Pub Date : 2023-11-01Epub Date: 2023-07-19DOI: 10.1007/s12550-023-00500-7
Gerald Schwerdt, Michael Kopf, Michael Gekle
Despite a long history of research, the mode of action of the mycotoxin ochratoxin A (OTA) is still not clear. Based on our observation that OTA-exposed cells consume more glucose and produce more lactate than control cells, with this study, we want to suggest another possible mode of action of OTA, involving cellular metabolism and mitochondria. We exposed human proximal tubule cells (HK2 cells) to OTA and studied its influence on mitochondrial performance as well as on the expression of energy homeostasis-involved routing proteins (AMPK and TXNIP) and on glucose transporting and metabolizing proteins. OTA reduced the capacity of mitochondria to increase their oxygen consumption rate forcing the cells to switch to the ineffective anaerobic glycolysis which demands higher glucose availability. The higher glucose demand is met by augmented cellular glycogen degradation and increased glucose uptake capabilities by increasing glucose transporter expression. We conclude that OTA exposure leads to impaired mitochondria, which forces the cells to alter their metabolism in order to ensure energy supply. We suggest to consider a possible effect of OTA on metabolism and mitochondria and to have a closer look on OTA-induced changes in the metabolome as possible additional players in OTA toxicity.
{"title":"The nephrotoxin ochratoxin a impairs resilience of energy homeostasis of human proximal tubule cells.","authors":"Gerald Schwerdt, Michael Kopf, Michael Gekle","doi":"10.1007/s12550-023-00500-7","DOIUrl":"10.1007/s12550-023-00500-7","url":null,"abstract":"<p><p>Despite a long history of research, the mode of action of the mycotoxin ochratoxin A (OTA) is still not clear. Based on our observation that OTA-exposed cells consume more glucose and produce more lactate than control cells, with this study, we want to suggest another possible mode of action of OTA, involving cellular metabolism and mitochondria. We exposed human proximal tubule cells (HK2 cells) to OTA and studied its influence on mitochondrial performance as well as on the expression of energy homeostasis-involved routing proteins (AMPK and TXNIP) and on glucose transporting and metabolizing proteins. OTA reduced the capacity of mitochondria to increase their oxygen consumption rate forcing the cells to switch to the ineffective anaerobic glycolysis which demands higher glucose availability. The higher glucose demand is met by augmented cellular glycogen degradation and increased glucose uptake capabilities by increasing glucose transporter expression. We conclude that OTA exposure leads to impaired mitochondria, which forces the cells to alter their metabolism in order to ensure energy supply. We suggest to consider a possible effect of OTA on metabolism and mitochondria and to have a closer look on OTA-induced changes in the metabolome as possible additional players in OTA toxicity.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"393-403"},"PeriodicalIF":3.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-07-03DOI: 10.1007/s12550-023-00497-z
Jun Zhang, Huikai Yuan, Wei Li, Shuo Chen, Siwen Liu, Chunyu Li, Xiaoqiang Yao
Breast cancer has replaced lung cancer to be the leading cancer in the world. Currently, chemotherapy is still the major method for breast cancer therapy, but its overall effect remains unsatisfactory. Fusaric acid (FSA), a mycotoxin derived from fusarium species, has shown potency against the proliferation of several types of cancer cells, but its effect on breast cancer cells has not been examined. Therefore, we explored the possible effect of FSA on the proliferation of MCF-7 human breast cancer cells and uncovered the underlying mechanism in the present study. Our results showed that FSA has a strong anti-proliferative effect on MCF-7 cells through inducing ROS production, apoptosis and arresting cell cycle at G2/M transition phase. Additionally, FSA triggers endoplasmic reticulum (ER) stress in the cells. Notably, the cell cycle arrest and apoptosis inducing effect of FSA can be attenuated by ER stress inhibitor, tauroursodeoxycholic acid. Our study provide evidence that FSA is a potent proliferation inhibition and apoptosis inducing agent against human breast cancer cells, and the possible mechanism involves the activation of ER stress signaling pathways. Our study may highlight that FSA is promising for the future in vivo study and development of potential agent for breast cancer therapy.
