Pub Date : 2024-11-01Epub Date: 2024-08-21DOI: 10.1007/s12550-024-00553-2
Mengjie Li, Honghua Li
Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.
{"title":"Research progress on inhibitors and inhibitory mechanisms of mycotoxin biosynthesis.","authors":"Mengjie Li, Honghua Li","doi":"10.1007/s12550-024-00553-2","DOIUrl":"10.1007/s12550-024-00553-2","url":null,"abstract":"<p><p>Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"483-494"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-17DOI: 10.1007/s12550-024-00547-0
Inés Rodríguez-Cañás, Jesús M González-Jartín, Rebeca Alvariño, Amparo Alfonso, Mercedes R Vieytes, Luis M Botana
Yogurt, a milk-derived product, is susceptible to mycotoxin contamination. While various methods have been developed for the analysis of dairy products, only a few have been specifically validated for yogurt. In addition, these methods are primarily focus on detecting aflatoxins and zearalenone. This study aimed to conduct a preliminary investigation into the presence of regulated, emerging, and modified mycotoxins in natural and oat yogurts available in the Spanish market. For this, a QuEChERS-based extraction method was optimized and then validated to detect and quantify 32 mycotoxins using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method was in-house validated for the analysis of natural and oat yogurt in terms of linearity, matrix effect, sensitivity, accuracy, and precision. Satisfactory performance characteristics were achieved; for most of the analytes, LOQs were lower than 2 ng/g, and recoveries ranged from 60 to 110% with a precision, expressed as the relative standard deviation of the recovery, lower than 15%. Subsequently, the validated method was applied to analyze commercial yogurt samples, revealing a notable incidence of beauvericin and enniatins, with some analogues found in up to 100% of the samples. Alternariol methyl ether was also frequently found, appearing in 50% of the samples. Additionally, the study identified regulated toxins such as fumonisins, ochratoxin A , and HT-2 toxin. These results provide new incidence data in yogurt, raising concerns about potential health risks for consumers.
{"title":"Identification of mycotoxins in yogurt samples using an optimized QuEChERS extraction and UHPLC-MS/MS detection.","authors":"Inés Rodríguez-Cañás, Jesús M González-Jartín, Rebeca Alvariño, Amparo Alfonso, Mercedes R Vieytes, Luis M Botana","doi":"10.1007/s12550-024-00547-0","DOIUrl":"10.1007/s12550-024-00547-0","url":null,"abstract":"<p><p>Yogurt, a milk-derived product, is susceptible to mycotoxin contamination. While various methods have been developed for the analysis of dairy products, only a few have been specifically validated for yogurt. In addition, these methods are primarily focus on detecting aflatoxins and zearalenone. This study aimed to conduct a preliminary investigation into the presence of regulated, emerging, and modified mycotoxins in natural and oat yogurts available in the Spanish market. For this, a QuEChERS-based extraction method was optimized and then validated to detect and quantify 32 mycotoxins using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method was in-house validated for the analysis of natural and oat yogurt in terms of linearity, matrix effect, sensitivity, accuracy, and precision. Satisfactory performance characteristics were achieved; for most of the analytes, LOQs were lower than 2 ng/g, and recoveries ranged from 60 to 110% with a precision, expressed as the relative standard deviation of the recovery, lower than 15%. Subsequently, the validated method was applied to analyze commercial yogurt samples, revealing a notable incidence of beauvericin and enniatins, with some analogues found in up to 100% of the samples. Alternariol methyl ether was also frequently found, appearing in 50% of the samples. Additionally, the study identified regulated toxins such as fumonisins, ochratoxin A , and HT-2 toxin. These results provide new incidence data in yogurt, raising concerns about potential health risks for consumers.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"569-579"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-29DOI: 10.1007/s12550-024-00549-y
Aisha Khatoon, Muhammad Zargham Khan, Zain Ul Abidin, Muhammad Kashif Saleemi, Halis Oguz, Shafia Tehseen Gul, Rao Zahid Abbas, Ashiq Ali, Sheraz Ahmad Bhatti
Aflatoxin B1 (AFB1) is among the most potent genotoxic and carcinogenic mycotoxins and is a major source of distress for the growing poultry sector. On the other hand, distillery yeast sludge or distillery sludge (DS) is a byproduct of molasses-based industries. It is often treated as a waste despite containing abundant nutrients particularly protein, basic amino acids, and vitamins along with other macro and micronutrients. This study was designed to investigate the oxidative stress and immunological alterations induced by AFB1 and their amelioration by dietary supplementation with DS. For this purpose, 360 newly hatched broiler chicks were randomly divided into twelve groups (30 birds each) and fed different combinations of AFB1 (100, 200, or 600 µg/kg) and DS (5 or 10 g/kg) for 42 days. The parameters under consideration were body weight, feed conversion ratio (FCR), relative organ weights, histopathological examination of different visceral organs, total antioxidant capacity, antibody response to intravenous injection of sheep red blood cells, in situ lymphoproliferative response to phytohemagglutinin-P, and phagocytic potential through a carbon clearance assay system. The results of this study established that DS supplementation ameliorated AFB1-associated oxidative stress and ameliorated toxicopathological and immunological anomalies in groups given AFB1 at 100 µg/kg and 200 µg/kg; however, little to no relief was observed in birds fed AFB1 at 600 µg/kg. The determination of the actual ratio of the AFB1 to the DS for substantiating the ameliorating effects requires further investigation.
