Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00487-1
T W Zhang, D L Wu, W D Li, Z H Hao, X L Wu, Y J Xing, J R Shi, Y Li, F Dong
Highland barley, also called "qingke" in Tibetan, is mainly cultivated in the Tibetan Plateau of China and has been used as a major staple food for Tibetans. Recently, Fusarium head blight (FHB) of qingke was frequently observed around the Brahmaputra River in Tibet. Considering the importance of qingke for Tibetans, the assessment of Fusarium mycotoxin contamination is essential for food safety. In this study, a total of 150 freshly harvested qingke grain samples were obtained from three regions around the Brahmaputra River in Tibet (China) in 2020. The samples were investigated for the occurrence of 20 Fusarium mycotoxins using high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). The most frequently occurring mycotoxin was enniatin B (ENB) (46%), followed by enniatin B1 (ENB1) (14.7%), zearalenone (ZEN) (6.0%), enniatin A1 (ENA1) (3.3%), enniatin A (ENA) (1.3%), beauvericin (BEA) (0.7%), and nivalenol (NIV) (0.7%). Due to the increase in altitude, the cumulative precipitation level and average temperature decreased from the downstream to the upstream of the Brahmaputra River; this directly correlated to the contamination level of ENB in qingke, which gradually decreased from downstream to upstream. In addition, the level of ENB in qingke obtained from qingke-rape rotation was significantly lower than that from qingke-wheat and qingke-qingke rotations (p < 0.05). These results disseminated the occurrence of Fusarium mycotoxins and provided further understanding of the effect of environmental factors and crop rotation on Fusarium mycotoxins.
{"title":"Occurrence of Fusarium mycotoxins in freshly harvested highland barley (qingke) grains from Tibet, China.","authors":"T W Zhang, D L Wu, W D Li, Z H Hao, X L Wu, Y J Xing, J R Shi, Y Li, F Dong","doi":"10.1007/s12550-023-00487-1","DOIUrl":"https://doi.org/10.1007/s12550-023-00487-1","url":null,"abstract":"<p><p>Highland barley, also called \"qingke\" in Tibetan, is mainly cultivated in the Tibetan Plateau of China and has been used as a major staple food for Tibetans. Recently, Fusarium head blight (FHB) of qingke was frequently observed around the Brahmaputra River in Tibet. Considering the importance of qingke for Tibetans, the assessment of Fusarium mycotoxin contamination is essential for food safety. In this study, a total of 150 freshly harvested qingke grain samples were obtained from three regions around the Brahmaputra River in Tibet (China) in 2020. The samples were investigated for the occurrence of 20 Fusarium mycotoxins using high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). The most frequently occurring mycotoxin was enniatin B (ENB) (46%), followed by enniatin B<sub>1</sub> (ENB<sub>1</sub>) (14.7%), zearalenone (ZEN) (6.0%), enniatin A<sub>1</sub> (ENA<sub>1</sub>) (3.3%), enniatin A (ENA) (1.3%), beauvericin (BEA) (0.7%), and nivalenol (NIV) (0.7%). Due to the increase in altitude, the cumulative precipitation level and average temperature decreased from the downstream to the upstream of the Brahmaputra River; this directly correlated to the contamination level of ENB in qingke, which gradually decreased from downstream to upstream. In addition, the level of ENB in qingke obtained from qingke-rape rotation was significantly lower than that from qingke-wheat and qingke-qingke rotations (p < 0.05). These results disseminated the occurrence of Fusarium mycotoxins and provided further understanding of the effect of environmental factors and crop rotation on Fusarium mycotoxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"193-200"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9908199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00486-2
Sven Dänicke, Linn Carlson, Ann-Katrin Heymann, Angelika Grümpel-Schlüter, Barbara Doupovec, Dian Schatzmayr, Barbara Streit, Susanne Kersten, Jeannette Kluess
Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation. Both supplements were simultaneously added (+, 2.5 g SBS and 100 U ZenA/kg) to a control diet (CON-, 0.04 mg DON and < 0.004 mg ZEN/kg; CON+, 0.03 mg DON and < 0.004 mg ZEN/kg) and a Fusarium toxin contaminated diet (FUS-, 2.57 mg DON and 0.24 mg ZEN/kg; FUS+, 2.04 mg DON and 0.24 mg ZEN/kg). The 4 diets were fed to 20 female weaned piglets each (6 kg initial body weight) for 35 days; the piglets were sacrificed thereafter for collecting samples. Supplements improved performance and modified metabolism and hematology independent of dietary DON contamination. The mechanisms behind these changes could not be clarified and require further consideration. SBS reduced DON concentration in feed by approximately 20% and to the same extent in blood plasma and urine suggesting that no further DON sulfonate formation occurred in the digestive tract before absorbing DON in the upper digestive tract or that additionally formed DON sulfonates escaped absorption. DON sulfonates were detected in feces suggesting that unabsorbed DON sulfonates reached feces and/or that unabsorbed DON was sulfonated in the hindgut. The observed reduction rate of 20% was evaluated to be insufficient for feeding practice. Galenic form of SBS added to dry feed needs to be improved to support the DON sulfonation in the proximal digestive tract.ZenA was active in the digestive tract as demonstrated by the presence of its hydrolyzed none-estrogenic reaction products hydrolyzed ZEN (HZEN) and decarboxylated and hydrolyzed ZEN (DHZEN) both in feces, systemic circulation, and urine of group FUS+ compared to group FUS-. The presence of these hydrolysis products was paralleled by a significant decrease in high-estrogenic ZEN concentrations which, in turn, was related to a decrease in relative weights of uteri and ovaries when compared to group FUS-. Thus, ZenA was proven to be effective; both in terms of biomarkers and biological effects.
当饲粮浓度超过临界浓度时,母猪对DON和ZEN均有敏感反应,分别出现厌食症和内分泌紊乱。因此,DON和ZEN对饲料的频繁污染需要它们并行失活。添加剂ZenA水解ZEN, SBS通过磺化作用使DON失活。在对照组饲粮(CON-、0.04 mg DON和100 U ZenA/kg)中同时添加两种添加物(+、2.5 g SBS和100 U ZenA/kg)
{"title":"Inactivation of zearalenone (ZEN) and deoxynivalenol (DON) in complete feed for weaned piglets: Efficacy of ZEN hydrolase ZenA and of sodium metabisulfite (SBS) as feed additives.","authors":"Sven Dänicke, Linn Carlson, Ann-Katrin Heymann, Angelika Grümpel-Schlüter, Barbara Doupovec, Dian Schatzmayr, Barbara Streit, Susanne Kersten, Jeannette Kluess","doi":"10.1007/s12550-023-00486-2","DOIUrl":"https://doi.org/10.1007/s12550-023-00486-2","url":null,"abstract":"<p><p>Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation. Both supplements were simultaneously added (+, 2.5 g SBS and 100 U ZenA/kg) to a control diet (CON-, 0.04 mg DON and < 0.004 mg ZEN/kg; CON+, 0.03 mg DON and < 0.004 mg ZEN/kg) and a Fusarium toxin contaminated diet (FUS-, 2.57 mg DON and 0.24 mg ZEN/kg; FUS+, 2.04 mg DON and 0.24 mg ZEN/kg). The 4 diets were fed to 20 female weaned piglets each (6 kg initial body weight) for 35 days; the piglets were sacrificed thereafter for collecting samples. Supplements improved performance and modified metabolism and hematology independent of dietary DON contamination. The mechanisms behind these changes could not be clarified and require further consideration. SBS reduced DON concentration in feed by approximately 20% and to the same extent in blood plasma and urine suggesting that no further DON sulfonate formation occurred in the digestive tract before absorbing DON in the upper digestive tract or that additionally formed DON sulfonates escaped absorption. DON sulfonates were detected in feces suggesting that unabsorbed DON sulfonates reached feces and/or that unabsorbed DON was sulfonated in the hindgut. The observed reduction rate of 20% was evaluated to be insufficient for feeding practice. Galenic form of SBS added to dry feed needs to be improved to support the DON sulfonation in the proximal digestive tract.ZenA was active in the digestive tract as demonstrated by the presence of its hydrolyzed none-estrogenic reaction products hydrolyzed ZEN (HZEN) and decarboxylated and hydrolyzed ZEN (DHZEN) both in feces, systemic circulation, and urine of group FUS+ compared to group FUS-. The presence of these hydrolysis products was paralleled by a significant decrease in high-estrogenic ZEN concentrations which, in turn, was related to a decrease in relative weights of uteri and ovaries when compared to group FUS-. Thus, ZenA was proven to be effective; both in terms of biomarkers and biological effects.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"201-218"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9927170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