{"title":"Fusaric acid inhibits proliferation and induces apoptosis through triggering endoplasmic reticulum stress in MCF-7 human breast cancer cells.","authors":"Jun Zhang, Huikai Yuan, Wei Li, Shuo Chen, Siwen Liu, Chunyu Li, Xiaoqiang Yao","doi":"10.1007/s12550-023-00497-z","DOIUrl":"10.1007/s12550-023-00497-z","url":null,"abstract":"<p><p>Breast cancer has replaced lung cancer to be the leading cancer in the world. Currently, chemotherapy is still the major method for breast cancer therapy, but its overall effect remains unsatisfactory. Fusaric acid (FSA), a mycotoxin derived from fusarium species, has shown potency against the proliferation of several types of cancer cells, but its effect on breast cancer cells has not been examined. Therefore, we explored the possible effect of FSA on the proliferation of MCF-7 human breast cancer cells and uncovered the underlying mechanism in the present study. Our results showed that FSA has a strong anti-proliferative effect on MCF-7 cells through inducing ROS production, apoptosis and arresting cell cycle at G2/M transition phase. Additionally, FSA triggers endoplasmic reticulum (ER) stress in the cells. Notably, the cell cycle arrest and apoptosis inducing effect of FSA can be attenuated by ER stress inhibitor, tauroursodeoxycholic acid. Our study provide evidence that FSA is a potent proliferation inhibition and apoptosis inducing agent against human breast cancer cells, and the possible mechanism involves the activation of ER stress signaling pathways. Our study may highlight that FSA is promising for the future in vivo study and development of potential agent for breast cancer therapy.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"347-364"},"PeriodicalIF":3.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10140142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.
{"title":"Aflatoxin M1 decreases the expression of genes encoding tight junction proteins and influences the intestinal epithelial integrity.","authors":"Lal Krishan Kumar, Surya Kant Verma, Rajeev Chandel, Meet Thumar, Dheer Singh, Suneel Kumar Onteru","doi":"10.1007/s12550-023-00505-2","DOIUrl":"10.1007/s12550-023-00505-2","url":null,"abstract":"<p><p>Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"453-467"},"PeriodicalIF":3.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-07-10DOI: 10.1007/s12550-023-00499-x
Guodong Cai, Hilda M Guerrero-Netro, Jianchun Bian, Isabelle P Oswald, Christopher Price, Imourana Alassane-Kpembi
Cattle are deemed less susceptible to mycotoxins due to the limited internal exposure resulting from rumen microbiota activity. However, the significant amounts of Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) frequently detected in bovine follicular fluid samples suggest that they could affect ovarian function. Both mycotoxins trigger several patterns of cell death and activate the NLRP3 inflammasome in the intestine. In vitro studies have reported a number of adverse effects on bovine oocytes. However, the biological relevance of such findings with regard to realistic concentrations of DON and ZEN in bovine follicular fluid is still not clear. Hence, it is important to better characterize the effects of dietary exposure to DON and ZEN on the bovine ovary. Using bovine primary theca cells, this study investigated the effects of real-life patterns for bovine ovary exposure to DON and ZEN, but also DON metabolite DOM-1, on cell death and NLRP3 inflammasome activation. Exposure to DON starting from 0.1 μM significantly decreased theca cell viability. The kinetics of phosphatidylserine translocation and loss of membrane integrity showed that ZEN and DON, but not DOM-1, induce an apoptotic phenotype. qPCR analysis of the expression of NLRP3, PYCARD, IL-1β, IL-18, and GSDMD in primary theca cells at concentrations of mycotoxin previously reported in cow follicular fluid clearly indicated that DON and DOM-1 individually and in mixture, but not ZEN, activate NLRP3 inflammasome. Altogether, these results suggest that real-life dietary exposure of cattle to DON may induce inflammatory disorders in the ovary.