{"title":"Aflatoxin B1-associated oxidative stress along with toxicopathological and immunological alterations is efficiently counteracted by dietary supplementation of distillery yeast sludge in broilers.","authors":"Aisha Khatoon, Muhammad Zargham Khan, Zain Ul Abidin, Muhammad Kashif Saleemi, Halis Oguz, Shafia Tehseen Gul, Rao Zahid Abbas, Ashiq Ali, Sheraz Ahmad Bhatti","doi":"10.1007/s12550-024-00549-y","DOIUrl":"10.1007/s12550-024-00549-y","url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1) is among the most potent genotoxic and carcinogenic mycotoxins and is a major source of distress for the growing poultry sector. On the other hand, distillery yeast sludge or distillery sludge (DS) is a byproduct of molasses-based industries. It is often treated as a waste despite containing abundant nutrients particularly protein, basic amino acids, and vitamins along with other macro and micronutrients. This study was designed to investigate the oxidative stress and immunological alterations induced by AFB1 and their amelioration by dietary supplementation with DS. For this purpose, 360 newly hatched broiler chicks were randomly divided into twelve groups (30 birds each) and fed different combinations of AFB1 (100, 200, or 600 µg/kg) and DS (5 or 10 g/kg) for 42 days. The parameters under consideration were body weight, feed conversion ratio (FCR), relative organ weights, histopathological examination of different visceral organs, total antioxidant capacity, antibody response to intravenous injection of sheep red blood cells, in situ lymphoproliferative response to phytohemagglutinin-P, and phagocytic potential through a carbon clearance assay system. The results of this study established that DS supplementation ameliorated AFB1-associated oxidative stress and ameliorated toxicopathological and immunological anomalies in groups given AFB1 at 100 µg/kg and 200 µg/kg; however, little to no relief was observed in birds fed AFB1 at 600 µg/kg. The determination of the actual ratio of the AFB1 to the DS for substantiating the ameliorating effects requires further investigation.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"615-629"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deoxynivalenol ( DON) is one of the most harmful mycotoxins in food or feed or Traditional Chinese Medicine. An efficient and applicable method for the detoxification of DON is urgently developed. 1152 strains were isolated from the intestinal contents of crucian. Morganella morganii YC12-C3 and Enterococcus faecalis YC12-C10 were screened with the highest degradation rate of DON via HPLC methods. The optimal degradation condition of YC12-C3 and YC12-C10 is co-cultured 24 h and 36 h at 28 ℃ in LB medium with pH 7 and 1.0% inoculation dosage, respectively. LC-MS/MS and 1H NMR results show that YC12-C10 and YC12-C3 can transform DON to 3-deoxy-6-demethanol-DON, a new metabolite biotransformed from DON, by deoxidization at C3 hydroxy and de-methanal reaction at methanol moiety of C6. In addition, the DON-degradation in agricultural material assay showed that YC12-C10 and YC12-C3 can degrade 150 μg·kg-1 DON in Coix lacryma-jobi, with a degradation rate of 68.89% and 59.94%, respectively. This result shows that YC12-C10 and YC12-C3 have a sound efficiency in removing DON ability in Coix lacryma-jobi, providing a new strain resource and application technique for biological detoxification of DON in food or feed or TCM industry.
