.org/10.1038/s41580-024-00784-2,2024 年 10 月 21 日在线发表。
{"title":"Author Correction: All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies","authors":"Shalini Oberdoerffer, Wendy V. Gilbert","doi":"10.1038/s41580-024-00810-3","DOIUrl":"https://doi.org/10.1038/s41580-024-00810-3","url":null,"abstract":"<p>Correction to: <i>Nature Reviews Molecular Cell Biology</i> https://doi.org/10.1038/s41580-024-00784-2, published online 21 October 2024.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"55 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription regulation by biomolecular condensates 生物分子凝聚体的转录调控
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-08 DOI: 10.1038/s41580-024-00789-x
Gaofeng Pei, Heankel Lyons, Pilong Li, Benjamin R. Sabari

Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1–10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100–1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain–ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1–10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.

生物分子凝聚体通过动态分隔转录机制来调控转录。转录调控的经典模型侧重于 RNA 聚合酶 II 的招募和调控,方法是在 1-10 nm 长度范围内形成复合物,由结构化和化学计量的相互作用驱动。这些复合物在 100-1,000 纳米长度范围内进一步组织成凝聚体,凝聚体由动态多价相互作用驱动,通常涉及结构域配体对或内在无序区。通过凝聚物介导的组织调控并不能取代 1-10 纳米尺度的过程,但它提供了在拥挤的核环境中促进或阻止这些过程的调控机制。转录凝聚物对转录的调控参与了动物和植物发育过程中的细胞状态转换、细胞信号传递和细胞对环境的反应。这些凝聚物介导的过程在发育障碍、癌症和神经退行性病变中出现失调。在这篇综述中,我们将讨论转录凝聚态调控的基本原理、它们在生理学中的作用以及它们在人类疾病中的失调。
{"title":"Transcription regulation by biomolecular condensates","authors":"Gaofeng Pei, Heankel Lyons, Pilong Li, Benjamin R. Sabari","doi":"10.1038/s41580-024-00789-x","DOIUrl":"https://doi.org/10.1038/s41580-024-00789-x","url":null,"abstract":"<p>Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1–10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100–1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain–ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1–10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"94 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homeostasis control in health and disease by the unfolded protein response 未折叠蛋白反应对健康和疾病的平衡控制
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1038/s41580-024-00794-0
Diego Acosta-Alvear, Jonathan M. Harnoss, Peter Walter, Avi Ashkenazi

Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins — essential for cellular structure–function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) — a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.