{"title":"The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B<sub>1</sub>-induced toxicity in human kidney cells.","authors":"Ecem Fatma Karaman, Mahmoud Abudayyak, Sibel Ozden","doi":"10.1007/s12550-023-00494-2","DOIUrl":"https://doi.org/10.1007/s12550-023-00494-2","url":null,"abstract":"<p><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) poses a risk to animal and human health. Although the effects of FB<sub>1</sub> on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB<sub>1</sub> nephrotoxicity. The present study investigates the effects of FB<sub>1</sub> on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB<sub>1</sub>. Dose-dependent downregulation of chromatin-modifying genes was observed after FB<sub>1</sub> exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB<sub>1</sub> induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB<sub>1</sub> caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB<sub>1</sub> carcinogenesis through DNA methylation, and histone and chromatin modifications.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"271-283"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9933714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00490-6
Lilian D Kaale
The antifungal and antiaflatoxigenic effects of four distinct plant species against Aspergillus flavus and Aspergillus parasiticus were investigated. Essential oils and methanolic extracts were prepared from aerial parts of Lippia javanica, Ocimum gratissimum, Satureja punctata, and stem barks of Toddalia asiatica by hydro-distillation and maceration, respectively. The poisoned food method was used to confirm the antifungal activity of essential oils and methanolic extracts from four different plant species against Aspergillus flavus and Aspergillus parasiticus, and high-performance liquid chromatography was used to quantify the antiaflatoxigenic activity. The essential oils of Satureja punctata and Lippia javanica showed the highest antiaflatoxigenic activity against the fungi strains tested at concentrations of 1.25, 2.5, and 5 µL/mL, followed by Ocimum gratissimum essential oil while Toddalia asiatica essential oil exerted moderate antiaflatoxigenic activity. Meanwhile, the methanolic extracts showed a wide spectrum of low to high antifungal and antiaflatoxigenic activities at concentrations of 125, 250, and 500 µg/mL against A. flavus and A. parasiticus. This study has indicated that the essential oils of Satureja punctate, Lippia javanica, and Ocimum gratissimum had substantial antifungal and antiaflatoxigenic activities compared to their methanolic extracts, while Toddalia asiatica methanolic extract had a moderate antifungal activity compared to its essential oil.
{"title":"Comparing the effects of essential oils and methanolic extracts on the inhibition of Aspergillus flavus and Aspergillus parasiticus growth and production of aflatoxins.","authors":"Lilian D Kaale","doi":"10.1007/s12550-023-00490-6","DOIUrl":"https://doi.org/10.1007/s12550-023-00490-6","url":null,"abstract":"<p><p>The antifungal and antiaflatoxigenic effects of four distinct plant species against Aspergillus flavus and Aspergillus parasiticus were investigated. Essential oils and methanolic extracts were prepared from aerial parts of Lippia javanica, Ocimum gratissimum, Satureja punctata, and stem barks of Toddalia asiatica by hydro-distillation and maceration, respectively. The poisoned food method was used to confirm the antifungal activity of essential oils and methanolic extracts from four different plant species against Aspergillus flavus and Aspergillus parasiticus, and high-performance liquid chromatography was used to quantify the antiaflatoxigenic activity. The essential oils of Satureja punctata and Lippia javanica showed the highest antiaflatoxigenic activity against the fungi strains tested at concentrations of 1.25, 2.5, and 5 µL/mL, followed by Ocimum gratissimum essential oil while Toddalia asiatica essential oil exerted moderate antiaflatoxigenic activity. Meanwhile, the methanolic extracts showed a wide spectrum of low to high antifungal and antiaflatoxigenic activities at concentrations of 125, 250, and 500 µg/mL against A. flavus and A. parasiticus. This study has indicated that the essential oils of Satureja punctate, Lippia javanica, and Ocimum gratissimum had substantial antifungal and antiaflatoxigenic activities compared to their methanolic extracts, while Toddalia asiatica methanolic extract had a moderate antifungal activity compared to its essential oil.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"233-245"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9917077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00484-4
Siti Nur Ezzati Yazid, Nur Izzah Tajudin, Nur Aina Aribah Razman, Jinap Selamat, Siti Izera Ismail, Maimunah Sanny, Nik Iskandar Putra Samsudin
The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.