脱氧雪腐镰刀菌烯醇(DON)是食品、饲料或中药中最有害的霉菌毒素之一。目前急需开发一种高效、适用的 DON 解毒方法。从鲫鱼肠道内容物中分离出 1152 株菌株。通过高效液相色谱法筛选出对 DON 降解率最高的摩根菌 YC12-C3 和粪肠球菌 YC12-C10。YC12-C3 和 YC12-C10 的最佳降解条件分别是在 28 ℃、pH 值为 7、接种量为 1.0% 的 LB 培养基中共培养 24 小时和 36 小时。LC-MS/MS 和 1H NMR 结果表明,YC12-C10 和 YC12-C3 能通过 C3 羟基的脱氧和 C6 甲醇基的脱甲醇反应,将 DON 转化为一种从 DON 生物转化而来的新代谢物 3-脱氧-6-脱甲醇-DON。此外,农业材料中的 DON 降解试验表明,YC12-C10 和 YC12-C3 能降解薏苡中 150 μg-kg-1 的 DON,降解率分别为 68.89% 和 59.94%。这一结果表明,YC12-C10 和 YC12-C3 对薏苡中 DON 的去除能力具有良好的效率,为食品、饲料或中药行业中 DON 的生物解毒提供了新的菌株资源和应用技术。
{"title":"Identification and characterization of Morganella morganii strain YC12-C3 and Enterococcus faecalis strain YC12-C10 and elucidation of its deoxynivalenol-degrading potential.","authors":"Jiuchun An, Yefei Chen, Shihua Zhou, Yanping Gao, Changgui Yang, Jinqiang Zhang, Xiaohong Ou, Yanhong Wang, Weike Jiang, Tao Zhou, Qing-Song Yuan","doi":"10.1007/s12550-024-00568-9","DOIUrl":"https://doi.org/10.1007/s12550-024-00568-9","url":null,"abstract":"<p><p>Deoxynivalenol ( DON) is one of the most harmful mycotoxins in food or feed or Traditional Chinese Medicine. An efficient and applicable method for the detoxification of DON is urgently developed. 1152 strains were isolated from the intestinal contents of crucian. Morganella morganii YC12-C3 and Enterococcus faecalis YC12-C10 were screened with the highest degradation rate of DON via HPLC methods. The optimal degradation condition of YC12-C3 and YC12-C10 is co-cultured 24 h and 36 h at 28 ℃ in LB medium with pH 7 and 1.0% inoculation dosage, respectively. LC-MS/MS and <sup>1</sup>H NMR results show that YC12-C10 and YC12-C3 can transform DON to 3-deoxy-6-demethanol-DON, a new metabolite biotransformed from DON, by deoxidization at C3 hydroxy and de-methanal reaction at methanol moiety of C6. In addition, the DON-degradation in agricultural material assay showed that YC12-C10 and YC12-C3 can degrade 150 μg·kg<sup>-1</sup> DON in Coix lacryma-jobi, with a degradation rate of 68.89% and 59.94%, respectively. This result shows that YC12-C10 and YC12-C3 have a sound efficiency in removing DON ability in Coix lacryma-jobi, providing a new strain resource and application technique for biological detoxification of DON in food or feed or TCM industry.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1007/s12550-024-00554-1
Shuichu Hao, Cong Yao, Peilin Meng, Yumen Jia, Liu Li, Chun Zhang
In our investigation, we probed the ramifications of low selenium diets and HT-2 mycotoxin exposure on spinal development and structural fidelity in murine models. A cohort of 48 male mice was segregated into six groups: a control set, a singular low selenium diet group, two cohorts exposed to distinct concentrations of HT-2 toxin (1.6 and 3.2 mg/kg·bw·d), and two assemblies subjected to a confluence of low selenium intake and each designated HT-2 dosage. Across an 8-week investigative period, parameters such as body mass, markers of bone metabolism, and cellular vigor were assiduously monitored. Analytical techniques encompassed biomechanical assessments, X-ray scrutiny, and micro-computed tomography (micro-CT) evaluations. Our results unveiled a dose-dependent diminution in the body mass of mice exclusively exposed to HT-2 toxin, whereas concurrent exposure to both low selenium and HT-2 toxins elicited a synergistic effect. Pertinent shifts were observed in calcium, phosphorus, and vitamin D concentrations, as well as in the operational dynamics of osteoblasts and osteoclasts, aligning with toxin dosage and combined exposure. Variations in biomechanical attributes were also discerned, mirroring the levels of toxin exposure. Micro-CT and X-ray examinations further corroborated the extensive detrimental impact on the cortical and trabecular architecture of the mice's spinal columns. This inquiry elucidates the complex synergistic interactions between low selenium and HT-2 mycotoxin on murine spinal development and integrity under co-exposure conditions. These findings accentuate the exigency of comprehensively understanding the solitary and joint effects of these toxins on osseous health, providing pivotal insights for future toxicological research and public health strategies.