{"title":"Real-life exposure to Fusarium toxins deoxynivalenol and zearalenone triggers apoptosis and activates NLRP3 inflammasome in bovine primary theca cells.","authors":"Guodong Cai, Hilda M Guerrero-Netro, Jianchun Bian, Isabelle P Oswald, Christopher Price, Imourana Alassane-Kpembi","doi":"10.1007/s12550-023-00499-x","DOIUrl":"10.1007/s12550-023-00499-x","url":null,"abstract":"<p><p>Cattle are deemed less susceptible to mycotoxins due to the limited internal exposure resulting from rumen microbiota activity. However, the significant amounts of Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) frequently detected in bovine follicular fluid samples suggest that they could affect ovarian function. Both mycotoxins trigger several patterns of cell death and activate the NLRP3 inflammasome in the intestine. In vitro studies have reported a number of adverse effects on bovine oocytes. However, the biological relevance of such findings with regard to realistic concentrations of DON and ZEN in bovine follicular fluid is still not clear. Hence, it is important to better characterize the effects of dietary exposure to DON and ZEN on the bovine ovary. Using bovine primary theca cells, this study investigated the effects of real-life patterns for bovine ovary exposure to DON and ZEN, but also DON metabolite DOM-1, on cell death and NLRP3 inflammasome activation. Exposure to DON starting from 0.1 μM significantly decreased theca cell viability. The kinetics of phosphatidylserine translocation and loss of membrane integrity showed that ZEN and DON, but not DOM-1, induce an apoptotic phenotype. qPCR analysis of the expression of NLRP3, PYCARD, IL-1β, IL-18, and GSDMD in primary theca cells at concentrations of mycotoxin previously reported in cow follicular fluid clearly indicated that DON and DOM-1 individually and in mixture, but not ZEN, activate NLRP3 inflammasome. Altogether, these results suggest that real-life dietary exposure of cattle to DON may induce inflammatory disorders in the ovary.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"367-377"},"PeriodicalIF":3.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9761069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-07-20DOI: 10.1007/s12550-023-00496-0
Paraskevi Koletsi, Geert F Wiegertjes, Elisabeth A M Graat, Marijn de Kool, Philip Lyons, Johan W Schrama
This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.
{"title":"Individual and combined effects of deoxynivalenol (DON) with other Fusarium mycotoxins on rainbow trout (Oncorhynchus mykiss) growth performance and health.","authors":"Paraskevi Koletsi, Geert F Wiegertjes, Elisabeth A M Graat, Marijn de Kool, Philip Lyons, Johan W Schrama","doi":"10.1007/s12550-023-00496-0","DOIUrl":"10.1007/s12550-023-00496-0","url":null,"abstract":"<p><p>This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FU<sub>mix</sub>). This FU<sub>mix</sub> contained fusaric acid and fumonisin B<sub>1</sub>, B<sub>2</sub> and B<sub>3</sub>. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FU<sub>mix</sub>; DON-CON; and DON-FU<sub>mix</sub>. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FU<sub>mix</sub> toxins was 12,700 and 100 µg/kg feed in the diets with and without FU<sub>mix</sub>, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FU<sub>mix</sub> and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FU<sub>mix</sub> (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FU<sub>mix</sub> affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FU<sub>mix</sub> were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FU<sub>mix</sub> (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FU<sub>mix</sub> (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FU<sub>mix</sub> contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FU<sub>mix</sub> and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"405-420"},"PeriodicalIF":3.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00493-3
Franz Pfleger, Christine Schwake-Anduschus
Zearalenone is a frequently occurring and well-known mycotoxin developed in cereals before and during the harvest period by Fusarium spp. mainly in maize and wheat. In addition to the main form, various modified forms (phase I and II metabolites) were detected, in some cases in high amounts. These modified forms can be harmful for human health due to their different toxicity, which can be much higher compared to the parent toxin. In addition, the parent toxin can be cleaved from the phase I and II metabolites during digestion. A risk of correlated and additive adverse effects of the metabolites of ZEN phase I and II in humans and animals is evident. ZEN is considered in many studies on its occurrence in grain-based foods and some studies are dedicated to the behavior of ZEN during food processing. This is not the case for the ZEN phase I and II metabolites, which are only included in a few occurrence reports. Their effects during food processing is also only sporadically addressed in studies to date. In addition to the massive lack of data on the occurrence and behavior of ZEN modified forms, there is also a lack of comprehensive clarification of the toxicity of the numerous different ZEN metabolites detected to date. Finally, studies on the fate during digestion of the relevant ZEN metabolites will be important in the future to further clarify their relevance in processed foods such as bakery products.