{"title":"Mycotoxigenic fungal growth inhibition and multi-mycotoxin reduction of potential biological control agents indigenous to grain maize.","authors":"Siti Nur Ezzati Yazid, Nur Izzah Tajudin, Nur Aina Aribah Razman, Jinap Selamat, Siti Izera Ismail, Maimunah Sanny, Nik Iskandar Putra Samsudin","doi":"10.1007/s12550-023-00484-4","DOIUrl":"https://doi.org/10.1007/s12550-023-00484-4","url":null,"abstract":"<p><p>The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 I<sub>D</sub>, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B<sub>1</sub> produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B<sub>1</sub> and FB<sub>2</sub> produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B<sub>1</sub> and FB<sub>2</sub> produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB<sub>1</sub>, FB<sub>2</sub>, and OTA, P. janthinellum against AFB<sub>1</sub>, and Tra. cubensis against AFB<sub>1</sub>.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"177-192"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00489-z
Constanze Nossol, Peter Landgraf, Anikó Barta-Böszörmenyi, Stefan Kahlert, Jeannette Kluess, Berend Isermann, Oliver Stork, Daniela C Dieterich, Sven Dänicke, H-J Rothkötter
Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.
{"title":"Deoxynivalenol affects cell metabolism in vivo and inhibits protein synthesis in IPEC-1 cells.","authors":"Constanze Nossol, Peter Landgraf, Anikó Barta-Böszörmenyi, Stefan Kahlert, Jeannette Kluess, Berend Isermann, Oliver Stork, Daniela C Dieterich, Sven Dänicke, H-J Rothkötter","doi":"10.1007/s12550-023-00489-z","DOIUrl":"https://doi.org/10.1007/s12550-023-00489-z","url":null,"abstract":"<p><p>Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"219-231"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9930265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00481-7
Yi Kuang, Kirstin Scherlach, Christian Hertweck, Shengxiang Yang, Diego A Sampietro, Petr Karlovsky
{"title":"Retraction Note: Fusaric acid detoxification: a strategy of Gliocladium roseum involved in its antagonism against Fusarium verticillioides.","authors":"Yi Kuang, Kirstin Scherlach, Christian Hertweck, Shengxiang Yang, Diego A Sampietro, Petr Karlovsky","doi":"10.1007/s12550-023-00481-7","DOIUrl":"https://doi.org/10.1007/s12550-023-00481-7","url":null,"abstract":"","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"317"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10258785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s12550-023-00477-3
Julia Jaster-Keller, Marina E H Müller, Ahmed H El-Khatib, Nicole Lorenz, Arnold Bahlmann, Ulrike Mülow-Stollin, Mirko Bunzel, Sophie Scheibenzuber, Michael Rychlik, Grit von der Waydbrink, Stefan Weigel
Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.