在我们的研究中,我们探讨了低硒饮食和接触HT-2霉菌毒素对小鼠脊柱发育和结构真实性的影响。一组48只雄性小鼠被分为六组:对照组、单一低硒饮食组、暴露于不同浓度HT-2毒素(1.6和3.2毫克/千克-体重-日)的两组,以及两组同时摄入低硒和指定HT-2剂量的小鼠。在为期 8 周的调查期间,对体重、骨代谢标志物和细胞活力等参数进行了密切监测。分析技术包括生物力学评估、X射线检查和微型计算机断层扫描(micro-CT)评估。我们的研究结果表明,只接触 HT-2 毒素的小鼠体重会出现剂量依赖性下降,而同时接触低硒和 HT-2 毒素则会产生协同效应。在钙、磷和维生素 D 的浓度以及成骨细胞和破骨细胞的运行动态中观察到了与毒素剂量和联合暴露相一致的相关变化。生物力学属性的变化也与毒素暴露水平相一致。显微 CT 和 X 射线检查进一步证实了对小鼠脊柱皮质和小梁结构的广泛有害影响。这项研究阐明了在共同暴露条件下,低硒和HT-2霉菌毒素对小鼠脊柱发育和完整性的复杂协同作用。这些发现强调了全面了解这些毒素对骨质健康的单独和联合影响的必要性,为未来的毒理学研究和公共卫生策略提供了重要的启示。
{"title":"The spinal consequences of HT-2 toxin and selenium deficiency during bone maturation in mice.","authors":"Shuichu Hao, Cong Yao, Peilin Meng, Yumen Jia, Liu Li, Chun Zhang","doi":"10.1007/s12550-024-00554-1","DOIUrl":"https://doi.org/10.1007/s12550-024-00554-1","url":null,"abstract":"<p><p>In our investigation, we probed the ramifications of low selenium diets and HT-2 mycotoxin exposure on spinal development and structural fidelity in murine models. A cohort of 48 male mice was segregated into six groups: a control set, a singular low selenium diet group, two cohorts exposed to distinct concentrations of HT-2 toxin (1.6 and 3.2 mg/kg·bw·d), and two assemblies subjected to a confluence of low selenium intake and each designated HT-2 dosage. Across an 8-week investigative period, parameters such as body mass, markers of bone metabolism, and cellular vigor were assiduously monitored. Analytical techniques encompassed biomechanical assessments, X-ray scrutiny, and micro-computed tomography (micro-CT) evaluations. Our results unveiled a dose-dependent diminution in the body mass of mice exclusively exposed to HT-2 toxin, whereas concurrent exposure to both low selenium and HT-2 toxins elicited a synergistic effect. Pertinent shifts were observed in calcium, phosphorus, and vitamin D concentrations, as well as in the operational dynamics of osteoblasts and osteoclasts, aligning with toxin dosage and combined exposure. Variations in biomechanical attributes were also discerned, mirroring the levels of toxin exposure. Micro-CT and X-ray examinations further corroborated the extensive detrimental impact on the cortical and trabecular architecture of the mice's spinal columns. This inquiry elucidates the complex synergistic interactions between low selenium and HT-2 mycotoxin on murine spinal development and integrity under co-exposure conditions. These findings accentuate the exigency of comprehensively understanding the solitary and joint effects of these toxins on osseous health, providing pivotal insights for future toxicological research and public health strategies.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1007/s12550-024-00563-0
Ankita Kapri, Dheer Singh, Suneel Kumar Onteru
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
{"title":"Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases.","authors":"Ankita Kapri, Dheer Singh, Suneel Kumar Onteru","doi":"10.1007/s12550-024-00563-0","DOIUrl":"https://doi.org/10.1007/s12550-024-00563-0","url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s12550-024-00566-x
Phillis E Ochieng, David C Kemboi, Sheila Okoth, Siegrid De Baere, Etienne Cavalier, Erastus Kang'ethe, Barbara Doupovec, James Gathumbi, Marie-Louise Scippo, Gunther Antonissen, Johanna F Lindahl, Siska Croubels
This study examined the effects of fumonisins (FBs) and aflatoxin B1 (AFB1), alone or in combination, on the productivity and health of laying hens, as well as the transfer of aflatoxins (AFs) to chicken food products. The efficacy and safety of mycotoxin detoxifiers (bentonite and fumonisin esterase) to mitigate these effects were also assessed. Laying hens (400) were divided into 20 groups and fed a control, moderate (54.6 µg/kg feed) or high (546 µg/kg feed) AFB1 or FBs (7.9 mg/kg feed) added diets, either alone or in combination, with the mycotoxin detoxifiers added in selected diets. Productivity was evaluated by feed intake, egg weight, egg production, and feed conversion