{"title":"Relevance of Zearalenone and its modified forms in bakery products.","authors":"Franz Pfleger, Christine Schwake-Anduschus","doi":"10.1007/s12550-023-00493-3","DOIUrl":"https://doi.org/10.1007/s12550-023-00493-3","url":null,"abstract":"<p><p>Zearalenone is a frequently occurring and well-known mycotoxin developed in cereals before and during the harvest period by Fusarium spp. mainly in maize and wheat. In addition to the main form, various modified forms (phase I and II metabolites) were detected, in some cases in high amounts. These modified forms can be harmful for human health due to their different toxicity, which can be much higher compared to the parent toxin. In addition, the parent toxin can be cleaved from the phase I and II metabolites during digestion. A risk of correlated and additive adverse effects of the metabolites of ZEN phase I and II in humans and animals is evident. ZEN is considered in many studies on its occurrence in grain-based foods and some studies are dedicated to the behavior of ZEN during food processing. This is not the case for the ZEN phase I and II metabolites, which are only included in a few occurrence reports. Their effects during food processing is also only sporadically addressed in studies to date. In addition to the massive lack of data on the occurrence and behavior of ZEN modified forms, there is also a lack of comprehensive clarification of the toxicity of the numerous different ZEN metabolites detected to date. Finally, studies on the fate during digestion of the relevant ZEN metabolites will be important in the future to further clarify their relevance in processed foods such as bakery products.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"153-163"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9930780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00495-1
Anna Kiefer, Marcel Arnholdt, Viktoria Grimm, Leander Geske, Jonathan Groß, Nina Vierengel, Till Opatz, Gerhard Erkel
The KEAP1-Nrf2/ARE pathway is a pivotal cytoprotective regulator against oxidative stress which plays an important role in the development of many inflammatory diseases and cancer. Activation of the Nrf2 transcription factor by oxidative stress or electrophiles regulates antioxidant response element (ARE)-dependent transcription of antioxidative, detoxifying, and anti-inflammatory proteins. Therefore, modulators of the KEAP1-Nrf2/ARE pathway have received considerable interest as therapeutics to protect against diseases where oxidative stress constitutes the underlying pathophysiology. In a search for fungal secondary metabolites affecting the Nrf2/ARE-dependent expression of a luciferase reporter gene in BEAS-2B cells, three new perylenequinones, compounds 1, 2, and 3, together with altertoxin-I (ATX-I), were isolated from fermentations of an Alternaria species. The structures of the compounds were elucidated by a combination of one- and two-dimensional NMR spectroscopy and mass spectrometry. Compound 1 and ATX-I exhibited strong cytotoxic effects with LC50-values of 3.8 µM and 6.43 µM, respectively, whereas compound 3 showed no cytotoxic effects up to 100 µM on BEAS-2B cells. ATX-I induced ARE-dependent luciferase expression approximately fivefold and compound 1 approximately 2.6-fold at a concentration of 3 µM in transiently transfected BEAS-2B cells. In addition, compound 1 and ATX-I exhibited strong oxidative effects, whereas compound 3 did not show significant oxidative properties. For compound 1 and ATX-I, a strong upregulation of heme oxygenase-1 could be observed on mRNA and protein level in treated BEAS-2B cells. Moreover, compound 3 significantly decreased sod3 mRNA levels after induction of oxidative stress with benzoquinone.