细胞依靠内质网(ER)来折叠和组装新合成的跨膜和分泌蛋白--这些蛋白对细胞结构-功能以及细胞内和细胞间的通讯都至关重要。为了确保ER的工作可靠性,真核细胞利用了未折叠蛋白反应(UPR)--一个压力传感和信号网络,通过根据需要重新平衡ER的生物合成能力来维持平衡。如果平衡恢复失败,元古动物的 UPR 还能将信号从细胞保护适应重新定向到程序性细胞死亡。因此,UPR 能在清除受损细胞的同时保留功能最佳的细胞,从而造福于多细胞生物。然而,UPR 的失调可能有害。在这篇综述中,我们将讨论作为健康和疾病范例的 UPR 及其调控过程。我们强调了最近在对 UPR 的分子和机理理解方面取得的重要进展,这些进展使我们能够更精确地设计和开发创新策略,以利用其治疗潜力。我们强调了 UPR 的流变特性、其背景性质以及有待进一步阐明的关键开放问题。
{"title":"Homeostasis control in health and disease by the unfolded protein response","authors":"Diego Acosta-Alvear, Jonathan M. Harnoss, Peter Walter, Avi Ashkenazi","doi":"10.1038/s41580-024-00794-0","DOIUrl":"https://doi.org/10.1038/s41580-024-00794-0","url":null,"abstract":"<p>Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins — essential for cellular structure–function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) — a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"8 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic discovery by enzyme activity profiling 通过酶活性分析发现表观遗传学
IF 112.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-25 DOI: 10.1038/s41580-024-00801-4
Manini S. Penikalapati, Jordan L. Meier
C. David Allis’s discovery of the first histone acetyltransferase from Tetrahymena exemplifies an approach that continues to evolve and now has a crucial role in drug development.
C.戴维-阿里斯从四膜虫中发现了第一个组蛋白乙酰转移酶,这一发现体现了一种不断发展的方法,如今它在药物开发中发挥着至关重要的作用。
{"title":"Epigenetic discovery by enzyme activity profiling","authors":"Manini S. Penikalapati, Jordan L. Meier","doi":"10.1038/s41580-024-00801-4","DOIUrl":"https://doi.org/10.1038/s41580-024-00801-4","url":null,"abstract":"C. David Allis’s discovery of the first histone acetyltransferase from Tetrahymena&nbsp;exemplifies an approach that continues to evolve and now has a crucial role in drug development.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"74 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The double-edged sword of eliminating senescent cells 消除衰老细胞的双刃剑
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-24 DOI: 10.1038/s41580-024-00798-w
Eric Gilson
Removal of different types of senescent cells can be either beneficial or detrimental to health, with potential consequences to senotherapies.
清除不同类型的衰老细胞可能对健康有益,也可能有害,从而对衰老疗法产生潜在影响。
{"title":"The double-edged sword of eliminating senescent cells","authors":"Eric Gilson","doi":"10.1038/s41580-024-00798-w","DOIUrl":"10.1038/s41580-024-00798-w","url":null,"abstract":"Removal of different types of senescent cells can be either beneficial or detrimental to health, with potential consequences to senotherapies.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 12","pages":"957-957"},"PeriodicalIF":81.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When senescence generates pluripotent stem cells 当衰老产生多能干细胞时
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-24 DOI: 10.1038/s41580-024-00799-9
Miria Ricchetti
Senescent cells in the amputated head of the cnidarian Hydractinia symbiolongicarpus drive the reprogramming of somatic cells into pluripotent stem cells, which are required for full body regeneration.
网纹水母(Hydractinia symbiolongicarpus)截肢头部的衰老细胞促使体细胞重编程为多能干细胞,这是全身再生所必需的。
{"title":"When senescence generates pluripotent stem cells","authors":"Miria Ricchetti","doi":"10.1038/s41580-024-00799-9","DOIUrl":"10.1038/s41580-024-00799-9","url":null,"abstract":"Senescent cells in the amputated head of the cnidarian Hydractinia symbiolongicarpus drive the reprogramming of somatic cells into pluripotent stem cells, which are required for full body regeneration.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 12","pages":"952-952"},"PeriodicalIF":81.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nuclear morphology-based machine learning algorithm for senescence detection 基于核形态学的衰老检测机器学习算法
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1038/s41580-024-00796-y
Imanol Duran
In this Tools of the Trade article, Duran (Gil lab) describes the development of novel machine learning algorithms that enable the detection of senescent cells in vitro and in diverse tissues based solely on nuclear morphologeny analysis.
在这篇《贸易工具》(Tools of the Trade)文章中,Duran(Gil 实验室)介绍了新型机器学习算法的开发情况,该算法能够仅根据核形态学分析检测体外和不同组织中的衰老细胞。
{"title":"A nuclear morphology-based machine learning algorithm for senescence detection","authors":"Imanol Duran","doi":"10.1038/s41580-024-00796-y","DOIUrl":"10.1038/s41580-024-00796-y","url":null,"abstract":"In this Tools of the Trade article, Duran (Gil lab) describes the development of novel machine learning algorithms that enable the detection of senescent cells in vitro and in diverse tissues based solely on nuclear morphologeny analysis.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 12","pages":"949-949"},"PeriodicalIF":81.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The prompt to discover senolytics 发现老年痴呆症的提示
IF 81.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1038/s41580-024-00795-z
James L. Kirkland
James Kirkland discusses how work by Norman Sharpless and colleagues, published in 2004, paved the way for the development of senolytics, which are now in early phase clinical trials for the treatment of multiple disorders.
詹姆斯-柯克兰(James Kirkland)讨论了诺曼-夏普莱斯(Norman Sharpless)及其同事在2004年发表的研究成果如何为开发衰老素铺平了道路,目前衰老素正处于治疗多种疾病的早期临床试验阶段。
{"title":"The prompt to discover senolytics","authors":"James L. Kirkland","doi":"10.1038/s41580-024-00795-z","DOIUrl":"10.1038/s41580-024-00795-z","url":null,"abstract":"James Kirkland discusses how work by Norman Sharpless and colleagues, published in 2004, paved the way for the development of senolytics, which are now in early phase clinical trials for the treatment of multiple disorders.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 12","pages":"953-953"},"PeriodicalIF":81.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1