ratio whereas health was assessed by organ weights, blood biochemistry, and mortality. Aflatoxins residues in plasma, liver, muscle, and eggs were determined using UHPLC-MS/MS methods. A diet with AFB1 at a concentration of 546 µg/kg feed decreased egg production and various AFB1-contaminated diets increased serum uric acid levels and weights of liver, spleen, heart, and gizzard. Interactions between AFB1 and FBs significantly impacted spleen, heart, and gizzard weights as well as AFB1 residues in eggs. Maximum AFB1 residues of 0.64 µg/kg and aflatoxin M1 (below limits of quantification) were observed in liver, plasma, and eggs of layers fed diets with AFB1. The mycotoxin detoxifiers reduced effects of AFB1 and FBs on egg production, organ weights, blood biochemistry, and AFB1 residues in tissues. This study highlights the importance of mycotoxin detoxifiers as a mitigation strategy against mycotoxins in poultry production.
{"title":"Aflatoxins and fumonisins co-contamination effects on laying hens and use of mycotoxin detoxifiers as a mitigation strategy.","authors":"Phillis E Ochieng, David C Kemboi, Sheila Okoth, Siegrid De Baere, Etienne Cavalier, Erastus Kang'ethe, Barbara Doupovec, James Gathumbi, Marie-Louise Scippo, Gunther Antonissen, Johanna F Lindahl, Siska Croubels","doi":"10.1007/s12550-024-00566-x","DOIUrl":"https://doi.org/10.1007/s12550-024-00566-x","url":null,"abstract":"<p><p>This study examined the effects of fumonisins (FBs) and aflatoxin B1 (AFB1), alone or in combination, on the productivity and health of laying hens, as well as the transfer of aflatoxins (AFs) to chicken food products. The efficacy and safety of mycotoxin detoxifiers (bentonite and fumonisin esterase) to mitigate these effects were also assessed. Laying hens (400) were divided into 20 groups and fed a control, moderate (54.6 µg/kg feed) or high (546 µg/kg feed) AFB1 or FBs (7.9 mg/kg feed) added diets, either alone or in combination, with the mycotoxin detoxifiers added in selected diets. Productivity was evaluated by feed intake, egg weight, egg production, and feed conversion ratio whereas health was assessed by organ weights, blood biochemistry, and mortality. Aflatoxins residues in plasma, liver, muscle, and eggs were determined using UHPLC-MS/MS methods. A diet with AFB1 at a concentration of 546 µg/kg feed decreased egg production and various AFB1-contaminated diets increased serum uric acid levels and weights of liver, spleen, heart, and gizzard. Interactions between AFB1 and FBs significantly impacted spleen, heart, and gizzard weights as well as AFB1 residues in eggs. Maximum AFB1 residues of 0.64 µg/kg and aflatoxin M1 (below limits of quantification) were observed in liver, plasma, and eggs of layers fed diets with AFB1. The mycotoxin detoxifiers reduced effects of AFB1 and FBs on egg production, organ weights, blood biochemistry, and AFB1 residues in tissues. This study highlights the importance of mycotoxin detoxifiers as a mitigation strategy against mycotoxins in poultry production.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1007/s12550-024-00564-z
A Grümpel-Schlüter, S Kersten, J Kluess, S Lühken, J Saltzmann, A Schubbert, S Büngener-Schröder, S Dänicke
Following the use of sugar beet pulp that was retrospectively found to be predominantly contaminated with zearalenone (ZEN) in diets of reproducing sows largely exceeding the EU-guidance value for critical ZEN concentration of 0.25 mg/kg, farmers did not report any changes in the reproductive performance of sows. Thus, the aim of the study was to verify this guidance value in a dose-response setup by using sugar beet pulp as a ZEN source hitherto not considered a risky feedstuff additionally characterized by comparatively low levels of deoxynivalenol. A total of 90 sows was equally allocated to one of the three feed groups during experimental lactation 1 and up to 40 days after insemination: CON with a minimal ZEN concentration, ZEN1 