{"title":"Root uptake and metabolization of Alternaria toxins by winter wheat plants using a hydroponic system.","authors":"Julia Jaster-Keller, Marina E H Müller, Ahmed H El-Khatib, Nicole Lorenz, Arnold Bahlmann, Ulrike Mülow-Stollin, Mirko Bunzel, Sophie Scheibenzuber, Michael Rychlik, Grit von der Waydbrink, Stefan Weigel","doi":"10.1007/s12550-023-00477-3","DOIUrl":"https://doi.org/10.1007/s12550-023-00477-3","url":null,"abstract":"<p><p>Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 2","pages":"109-126"},"PeriodicalIF":3.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9455562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s12550-023-00479-1
Vadim Kryukov, Elena Kosman, Oksana Tomilova, Olga Polenogova, Ulyana Rotskaya, Olga Yaroslavtseva, Dilara Salimova, Natalia Kryukova, Alexander Berestetskiy
Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.
{"title":"Tenuazonic acid alters immune and physiological reactions and susceptibility to pathogens in Galleria mellonella larvae.","authors":"Vadim Kryukov, Elena Kosman, Oksana Tomilova, Olga Polenogova, Ulyana Rotskaya, Olga Yaroslavtseva, Dilara Salimova, Natalia Kryukova, Alexander Berestetskiy","doi":"10.1007/s12550-023-00479-1","DOIUrl":"https://doi.org/10.1007/s12550-023-00479-1","url":null,"abstract":"<p><p>Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 2","pages":"135-149"},"PeriodicalIF":3.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1007/s12550-023-00476-4
Masayo Nomura, Kenji Shidara, Iyo Yasuda
An inter-laboratory study was performed in eight laboratories to evaluate the simultaneous quantification method for HT-2 toxin (HT-2), T-2 toxin (T-2), diacetoxyscirpenol (DAS), neosolaniol (NES), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), nivalenol (NIV), and fusarenon-X (FUS-X) in feed. The mycotoxins in the samples were extracted with hydrous acetonitrile, purified using a multifunctional column (InertSep® VRA-3) and a phospholipid removal column (Hybrid SPE®-Phospholipid), and then quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation mode. The mean recovery, repeatability, reproducibility, and Horwitz ratio from the inter-laboratory validation study were 99.8-109%, 3.1-9.8%, 4.3-9.8%, and 0.19-0.45, respectively, for type A trichothecenes (HT-2, T-2, DAS, and NES). Those values for type B trichothecenes (3-AcDON, 15-AcDON, DON, NIV, and FUS-X) were 89.9-116%, 3.4-9.1%, 5.6-14%, and 0.25-0.70, and the values for modified mycotoxin (D3G) were 78.2-96.7%, 3.5-6.4%, and 13-22%, respectively.
{"title":"Inter-laboratory study on simultaneous quantification of ten trichothecenes in feed.","authors":"Masayo Nomura, Kenji Shidara, Iyo Yasuda","doi":"10.1007/s12550-023-00476-4","DOIUrl":"https://doi.org/10.1007/s12550-023-00476-4","url":null,"abstract":"<p><p>An inter-laboratory study was performed in eight laboratories to evaluate the simultaneous quantification method for HT-2 toxin (HT-2), T-2 toxin (T-2), diacetoxyscirpenol (DAS), neosolaniol (NES), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), nivalenol (NIV), and fusarenon-X (FUS-X) in feed. The mycotoxins in the samples were extracted with hydrous acetonitrile, purified using a multifunctional column (InertSep<sup>®</sup> VRA-3) and a phospholipid removal column (Hybrid SPE<sup>®</sup>-Phospholipid), and then quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation mode. The mean recovery, repeatability, reproducibility, and Horwitz ratio from the inter-laboratory validation study were 99.8-109%, 3.1-9.8%, 4.3-9.8%, and 0.19-0.45, respectively, for type A trichothecenes (HT-2, T-2, DAS, and NES). Those values for type B trichothecenes (3-AcDON, 15-AcDON, DON, NIV, and FUS-X) were 89.9-116%, 3.4-9.1%, 5.6-14%, and 0.25-0.70, and the values for modified mycotoxin (D3G) were 78.2-96.7%, 3.5-6.4%, and 13-22%, respectively.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 2","pages":"95-108"},"PeriodicalIF":3.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}