{"title":"Structure elucidation and biological activities of perylenequinones from an Alternaria species.","authors":"Anna Kiefer, Marcel Arnholdt, Viktoria Grimm, Leander Geske, Jonathan Groß, Nina Vierengel, Till Opatz, Gerhard Erkel","doi":"10.1007/s12550-023-00495-1","DOIUrl":"https://doi.org/10.1007/s12550-023-00495-1","url":null,"abstract":"<p><p>The KEAP1-Nrf2/ARE pathway is a pivotal cytoprotective regulator against oxidative stress which plays an important role in the development of many inflammatory diseases and cancer. Activation of the Nrf2 transcription factor by oxidative stress or electrophiles regulates antioxidant response element (ARE)-dependent transcription of antioxidative, detoxifying, and anti-inflammatory proteins. Therefore, modulators of the KEAP1-Nrf2/ARE pathway have received considerable interest as therapeutics to protect against diseases where oxidative stress constitutes the underlying pathophysiology. In a search for fungal secondary metabolites affecting the Nrf2/ARE-dependent expression of a luciferase reporter gene in BEAS-2B cells, three new perylenequinones, compounds 1, 2, and 3, together with altertoxin-I (ATX-I), were isolated from fermentations of an Alternaria species. The structures of the compounds were elucidated by a combination of one- and two-dimensional NMR spectroscopy and mass spectrometry. Compound 1 and ATX-I exhibited strong cytotoxic effects with LC<sub>50</sub>-values of 3.8 µM and 6.43 µM, respectively, whereas compound 3 showed no cytotoxic effects up to 100 µM on BEAS-2B cells. ATX-I induced ARE-dependent luciferase expression approximately fivefold and compound 1 approximately 2.6-fold at a concentration of 3 µM in transiently transfected BEAS-2B cells. In addition, compound 1 and ATX-I exhibited strong oxidative effects, whereas compound 3 did not show significant oxidative properties. For compound 1 and ATX-I, a strong upregulation of heme oxygenase-1 could be observed on mRNA and protein level in treated BEAS-2B cells. Moreover, compound 3 significantly decreased sod3 mRNA levels after induction of oxidative stress with benzoquinone.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"303-316"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9931592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00483-5
Jan Purchase, Rosa Donato, Cristiana Sacco, Lilia Pettini, Anubha Devi Rookmin, Simone Melani, Alice Artese, Diane Purchase, Massimiliano Marvasi
Breakfast processed products are remarkably at risk of fungal contamination. This research surveyed the fumonisins concentration in different breakfast products and carried out in vitro experiments measuring fumonisins content in different substrates inoculated with Fusarium verticillioides. The pipeline started with the identification of combinations of ingredients for 58 breakfast products. Twenty-three core ingredients, seven nutritional components and production types were analyzed using a Pearson correlation, k-means clustering, and principal component analysis to show that no single factor is responsible for high fumonisins detection in processed cereals products. Consequently, decision tree regression was used as a means of determining and visualizing complex logical interactions between the same factors. We clustered the association of ingredients in low, medium, and high risk of fumonisin detection. The analysis showed that high fumonisins concentration is associated with those products that have high maize concentrations coupled especially with high sodium or rice. In an in vitro experiment, different media were prepared by mixing the ingredients in the proportion found in the first survey and by measuring fumonisins production by Fusarium verticillioides. Results showed that (1) fumonisins production by F. verticillioides is boosted by the synergistic effect of maize and highly ready carbohydrate content such as white flour; (2) a combination of maize > 26% (w/w), rice > 2.5% (w/w), and NaCl > 2.2% (w/w) led to high fumonisins production, while mono-ingredient products were more protective against fumonisins production. The observations in the in vitro experiments appeared to align with the decision tree model that an increase in ingredient complexity can lead to fumonisins production by Fusarium. However, more research is urgently needed to develop the area of predictive mycology based on the association of processing, ingredients, fungal development, and mycotoxins production.