with a target concentration of 250 µg ZEN/kg feed, and ZEN2 with a target concentration of 500 µg ZEN/kg feed. Thereafter, all sows received the same feed without ZEN for the rest of gestation, and the following lactation for testing of putative carry-over effects resulting from previous ZEN exposure. Exposure of sows to ZEN with blood serum as an indicator was linearly related to dietary ZEN concentrations. Reproductive and zootechnical performances of sows were only affected by ZEN exposure at weaning weight. Clinical-chemical parameters indicated no clear effect of ZEN exposure. An influence of ZEN on the occurrence of tail and ear injuries (not necrosis) in piglets and lesions on the mammary complexes in sows is possible. The influence of a ZEN concentration above the EU guidance value on the study farm can therefore not be neglected.
在使用甜菜浆饲喂能繁母猪后,发现甜菜浆主要受玉米赤霉烯酮(ZEN)污染,其临界 ZEN 浓度大大超过欧盟指导值 0.25 毫克/千克,但养殖户并未报告母猪的繁殖性能有任何变化。因此,本研究的目的是通过剂量反应设置来验证这一指导值,即使用甜菜浆作为 ZEN 来源,而甜菜浆迄今为止并不被认为是一种具有风险的饲料原料,而且其脱氧雪腐镰刀菌烯醇的含量也相对较低。在试验性泌乳期 1 至受精后 40 天内,将 90 头母猪平均分配到三个饲料组中的一个:CON组的 ZEN 浓度最低,ZEN1 组的目标浓度为 250 µg ZEN/kg饲料,ZEN2 组的目标浓度为 500 µg ZEN/kg饲料。此后,所有母猪在剩余的妊娠期和接下来的泌乳期都食用相同的不含 ZEN 的饲料,以检测之前接触 ZEN 可能产生的带入效应。以血清为指标,母猪接触 ZEN 的情况与日粮中 ZEN 的浓度呈线性关系。母猪的繁殖和动物技术性能只受到断奶体重时接触 ZEN 的影响。临床化学指标表明,接触 ZEN 没有明显的影响。ZEN 可能会影响仔猪尾部和耳部受伤(非坏死)以及母猪乳腺复合体病变的发生。因此,不能忽视 ZEN 浓度高于欧盟指导值对研究猪场的影响。
{"title":"Effect of zearalenone in sugar beet products on zootechnical and reproductive performance and lesions of sows and piglets.","authors":"A Grümpel-Schlüter, S Kersten, J Kluess, S Lühken, J Saltzmann, A Schubbert, S Büngener-Schröder, S Dänicke","doi":"10.1007/s12550-024-00564-z","DOIUrl":"https://doi.org/10.1007/s12550-024-00564-z","url":null,"abstract":"<p><p>Following the use of sugar beet pulp that was retrospectively found to be predominantly contaminated with zearalenone (ZEN) in diets of reproducing sows largely exceeding the EU-guidance value for critical ZEN concentration of 0.25 mg/kg, farmers did not report any changes in the reproductive performance of sows. Thus, the aim of the study was to verify this guidance value in a dose-response setup by using sugar beet pulp as a ZEN source hitherto not considered a risky feedstuff additionally characterized by comparatively low levels of deoxynivalenol. A total of 90 sows was equally allocated to one of the three feed groups during experimental lactation 1 and up to 40 days after insemination: CON with a minimal ZEN concentration, ZEN1 with a target concentration of 250 µg ZEN/kg feed, and ZEN2 with a target concentration of 500 µg ZEN/kg feed. Thereafter, all sows received the same feed without ZEN for the rest of gestation, and the following lactation for testing of putative carry-over effects resulting from previous ZEN exposure. Exposure of sows to ZEN with blood serum as an indicator was linearly related to dietary ZEN concentrations. Reproductive and zootechnical performances of sows were only affected by ZEN exposure at weaning weight. Clinical-chemical parameters indicated no clear effect of ZEN exposure. An influence of ZEN on the occurrence of tail and ear injuries (not necrosis) in piglets and lesions on the mammary complexes in sows is possible. The influence of a ZEN concentration above the EU guidance value on the study farm can therefore not be neglected.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1007/s12550-024-00570-1
Charles Mannara, Lucy Gicuku Njue, George Ooko Abong'
Exposure of school children to aflatoxin and fumonisin is mainly through diet. In Kenyan public schools, children are given porridge made from maize flour for breakfast, a mixture of maize and beans, also known as githeri for lunch and ugali for dinner. Nixtamalization has proved to reduce mycotoxins in most cereals and not a mixture of maize and beans. This study, therefore, aimed to assess the exposure of primary school children in Turkana County to aflatoxin and fumonisin through maize-based food under the school meals program and the effectiveness of nixtamalization in the reduction of these mycotoxins. Samples of githeri were randomly collected from all public primary schools (n = 128) under the homegrown school meals program in Turkana County and analyzed for aflatoxin and fumonisin. The data was analyzed using SAS software, version 9.4. The deterministic model was used to calculate the estimated daily intake (EDI) and the margin of exposure (MOE) used to characterize the exposure risk. The contaminated samples were then treated with various concentrations of Ca(OH)2, 0.5-2.5%. The treated samples were cooked for 60 and 75 min and soaked for 6 and 8 h. Forty percent of the schools contained githeri samples with aflatoxin B1 levels above 5 µg/Kg, the maximum limit for Kenya. Exposure to aflatoxin B1 and total aflatoxin was up to 2 µg/kg/bw/day. The range for fumonisin exposure was 60-80 µg/kg/bw/day. Ca(OH)2 concentration levels of up to 2.5% reduced aflatoxin by 75% and fumonisin by 72%. The findings indicate that githeri is contaminated with aflatoxin and fumonisin which exposes school children to these mycotoxins and nixtamalization can be used to reduce mycotoxin contamination in githeri.
{"title":"Dietary exposure of school children to aflatoxin and fumonisin through githeri and effectiveness of nixtamalization in reduction of these toxins in githeri from Turkana County.","authors":"Charles Mannara, Lucy Gicuku Njue, George Ooko Abong'","doi":"10.1007/s12550-024-00570-1","DOIUrl":"https://doi.org/10.1007/s12550-024-00570-1","url":null,"abstract":"<p><p>Exposure of school children to aflatoxin and fumonisin is mainly through diet. In Kenyan public schools, children are given porridge made from maize flour for breakfast, a mixture of maize and beans, also known as githeri for lunch and ugali for dinner. Nixtamalization has proved to reduce mycotoxins in most cereals and not a mixture of maize and beans. This study, therefore, aimed to assess the exposure of primary school children in Turkana County to aflatoxin and fumonisin through maize-based food under the school meals program and the effectiveness of nixtamalization in the reduction of these mycotoxins. Samples of githeri were randomly collected from all public primary schools (n = 128) under the homegrown school meals program in Turkana County and analyzed for aflatoxin and fumonisin. The data was analyzed using SAS software, version 9.4. The deterministic model was used to calculate the estimated daily intake (EDI) and the margin of exposure (MOE) used to characterize the exposure risk. The contaminated samples were then treated with various concentrations of Ca(OH)<sub>2</sub>, 0.5-2.5%. The treated samples were cooked for 60 and 75 min and soaked for 6 and 8 h. Forty percent of the schools contained githeri samples with aflatoxin B1 levels above 5 µg/Kg, the maximum limit for Kenya. Exposure to aflatoxin B1 and total aflatoxin was up to 2 µg/kg/bw/day. The range for fumonisin exposure was 60-80 µg/kg/bw/day. Ca(OH)<sub>2</sub> concentration levels of up to 2.5% reduced aflatoxin by 75% and fumonisin by 72%. The findings indicate that githeri is contaminated with aflatoxin and fumonisin which exposes school children to these mycotoxins and nixtamalization can be used to reduce mycotoxin contamination in githeri.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1007/s12550-024-00567-w
Abdulmohsen H Alqhtani, Ali R Al Sulaiman, Ala E Abudabos