{"title":"The association of food ingredients in breakfast cereal products and fumonisins production: risks identification and predictions.","authors":"Jan Purchase, Rosa Donato, Cristiana Sacco, Lilia Pettini, Anubha Devi Rookmin, Simone Melani, Alice Artese, Diane Purchase, Massimiliano Marvasi","doi":"10.1007/s12550-023-00483-5","DOIUrl":"https://doi.org/10.1007/s12550-023-00483-5","url":null,"abstract":"<p><p>Breakfast processed products are remarkably at risk of fungal contamination. This research surveyed the fumonisins concentration in different breakfast products and carried out in vitro experiments measuring fumonisins content in different substrates inoculated with Fusarium verticillioides. The pipeline started with the identification of combinations of ingredients for 58 breakfast products. Twenty-three core ingredients, seven nutritional components and production types were analyzed using a Pearson correlation, k-means clustering, and principal component analysis to show that no single factor is responsible for high fumonisins detection in processed cereals products. Consequently, decision tree regression was used as a means of determining and visualizing complex logical interactions between the same factors. We clustered the association of ingredients in low, medium, and high risk of fumonisin detection. The analysis showed that high fumonisins concentration is associated with those products that have high maize concentrations coupled especially with high sodium or rice. In an in vitro experiment, different media were prepared by mixing the ingredients in the proportion found in the first survey and by measuring fumonisins production by Fusarium verticillioides. Results showed that (1) fumonisins production by F. verticillioides is boosted by the synergistic effect of maize and highly ready carbohydrate content such as white flour; (2) a combination of maize > 26% (w/w), rice > 2.5% (w/w), and NaCl > 2.2% (w/w) led to high fumonisins production, while mono-ingredient products were more protective against fumonisins production. The observations in the in vitro experiments appeared to align with the decision tree model that an increase in ingredient complexity can lead to fumonisins production by Fusarium. However, more research is urgently needed to develop the area of predictive mycology based on the association of processing, ingredients, fungal development, and mycotoxins production.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"165-175"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9933142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00488-0
Bi Zhao, Yi Xu, Yang Song, Yu Zhang, Li Lin
Aflatoxins (AFs) are frequent contaminants in crops worldwide and can cause adverse health effects in exposed humans. Since foods AFs (AFB1, AFB2, AFG1, AFG2) contamination in Sichuan Province are unexplored, we conducted a study to assess AFs exposure in the population. In total, 318 samples, including grains, red chilli, red chilli powder, and vegetable protein beverages, were collected from 13 cities of Sichuan Province, China, in 2022. AFs were detected in all types of foods except for wheat flour, the highest incidence was found in red chilli powder (75.0%). The concentrations of AFtot (the total aflatoxins) ranged between ND (not detected) and 54.20 μg kg-1. It was observed that the AFs profile was dominated by AFB1. The AFB1 content ranged from ND to 52.60 μg kg-1 across food types. According to EU maximum limits (ML) of AFs, 2.8% of samples exceeded the AFtot limits. For AFB1, 0.4% and 4.3% of samples exceeded the China and EU limits, respectively. In this study, packaging types and sampling sites were selected as parameters influence food aflatoxin contamination. Nevertheless, there was no significant difference between different samples. According to exposure assessment and risk characterization, AFtot daily exposure was shown to be 0.263 and 283.936 ng kg-1 bw for the lower and upper exposure. The MOE value derived from consumption grains and red chilli pepper products were generally bellow 10 000, and liver cancer cases based on these two foods consumption could range from < 0.001 to 0.16 cases per year/10 000 persons.