To assess the efficacy of Toxfin and Novasil as aflatoxin-binding agents in broilers exposed to aflatoxin B1 (AFB1) from 11 to 30 days, 288 mixed-sex Ross 308 broiler chickens were randomly allocated to four dietary groups: control feed, control feed + 0.25 mg/kg AFB1, AFB1 feed + 0.3% Toxfin, and AFB1 feed + 0.3% Novasil. The evaluation encompassed growth performance for the grower (11-20 days), finisher (21-30 days), and overall (11-30 days) phases, carcass characteristics, serum biochemical components, liver function enzymes, hepatic antioxidant capacity, AFB1 residue in the liver and kidney, and ileal morphology at 30 days, and apparent nutrient digestibility during 29-30 days. Exposure to AFB1 significantly resulted in reduced growth efficiency, lowered carcass yields, liver hypertrophy, impaired metabolic and hepatic functions, liver oxidative stress, disrupted ileum architecture, diminished nutrient digestibility, and accumulated AFB1 in the liver and kidney. Conversely, supplementation of Toxfin or Novasil significantly augmented body weight gain (BWG) and reduced feed conversion ratio (FCR) during the finisher and overall phases, elevated BWG in the grower phase, heightened levels of glucose, hepatic protein, and glutathione peroxidase, declined malondialdehyde content, improved apparent metabolizable energy, and lowered AFB1 residues in the liver and kidney. Furthermore, Toxfin inclusion significantly reduced FCR during the grower phase, enhanced European production efficiency factor during the grower and overall phases, augmented dressing percentage, declined proportional liver weight, elevated concentrations of total protein, albumin, and total antioxidant capacity, heightened villus surface area, and boosted crude protein digestibility. To conclude, incorporating 0.3% Toxfin into broilers' feeds confers a more effectual safeguard than Novasil against the deleterious consequences of AFB1 exposure.
{"title":"Evaluating the effectiveness of Toxfin and Novasil as dietary aflatoxin-binding agents in broilers for sustaining hepatic antioxidant capacity and intestinal health status during aflatoxin B<sub>1</sub> exposure.","authors":"Abdulmohsen H Alqhtani, Ali R Al Sulaiman, Ala E Abudabos","doi":"10.1007/s12550-024-00567-w","DOIUrl":"https://doi.org/10.1007/s12550-024-00567-w","url":null,"abstract":"<p><p>To assess the efficacy of Toxfin and Novasil as aflatoxin-binding agents in broilers exposed to aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) from 11 to 30 days, 288 mixed-sex Ross 308 broiler chickens were randomly allocated to four dietary groups: control feed, control feed + 0.25 mg/kg AFB<sub>1</sub>, AFB<sub>1</sub> feed + 0.3% Toxfin, and AFB<sub>1</sub> feed + 0.3% Novasil. The evaluation encompassed growth performance for the grower (11-20 days), finisher (21-30 days), and overall (11-30 days) phases, carcass characteristics, serum biochemical components, liver function enzymes, hepatic antioxidant capacity, AFB<sub>1</sub> residue in the liver and kidney, and ileal morphology at 30 days, and apparent nutrient digestibility during 29-30 days. Exposure to AFB<sub>1</sub> significantly resulted in reduced growth efficiency, lowered carcass yields, liver hypertrophy, impaired metabolic and hepatic functions, liver oxidative stress, disrupted ileum architecture, diminished nutrient digestibility, and accumulated AFB<sub>1</sub> in the liver and kidney. Conversely, supplementation of Toxfin or Novasil significantly augmented body weight gain (BWG) and reduced feed conversion ratio (FCR) during the finisher and overall phases, elevated BWG in the grower phase, heightened levels of glucose, hepatic protein, and glutathione peroxidase, declined malondialdehyde content, improved apparent metabolizable energy, and lowered AFB<sub>1</sub> residues in the liver and kidney. Furthermore, Toxfin inclusion significantly reduced FCR during the grower phase, enhanced European production efficiency factor during the grower and overall phases, augmented dressing percentage, declined proportional liver weight, elevated concentrations of total protein, albumin, and total antioxidant capacity, heightened villus surface area, and boosted crude protein digestibility. To conclude, incorporating 0.3% Toxfin into broilers' feeds confers a more effectual safeguard than Novasil against the deleterious consequences of AFB<sub>1</sub> exposure.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}