{"title":"Food aflatoxin exposure assessment in Sichuan Province, China.","authors":"Bi Zhao, Yi Xu, Yang Song, Yu Zhang, Li Lin","doi":"10.1007/s12550-023-00488-0","DOIUrl":"https://doi.org/10.1007/s12550-023-00488-0","url":null,"abstract":"<p><p>Aflatoxins (AFs) are frequent contaminants in crops worldwide and can cause adverse health effects in exposed humans. Since foods AFs (AFB<sub>1</sub>, AFB<sub>2</sub>, AFG<sub>1</sub>, AFG<sub>2</sub>) contamination in Sichuan Province are unexplored, we conducted a study to assess AFs exposure in the population. In total, 318 samples, including grains, red chilli, red chilli powder, and vegetable protein beverages, were collected from 13 cities of Sichuan Province, China, in 2022. AFs were detected in all types of foods except for wheat flour, the highest incidence was found in red chilli powder (75.0%). The concentrations of AF<sub>tot</sub> (the total aflatoxins) ranged between ND (not detected) and 54.20 μg kg<sup>-1</sup>. It was observed that the AFs profile was dominated by AFB<sub>1</sub>. The AFB<sub>1</sub> content ranged from ND to 52.60 μg kg<sup>-1</sup> across food types. According to EU maximum limits (ML) of AFs, 2.8% of samples exceeded the AF<sub>tot</sub> limits. For AFB<sub>1</sub>, 0.4% and 4.3% of samples exceeded the China and EU limits, respectively. In this study, packaging types and sampling sites were selected as parameters influence food aflatoxin contamination. Nevertheless, there was no significant difference between different samples. According to exposure assessment and risk characterization, AF<sub>tot</sub> daily exposure was shown to be 0.263 and 283.936 ng kg<sup>-1</sup> bw for the lower and upper exposure. The MOE value derived from consumption grains and red chilli pepper products were generally bellow 10 000, and liver cancer cases based on these two foods consumption could range from < 0.001 to 0.16 cases per year/10 000 persons.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"261-269"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9972028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s12550-023-00492-4
Jan Martiník, Rastislav Boško, Zdeněk Svoboda, Sylvie Běláková, Karolína Benešová, Marek Pernica
The use of contaminated raw materials can lead to the transfer of mycotoxins into the final product, including beer. This study describes the use of the commercially available immunoaffinity column 11+Myco MS-PREP® and UPLC-MS/MS for the determination of mycotoxins in pale lager-type beers brewed in Czech Republic and other European countries. The additional aim of the work was to develop, optimize and validate this analytical method. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy were tested. The calibration curves were linear with correlation coefficients (R2 > 0.99) for all mycotoxins under investigation. The LOD ranged from 0.1 to 50 ng/L and LOQ from 0.4 to 167 ng/L. Recoveries of the selected analytes ranged from 72.2 to 101.1%, and the relative standard deviation under conditions repeatability (RSDr) did not exceed 16.3% for any mycotoxin. The validated procedure was successfully applied for the analysis of mycotoxins in a total of 89 beers from the retail network. The results were also processed using advanced chemometric techniques and compared with similar published studies. The toxicological impact was taken into account.
{"title":"Determination of mycotoxins and their dietary exposure assessment in pale lager beers using immunoaffinity columns and UPLC-MS/MS.","authors":"Jan Martiník, Rastislav Boško, Zdeněk Svoboda, Sylvie Běláková, Karolína Benešová, Marek Pernica","doi":"10.1007/s12550-023-00492-4","DOIUrl":"https://doi.org/10.1007/s12550-023-00492-4","url":null,"abstract":"<p><p>The use of contaminated raw materials can lead to the transfer of mycotoxins into the final product, including beer. This study describes the use of the commercially available immunoaffinity column 11<sup>+</sup>Myco MS-PREP<sup>®</sup> and UPLC-MS/MS for the determination of mycotoxins in pale lager-type beers brewed in Czech Republic and other European countries. The additional aim of the work was to develop, optimize and validate this analytical method. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy were tested. The calibration curves were linear with correlation coefficients (R<sup>2</sup> > 0.99) for all mycotoxins under investigation. The LOD ranged from 0.1 to 50 ng/L and LOQ from 0.4 to 167 ng/L. Recoveries of the selected analytes ranged from 72.2 to 101.1%, and the relative standard deviation under conditions repeatability (RSDr) did not exceed 16.3% for any mycotoxin. The validated procedure was successfully applied for the analysis of mycotoxins in a total of 89 beers from the retail network. The results were also processed using advanced chemometric techniques and compared with similar published studies. The toxicological impact was taken into account.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"285-302"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10275074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}